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ABSTRACT
A challenging goal of generative and developmental systems
(GDS) is to effectively evolve neural networks as complex
and capable as those found in nature. Two key properties
of neural structures in nature are regularity and modularity.
While HyperNEAT has proven capable of generating neural
network connectivity patterns with regularities, its ability
to evolve modularity remains in question. This paper inves-
tigates how altering the traditional approach to determin-
ing whether connections are expressed in HyperNEAT influ-
ences modularity. In particular, an extension is introduced
called a Link Expression Output (HyperNEAT-LEO) that
allows HyperNEAT to evolve the pattern of weights indepen-
dently from the pattern of connection expression. Because
HyperNEAT evolves such patterns as functions of geome-
try, important general topographic principles for organizing
connectivity can be seeded into the initial population. For
example, a key topographic concept in nature that encour-
ages modularity is locality, that is, components of a module
are located near each other. As experiments in this paper
show, by seeding HyperNEAT with a bias towards local con-
nectivity implemented through the LEO, modular structures
arise naturally. Thus this paper provides an important clue
to how an indirect encoding of network structure can be
encouraged to evolve modularity.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Generative and Developmental Systems, Artificial Neural
Networks, Modularity, HyperNEAT

1. INTRODUCTION
As generative and developmental systems (GDS) are asked

to evolve increasingly large and complex structures, the ques-
tion of how to organize and constrain such structures be-
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comes increasingly important. Neural networks in nature
exhibit several important organizational principles, such as
modularity, regularity, and hierarchy [11, 13, 22], which en-
able evolution to scale structures in complexity and size.
Such features might accordingly enable evolutionary algo-
rithms similarly to scale to problems of high complexity and
dimensionality if they could be encouraged to emerge. This
paper shows how modularity can be encouraged as a func-
tion of geometry through an indirect encoding.

The challenge in encouraging modularity is to bias search
towards modular solutions without restricting the search
space to modularity. The danger in explicitly designing
modularity into the representation is that it may bias search
towards modular structure when non-modular designs may
be required, inhibiting search from finding an optimal solu-
tion [7]. For example, fully-connected artificial neural net-
works (ANNs) are completely non-modular. To produce a
modular ANN, connectivity would be restricted, but that
would prevent solutions that may require full connectivity.

Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT; [9, 10, 15]) has been shown to generate
regularities in ANN weight patterns [3, 9, 10, 15, 21], but
Clune et al. [1] showed that it struggles to produce modular
patterns. To address this problem, this paper introduces a
novel insight that can consistently bias HyperNEAT towards
modular structures. The initial idea is that a bias towards
locality is an important prerequisite to modularity. How-
ever, locality alone is not enough because not all connectiv-
ity should be local. Thus the key insight is that the search
should start with a bias towards locality that can later be
adjusted by evolution to different levels for different parts of
the network geometry. This idea is implemented and tested
in this paper in a HyperNEAT variant called HyperNEAT
with Link Expression Output (HyperNEAT-LEO).

To demonstrate its advantage, HyperNEAT-LEO is com-
pared to the standard HyperNEAT method (with and with-
out locality bias) and another variant that enforces an exter-
nal distribution on connectivity. The HyperNEAT variants
are investigated in the Retina Left and Right problem [1]
(based originally on Kashtan and Alon [12], in which the
ANN must indicate whether particular objects are detected
in the left and right retinas). The Retina problem is mod-
ular because the calculations for the left and right sides are
independent, which has proven difficult for HyperNEAT to
represent [1]. In this task, a significant difference is demon-
strated among the variants. The standard HyperNEAT does
not perform well at the task, finding a solution only 12% of
the time or less. In addition, both biasing standard Hy-
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perNEAT towards locality in weights and imposing a lo-
cal connectivity distribution perform even worse and never
find a solution. However, interestingly, HyperNEAT-LEO,
which evolves the pattern of expressed connections, is able
to achieve up to a 91% success rate if it begins with a bias
towards local connectivity. These results demonstrate that
modularity can be encoded as a function of geometry, pro-
viding a means to evolving modularity in HyperNEAT.

2. BACKGROUND
The geometry-based methods that underlie the LEO con-

cept are first reviewed and then modularity is discussed.

2.1 NeuroEvolution of Augmenting Topologies
(NEAT)

This section briefly reviews the NEAT evolutionary algo-
rithm [16, 18], a popular policy search method that evolves
ANNs. It is also the foundation for the HyperNEAT method.
NEAT evolves connection weights as well as adds new nodes
and connections over generations, thereby increasing solu-
tion complexity. It has been proven to be effective in chal-
lenging control and decision-making tasks [18, 19, 23, 24].
NEAT starts with a population of small, simple ANNs that
increase their complexity over generations by adding new
nodes and connections through mutation. That way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks as it
evolves their connection weights to find a suitable level of
complexity. The techniques that facilitate evolving a popu-
lation of diverse and increasingly complex networks are de-
scribed in detail in Stanley and Miikkulainen [16] and Stan-
ley and Miikkulainen [18]; the important concept for the ap-
proach in this paper is that NEAT is a policy search method
that discovers the right topology and weights of a network to
maximize performance on a task. The next section reviews
the extension of NEAT called HyperNEAT that allows it to
exploit geometry through representation.

2.2 CPPNs and HyperNEAT
NEAT is an appropriate platform to study modularity

in GDS because it easily extends to an indirect encoding,
which means a compressed description of the solution net-
work. Such compression makes the policy search practical
even if the state space is high-dimensional. One effective
indirect encoding is to compute the network structure as a
function of geometry. This section describes such an exten-
sion of NEAT, called Hypercube-based NEAT (HyperNEAT
[9, 10, 15]), which enables high-dimensional indirect repre-
sentations. The effectiveness of the geometry-based learn-
ing in HyperNEAT has been demonstrated in multiple do-
mains and representations, such as checkers [9, 10], multi-
agent predator prey [4, 6], quadruped locomotion [2], and
RoboCup Keepaway [21]. A full description of HyperNEAT
is in Gauci and Stanley [9, 10] and Stanley et al. [15].

The main idea in HyperNEAT is that geometric relation-
ships are learned though an indirect encoding that describes
how the weights of the ANN can be generated as a function
of geometry. Unlike a direct representation, wherein every
connection in the ANN is described individually, an indirect
representation describes a pattern of parameters without ex-
plicitly enumerating each such parameter. That is, informa-
tion is reused in such an encoding, which is a major focus in
the field of GDS from which HyperNEAT originates [17, 20].

Such information reuse allows indirect encoding to search a
compressed space. HyperNEAT discovers the regularities in
the geometry and learns a policy based on them.

The indirect encoding in HyperNEAT is called a com-
positional pattern producing network (CPPN; [14]), which
encodes the weight pattern of an ANN [9, 15]. The idea
behind CPPNs is that geometric patterns can be encoded
by a composition of functions that are chosen to represent
common regularities. Given a function f and a function g,
a composition is defined as f ◦ g(x) = f(g(x))). In this
way, a set of simple functions can be composed into more
elaborate functions through hierarchical composition (e.g.
f ◦ g(f(x) + g(x))). For example, the Gaussian function is
symmetric, so when it is composed with any other function,
the result is a symmetric pattern. The internal structure of
a CPPN is a weighted network, similar to an ANN, that de-
notes which functions are composed and in what order. The
appeal of this encoding is that it can represent a pattern
of connectivity, with regularities such as symmetry, repeti-
tion, and repetition with variation, through a network of
simple functions (i.e. the CPPN), which means that instead
of evolving ANNs, NEAT can evolve CPPNs that generate
ANN weight patterns.

Formally, CPPNs are functions of geometry (i.e. locations
in space) that output connectivity patterns whose nodes are
situated in n dimensions, where n is the number of dimen-
sions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-
dimensional space can also denote the connection between
the two-dimensional points (x1, y1) and (x2, y2). The output
of the CPPN for that input thereby represents the weight of
that connection (figure 1). By querying every pair of points
in the space, the CPPN can produce an ANN, wherein each
queried point is the position of a neuron. While CPPNs are
themselves networks, the distinction in terminology between
CPPN and ANN is important for explicative purposes be-
cause in HyperNEAT, CPPNs encode ANNs. Because the
connection weights are produced as a function of their end-
points, the final pattern is produced with knowledge of the
domain geometry, which is literally depicted geometrically
within the constellation of nodes.

In effect, the CPPN paints a pattern within a
n-dimensional hypercube that is interpreted as an isomor-
phic connectivity pattern. Weight patterns produced by a
CPPN in this way are called substrates so that they can be
verbally distinguished from the CPPN itself. It is important
to note that the structure of the substrate is independent of
the structure of the CPPN. The substrate is an ANN whose
nodes are situated in a coordinate system, while the CPPN
defines the connectivity among the nodes of the ANN. The
experimenter defines both the location and role (i.e. hidden,
input, or output) of each node in the substrate.

As a rule of thumb, nodes are placed on the substrate
to reflect the geometry of the domain (i.e. the state), mak-
ing setup straightforward [2, 10, 15]. For example, a visual
field can be laid out in two dimensions such that nodes that
receive input from adjacent locations in the image are liter-
ally adjacent in the network geometry. This way, the pattern
of weights becomes a direct function of the domain geom-
etry, which means that knowledge about the problem can
be injected into the search and HyperNEAT can exploit the
regularities (e.g. adjacency, or symmetry, which the CPPN
sees) of a problem that are invisible to traditional encod-
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Figure 1: A CPPN Describes Connectivity. A grid
of nodes, called the ANN substrate, is assigned coor-
dinates. (1) Every connection between layers in the
substrate is queried by the CPPN to determine its
weight; the dotted line connecting layers in the sub-
strate represents a sample such connection. (2) For
each such query, the CPPN inputs the coordinates
of the two endpoints, which are highlighted in the
substrate. (3) The weight between them is output
by the CPPN. Thus, CPPNs can generate regular
patterns of connections.

ings. For example, geometric knowledge can be imparted
e.g. by including a hidden node in the CPPN that com-
putes Gauss(x2−x1), which encodes the concept of locality
and symmetry on the x-axis, an idea employed in the im-
plementation in this paper. This idea can be illustrated by
considering three source points (i.e. nodes) with x positions
−1, 0, 1 and one target point at x = 0:

w1 = Gauss(0 + 1) = 0.37,

w2 = Gauss(0− 0) = 1,

w3 = Gauss(0− 1) = 0.37.

Thus, the output of this function is both symmetric about
the x-axis and decreasing with distance from the target.

In summary, HyperNEAT evolves the internal topology
and weights of the CPPN that compactly encodes ANN
weight patterns. The complete process is shown in Algo-
rithm 1. Next, modularity is discussed.

2.3 Modularity
Modularity can be defined as the separability of structure

into functionally independent units [1, 12, 13]. Modular-
ity is common to both biological and engineering systems.
For example, cells assemble into tissues, tissues into organs,
and organs into organisms. Decomposing a design into mod-
ules can allow evolutionary algorithms to address complex
tasks that require sub-functions of the solution to be in-
dependently optimized [12]. Approaches to modularity in
evolutionary algorithms range from encapsulating modules
[7, 25] to alternating tasks to facilitate their discovery [12].

A common approach to modularity in evolutionary algo-
rithms is to preserve or create modules through high-level
processes. For example, modularity-preserving representa-
tions preserve the modularity that exists in the phenotype
space by transferring it to the genotype space through encap-
sulation [7, 25]. The process of encapsulation creates new
genotypic primitives that are groupings of existing primi-
tives. In this way, modules can be generated and assem-

Input: Substrate Configuration
Output: Solution CPPN
Initialize population of minimal CPPNs with random
weights;
while Stopping criteria is not met do

foreach CPPN in the population do
foreach Possible connection in the substrate do

Query the CPPN for weight w of connection;
if Abs(w) >Threshold then

Create connection with a weight scaled
proportionally to w (figure 1);

end

end
Run the substrate as an ANN in the task
domain to ascertain fitness;

end
Reproduce CPPNs according to the NEAT method
to produce the next generation;

end
Output the champion CPPN.

Algorithm 1: Basic HyperNEAT Algorithm

bled together to produce solutions. Such high-level processes
for modularity are dependent on the capability of the algo-
rithm to select beneficial modules and may be detrimental
to search by creating modules that are not useful.

Alternatively, the evolutionary algorithm may be modi-
fied such that fitness pressure is applied to encourage dis-
covering modularity. In modularly varying goals evolution
[12], the task that is being solved alternates at set intervals
during evolution. Bias towards modularity is created by se-
lecting tasks in which there are shared sub-goals and it is
easier to switch between tasks if the appropriate modules for
these sub-goals are discovered. For example, the modularly
varying goals version of the Retina Problem [12] switches
between the tasks of (1) determining if there is a target pat-
tern in the right or left retina and (2) determining if there
is a target pattern in the right and left retina. These tasks
must independently discover the appropriate functions for
the left and right retinas, and then combine them correctly
depending on the task. The challenge is selecting tasks that
share modules such that their discovery is beneficial.

Clune et al. [1] applied HyperNEAT to the modularly-
varying goals Retina Problem. Standard HyperNEAT strug-
gled to produce modularity in this task and achieved signif-
icantly lower correct classifications than the direct encoding
implemented by Kashtan and Alon [12]. In addition to the
modularly-varying goals version of the Retina Problem, Hy-
perNEAT was also tested in the non-varying Retina Prob-
lems, i.e. the fixed goal of right and left and the fixed goal
of right or left, and alternative Retina Problems that must
judge each retina’s input individually. For example, a left
output indicates validity for the left pattern. The most dif-
ficult of these tasks for HyperNEAT is the Retina Left and
Right task [1], which must correctly judge as valid or invalid
each retina’s pattern separately. Interestingly, Clune et al.
[1] found that imposing modularity by disabling connections
between the left and right sides of the network improved
HyperNEAT’s performance [1]. This enforced modularity
demonstrates that modularity could potentially provide Hy-
perNEAT an advantage in this task, but that HyperNEAT
struggles to create modularity on its own.
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This paper adds to our understanding of modularity by fo-
cusing on the role of geometry in encoding modularity. The
next section explains modifications to HyperNEAT based on
this idea that alter how connection expression is controlled.

3. THRESHOLDING IN HYPERNEAT
Although the HyperNEAT method succeeds in a number

of challenging tasks [9, 10, 15, 21] by exploiting geometric
regularities in the solution, it is less effective at generating
modular solutions [1]. Instead it tends to generate fully-
connected networks even when limited connectivity is bene-
ficial. The conventional method for controlling connectivity
in HyperNEAT is a threshold that limits the range of val-
ues output by the CPPN that can be expressed as weights
[10, 15]. The threshold is a parameter specified at initial-
ization that is uniformly applied to all connections queried.
When the magnitude of the output of the CPPN is below
this threshold, the connection is not expressed. In this way,
the proportion of connections expressed may be controlled
by raising or lowering the threshold when fewer or more
connections are desired. Because the threshold is uniform
across all connections, it influences every connection equally
with no bias towards modularity (which likely requires dif-
ferent levels of connectivity in different areas).

As an alternative to the traditional uniform threshold, one
idea to control connection expression is a dynamic thresh-
old. The dynamic threshold varies depending on the specific
nodes or the connection being queried. As each connec-
tion is queried, the threshold, which determines whether the
CPPN-generated weight should be expressed as a connec-
tion, is updated and then applied. In this way, a particular
expression distribution that is determined a priori can be en-
forced to influence the pattern of connectivity in the ANN.
In particular, this paper explores a dynamic threshold based
on distance with the value t = c + c ∗ ||ni − nj ||, where t
is the local threshold value, c is a constant parameter set
at initialization and ||ni −nj || is the Euclidean norm of the
difference between the endpoint-nodes’ coordinate-vectors.
This threshold makes sense for modularity because it ex-
presses the concept of locality by discouraging connections
of greater distance. That is, the higher the distance is be-
tween nodes, the higher the threshold will be.

In another alternative to the uniform threshold, instead of
thresholding connections through an external value, Hyper-
NEAT itself is extended to generate an expression pattern
that controls whether connections are expressed at different
locations independently of their weights. For this purpose, a
new Link Expression Output (LEO) is added to the CPPN
that indicates whether a connection is expressed. When the
LEO (which is a step function) is greater than 0.0 the con-
nection weight is set to the usual CPPN weight output; oth-
erwise it is not expressed (Algorithm 2). In this way, the
pattern of connectivity can be controlled by the CPPN it-
self independently of the weights, and that connectivity can
be evolved as a function of geometry. This approach follows
the idea that connection expression and weights are best
considered separately.

Furthermore, because expression patterns are functions
of geometry (as are the weights), evolution can be seeded
with geometric principles that bias the pattern of connec-
tivity. Evolution is seeded by initializing CPPNs in the first
generation with seed topographies that represent important
concepts. For example, locality can be expressed through

Input: Substrate Configuration
Output: Solution CPPN
Initialize population of minimal CPPNs with random
weights;
while Stopping criteria is not met do

foreach CPPN in the population do
foreach Possible connection in the substrate do

Query the CPPN for weight w of connection
and expression value e;
if e > 0.0 then

Create connection with a weight w;
end

end
Run the substrate as an ANN in the task
domain to ascertain fitness;

end
Reproduce CPPNs according to the NEAT method
to produce the next generation;

end
Output the champion CPPN.

Algorithm 2: HyperNEAT-LEO Algorithm

a Gaussian function. Because the Gaussian function peaks
when its input is 0.0, inputting a difference between coor-
dinates, e.g. ∆x, achieves the highest value when the co-
ordinates are the same. To seed for locality on multiple
dimensions, a Gaussian node can be added to the seed for
each such dimension, as shown in figure 2. In this way, such
seeds provides the concept of locality because the more local
the connection (i.e. ∆x close to 0.0), the greater the impact
of the Gaussian function. This extension is called Hyper-
NEAT with a Link Expression Output (HyperNEAT-LEO).

Each of the three variants discussed in this section pro-
vides different means of controlling connectivity and encour-
aging modularity. The next section introduces the experi-
ments designed to demonstrate the differences among these
approaches to thresholding.

4. EXPERIMENTAL SETUP
The experiments in this paper are designed to investigate

the effect of different methods of thresholding on connectiv-
ity and modularity. The key focus is on the idea that an
effective means of expressing modularity is as a function of
geometry. This geometric function may be externally de-
fined or evolved as a geometric pattern expressed by the
CPPN. One key to modularity is limiting the number of
connections, but limiting the connections alone does not nec-
essarily lead to modularity. This section explains the task
designed to explore how potential thresholding approaches
influence modularity.

Introduced by Kashtan and Alon [12], the Retina Problem
poses the challenge of creating an ANN that must identify
patterns input into the left and right retinas. The retinas
consist of four inputs each that are each set to one of two
values. Because the values for each input are binary, a four-
input retina can take 16 possible patterns and there are
overall 256 configurations for two four-input retinas. The
individual retinas each have a unique set of specified pat-
terns identified as valid or invalid that are equally divided
into eight patterns each.

In the original Retina Problem introduced by Kashtan
and Alon [12], the ANN is responsible for determining ei-
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Figure 2: Seed CPPN Expressing Global Locality.
Initial CPPN topologies imparted with geometric
principles can seed evolution. For example, a six-
dimensional CPPN can be initialized with three hid-
den nodes connected by positive (black) and nega-
tive (gray) weights. These hidden nodes take as in-
put x1−x2 (∆x), y1−y2 (∆y), and z1−z2 (∆z) respec-
tively and have Gaussian activation functions. The
nodes are connected to the LEO, which has a bias
of −3. Because the Gaussian function peaks at 0.0,
the expression output value is greater than or equal
to 0.0 only when ∆x, ∆y, and ∆z are 0.0. Thus, the
initial population is seeded with CPPNs that con-
strain connectivity to respect locality. When seed-
ing in this way, the weight output of the CPPN is
included as usual with a set of direct connections
from all the inputs (not shown).

ther (1) the left and right patterns are valid, or (2) the left
or right patterns are valid. In their version, modularity is
helpful when alternating between these tasks because the
functions of correctly classifying the left and right patterns
are combined. An extension of these tasks, the Retina Left
and Right task introduced by Clune et al. [1], removes the
need to combine the decision of the modules with a logical
operation; instead the ANN must separately judge as valid
or invalid each retina’s pattern. Standard HyperNEAT was
applied to this task and was shown to struggle with produc-
ing the modularity required [1]. In fact, the most difficult of
the variant tasks of Kashtan and Alon [12] for HyperNEAT
in Clune et al. [1] was the Retina Left and Right task, which
is thus chosen to explore modularity in this paper.

As shown in figure 3, the substrate is configured with four
layers consisting of eight input nodes, eight hidden nodes
in layer one, four hidden nodes in layer two, and two out-
put nodes. Their geometric coordinates follow Clune et al.
[1]. Note that this substrate has three dimensions (x, y, z).
Each of the inputs are set to either −3.0 or 3.0, indicating
off or on for each retina input. The left and right outputs
specify the classification for the left and right retinas, re-
spectively, where values close to −1.0 indicate invalid and
values close to 1.0 indicate valid inputs. Each of the 256
possible patterns is presented to the retinas and the fitness
of the solution is inversely proportional to the summed dis-
tance of the outputs from the correct values for all patterns.
This setup follows Clune et al. [1].

Eight treatments for controlling thresholding were eval-
uated on this task. The uniform threshold is evaluated

Figure 3: Substrate Configuration for the Retina
Problem. The substrate configuration is identical to
the setup of Clune et al. [1]. The substrate consists
of four layers, with the inputs at z = 1.0, the first
hidden layer at z = 0.75, the second hidden layer at
z = 0.5, and the outputs at z = 0.25. Feed-forward
connections are allowed between neighboring lay-
ers. Nodes in each z layer are placed at an x, y-
coordinate. The y coordinates are indicated by the
different circle patterns. These patterns are solid-
line circles for y = 1.0, filled black circles for y = 0.0
and dotted line circles for y = −1.0. The left and
right sides of the retina are reflected through sym-
metric coordinates on the negative and positive sides
the x-axis. This configuration provides a definite di-
vision between left and right modules at x = 0.

with both low (0.3) and high (1.3) threshold settings. The
dynamic distance threshold is evaluated with a constant
of 0.45. Finally, three treatments for HyperNEAT-LEO
are examined in which evolution is not seeded, evolution is
seeded with a global locality pattern, and evolution is seeded
with a locality pattern only along the x-axis. The seeded
locality pattern is a CPPN with three hidden nodes with
Gaussian activation functions that input ∆x, ∆y, and ∆z
individually. These hidden nodes are then connected to the
output that specifies whether a connection is expressed with
a bias of −3.0. The activation function of this output is a
step function that outputs 1.0 when the input is greater than
0.0 and outputs 0.0 otherwise. In this way, the seed specifies
that only connections that are local may be expressed (as
in figure 2). Slight perturbations of the seed in the initial
generation provide a variety of local connectivity patterns.

The alternative seed, which specifies locality along the x-
axis only, is similar to the complete locality seed, except that
the hidden nodes for ∆y and ∆z are absent. Finally, this
x-locality seed structure is also inserted into both the low
and high uniform threshold variants to determine whether a
locality bias alone (i.e. when it is connected directly to the
weight output) is sufficient to induce modularity, as opposed
to biasing a separate LEO with locality.

All experiments are run with an implementation of Hyper-
NEAT in C# by Phillip Verbancsics (available at
http://eplex.cs.ucf.edu). Source code for the experiment is
included in the same package. Because HyperNEAT is an ex-
tension of NEAT, most of the parameters are the same as in
NEAT. The population size is 500. Available CPPN activa-
tion functions are absolute value, bipolar sigmoid, Gaussian,
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linear, sine, and step. The probability of adding a node to
the CPPN is 0.03 and the probability of adding a connec-
tion is 0.1. The probability of asexual reproduction is 0.75.
The disjoint and excess node coefficients are both 1.0 and
the weight difference coefficient is 1.0. The target number
of species is 25. Finally, the elitism proportion is 0.1.

5. RESULTS
Each of the thresholding approaches are evaluated over

100 runs consisting of 5,000 generations of evolution. The
performance is recorded for the champion of each generation
as the percentage of the 256 patterns applied to the reti-
nas that the ANN correctly classifies for both the left and
right retina patterns (figure 4). As previously shown [1],
standard HyperNEAT with any of the uniform thresholding
approaches (unseeded or seeded) fails to achieve high aver-
age performance: The low threshold converges to 79% (sd =
4%) correct on average and the high threshold reaches 82%
(sd = 8%) correct. Interestingly, both the locality-seeded
standard-HyperNEAT with a uniform threshold and the dy-
namic distance threshold that might be assumed to encour-
age modularity decrease performance, reducing the average
performance to 76% (sd = 2%). The HyperNEAT-LEO
without a locality seed increases performance to 84% (sd =
8%), but does not significantly outperform the high uniform
threshold without a locality seed. Only HyperNEAT-LEO
with locality seeds significantly (p < 0.001 by Student’s t-
test) outperform all other approaches on average, reaching
95% (sd = 7%) and 99% (sd = 5%) accuracy, respectively.
It is also interesting to note that an attempt to learn the
same task with a direct encoding by Clune et al. [1] yielded
only an average of 80% correct answers.

The differing performance of each approach can also be
seen in how frequently they solve the problem perfectly (i.e.
correctly classify 100% of the patterns), shown in figure 5.
Of the 100 runs given to them, the uniform thresholds (low
and high) solve the problem only 2% and 12% of the time,
respectively. The locality-seeded standard-HyperNEAT and
the dynamic distance threshold never find a perfect solu-
tion. Evolving the LEO without a seed solves the problem
as often as the high uniform threshold, 12% of the time.
The main result is that seeding the LEO with locality sig-
nificantly improves the ability to find the perfect modular
solution. The complete locality seed solves the problem 67%
of the time and the seed that specifies locality along the x-
axis increases the rate of finding the perfect solution to 91%.
These results support the hypothesis that the CPPN itself
should be given control of connectivity from a seed that be-
gins evolution with significant locality.

A closer look at the structure of these final solutions gives
insight into how and why they succeed or fail. For the uni-
form thresholds and the non-seeded HyperNEAT-LEO, the
common outcome is to prefer fully-connected or near fully-
connected patterns (figure 6). These patterns indicate that
the struggle between finding modularity and establishing the
correct pattern for each retina is dominated by optimizing
the weight patterns, overriding movement towards modu-
larity. Indeed, biasing the weights towards locality hinders
the search for modularity by providing strong local optima.
The distance threshold produces the opposite effect in its
patterns (figure 7), leading to greater modularity yet less
optimal weights. Only when locality is provided through
seeded LEO does modularity become the prevailing pattern,
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Figure 4: Average Percentage of Correct Classifi-
cations for Thresholding Methods. The fraction of
correct classifications of the 256 patterns is averaged
over 100 runs for each of the approaches. Each run
lasts 5,000 generations and consists of a population
of 500. The uniform and dynamic distance thresh-
olds converge to sub-optimal values. The non-seeded
LEO CPPN threshold is still improving at genera-
tion 5,000, but is not significantly outperforming the
high uniform threshold. However, both the seeded
LEOs exceed other approaches’ performance with
significance p < 0.001, demonstrating the importance
of locality to the evolution of modularity.

while allowing the weights to be optimized separately (figure
8). Hence, clearly separated structures emerge consistently.
Validating this inference, 64% of runs with the complete
locality seed and 85% with the x-locality seed produce solu-
tions with no crossing connections whatsoever between the
left and right modules; all the other methods fail to produce
such structures in more than 75% of runs.

6. DISCUSSION
Modularity is a key component in large and complex struc-

tures, in addition to regularity and hierarchy [13]. Hyper-
NEAT is able to generate regular patterns through a hier-
archy of function compositions, but has faced a challenge
producing modular patterns [1]. By modifying HyperNEAT
such that the expression of connectivity is independent of
the pattern of the weights, modularity and regularity can
be made independent from each other. Thus both of these
key features can be optimized separately. Enhancing this
idea, search can be biased by seeding evolution with geo-
metric concepts, such as locality.

One way to understand why determining whether a con-
nection is expressed should be independent from determin-
ing its weight is to consider how connection expression and
weight determination might interact when they are both
determined by the same variable, as in traditional Hyper-
NEAT. In effect, the need to suppress connections in some
parts of the network can lead to distortions in the pattern of
weights, which are themselves a function of the network ge-
ometry. In struggling to balance these two demands through
a single function, the CPPN ultimately succeeds at neither.
This insight suggests that the traditional thresholding tech-
nique in HyperNEAT was probably not the best choice in
retrospect, although it has been in use for several years [5,
8]. Nevertheless, the good news is that many interesting new
structures may evolve now that this problem is uncovered.
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Figure 5: Fraction of Runs that are Perfect by
Thresholding Method. The fraction of 100 runs that
are successful in correctly classifying all of the 256
possible patterns is shown for each of the threshold-
ing approaches after 5,000 generations. The seeded
uniform and dynamic distance thresholds find the
solution the least often, with success rates of 0%.
The low uniform threshold is able to find a solu-
tion in 2% of the runs. Seeding non-LEO CPPNs
with locality provides no extra benefit while the non-
seeded LEO CPPN threshold matches the high uni-
form threshold; both find the solution in 12% of the
runs. The global locality seed improves the odds of
finding the solution to 67%, demonstrating how es-
sential the concept of locality is not only to achieving
a high fitness, but to finding the exact solution. The
x-axis locality seed improves upon the locality seed,
finding the solution in 91% of the runs, confirming
the intuition that the solution’s best opportunity for
modularity in this domain is along the x-axis.

Figure 6: Typical Connectivity Pattern of Uniform
Threshold. The uniform threshold fails to generate
modularity. Instead, it consistently produces near
fully-connected networks. These patterns are simi-
lar to those produced by the LEO without a seed.
Optimizing weight patterns overrides the creation of
modular structures. Red lines are negative weights,
black line are positive weights, and line thickness
indicates weight strength.

An exciting implication of this work is that both connec-
tivity (i.e. which connections are expressed) and connection
weights can be indirectly encoded as a function of geometry
to provide key prerequisites to generating complex struc-
tures. The ability to manipulate the expression of connec-
tivity independently of weights provides the ability to create

Figure 7: Typical Connectivity Pattern of Dynamic
Distance Threshold. The dynamic distance thresh-
old generates apparent modularity, but has difficulty
finding the correct weight patterns. The problem
is that the dynamic distance threshold impacts not
only when connections are expressed, but the weight
patterns that are created. Because longer distances
mean higher thresholds, higher weight outputs be-
come necessary, resulting in a movement towards
extreme output values.

Figure 8: Typical Connectivity Pattern of LEO with
Locality Seed. Modularity is commonly found when
HyperNEAT-LEO is given the concept of locality.
Once modularity is found, the regularities needed
to solve the task for each module can be discov-
ered in the weight pattern. This separation is possi-
ble because HyperNEAT-LEO specifies the pattern
of weights and the pattern of connection expression
through different outputs of the CPPN. Thus both
can be evolved independently, freeing evolution from
the burden of searching for a weight pattern that has
both the correct weight settings to solve the prob-
lem and the necessary modularity.

modules. However, modularity itself follows important geo-
metric principles. One of these, locality, is inherent in the
natural universe, that is, components that are grouped into
a module are necessarily located near each other because of
physical constraints. Simulated structures do not necessarily
have such constraints placed upon them, but the principles
that arise because of such constraints can be helpful in cre-
ating structures that resemble those of nature.

Interestingly, the need for an initial bias towards locality
to consistently solve the problem also suggests that the path
to encoding locality is inherently deceptive with respect to
the fitness function in this task. Such deception may turn
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out common when geometric principles such as locality that
are conceptually orthogonal to the main objective are nev-
ertheless essential to achieving it consistently. Thus seeding
with the right geometric bias may prove an important tool
to avert deception in many domains.

Importantly, it is not enough simply to enforce the con-
cept of locality or bias the structure toward locality to cre-
ate modules, as demonstrated by the failure of the dynamic
distance threshold and the locality-seeded standard Hyper-
NEAT. Instead, evolution should be allowed to find its own
separate rules for modularity. This insight gives hope that
HyperNEAT can now be applied to new domains that may
benefit from modular neural organization.

7. CONCLUSION
This paper investigated variations on thresholding con-

nectivity in HyperNEAT, introducing the dynamic distance
threshold and Link Expression Output. While HyperNEAT
has struggled with modularity in the past, decoupling the
weight pattern from whether a connection is expressed facil-
itated the ability to generate modular ANN weight patterns
with HyperNEAT-LEO. Instead of failing to find the solu-
tion to the modular Retina Problem, HyperNEAT-LEO with
a locality seed is almost always able to find the perfect solu-
tion, whose modularity is visually apparent in the network
geometry. Thus an extension of HyperNEAT now poten-
tially captures two key features of natural systems: regular-
ities and modularity.
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