
The K Landscapes: a Tunably Difficult Benchmark
for Genetic Programming

Leonardo Vanneschi Mauro Castelli Luca Manzoni

Department of Informatics, Systems and Communication (D.I.S.Co.)
University of Milano-Bicocca

Milan, 20126, Italy
{vanneschi,mauro.castelli,luca.manzoni}@disco.unimib.it

ABSTRACT
The NK landscapes are a well known benchmark for genetic algo-
rithms (GAs) in which it is possible to tune the ruggedness of the
fitness landscape by simply modifying the value of a parameter K.
They have successfully been used in many theoretical studies, al-
lowing researchers to discover interesting properties of the GAs
dynamics in presence of rugged landscapes. A similar benchmark
does not exist for genetic programming (GP) yet. Nevertheless,
during the EuroGP conference debates of the last few years, the
necessity of defining new benchmark problems for GP has repeat-
edly been expressed by a large part of the attendees. This paper
is intended to fill this gap, by introducing an extension of the NK
landscapes to tree based GP, that we call K landscapes. In this
benchmark, epistasis are expressed as growing mutual interactions
between the substructures of a tree as the parameter K increases.
The fact that the problem becomes more and more difficult as the
value of K increases is experimentally demonstrated. Interestingly,
we also show that GP "bloats" more and more as K increases.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance

Keywords
Genetic Programming, Benchmarks, Problem Difficulty, Epistasis

1. INTRODUCTION
As already pointed out by Altenberg in 1997 [1], in the first part

of the twentieth-century Wright [21] discovered an interesting fea-
ture of evolutionary dynamics: when the effect on fitness from al-
tering the state of one gene depends on the state of other genes,
the population can often evolve into multiple basins of attraction.
This kind of interaction between genes is called epistasis. In other

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

words, the presence of epistasis makes it possible for a population
to converge towards different genotypic configurations, depending
on its initial state. Thus, it is possible to indentify two different
levels of abstraction, that are different to, but dependent from, each
other: the microscopic level (the level of the single individuals,
in which fitness depends on the reciprocal interactions between
genes) and the macroscopic one (the level of populations, where
it is possible to identify multiple different attractors). To clarify
these ideas, Wright brought up the analogy with a landscape with
multiple peaks, in which the evolution of a population can be seen
as the movement up hill of its individuals, until they reach a (local
or global) fitness peak. The term "adaptive landscape" or "fitness
landscape" is nowadays frequently used to describe the presence of
multiple basins of attraction in the space of genotypes for evolu-
tionary dynamics. Under this perspective, it becomes interesting to
investigate how a population can escape from a local fitness peak.
Wright proposed the idea of stochastic fluctuations, thus introduc-
ing an embryonic version of a stochastic process for the optimiza-
tion of multimodal functions. More recently, based on the concepts
introduced by Wright, Kauffman proposed the NK landscapes set
of functions, to investigate the way epistasis controls the number
of local peaks of a fitness landscape [8, 9]. In these functions, the
ruggedness of the fitness landscape can be controlled by modifying
a single parameter that influences the epistatic level of the genome.
Thus, the NK landscapes is a stochastic set of tunably difficult op-
timization problems. Described in Section 2, the NK landscapes
have often been used as a benchmark for theoretical studies of Ge-
netic Algorithms (GAs) [7, 5].

NK landscapes are based on the idea that potential solutions
are represented as fixed length strings of symbols, and thus they
are particularly suitable for GAs. To the best of our knowledge,
no extension to this problem has been proposed so far for Genetic
Programming (GP) [11, 15], where individuals are characterized
by a dynamic size representation. Nevertheless, as clearly stated
by the panel members and attendees of the EuroGP 2008 debate on
Grand Challenges of GP (which took place on 27 March 2008 at
the Evo* event in Naples, and whose main ideas have recently been
developed and published in [13]), and as reasserted during the sub-
sequent EuroGP 2009 and EuroGP 2010 debates, the GP commu-
nity has the pressing necessity of defining new and reliable bench-
marks. Those benchmarks should possibly be of tunable difficulty,
thus allowing practitioners and theoreticians to study the dynamics
of GP for difficult, as well as easier problems. These benchmarks
should, above all, be used to study and discover new properties of
the GP method itself, as it has been the case for NK landscapes
in GAs.

Indeed, some efforts have already been done in the direction of

1467

defining useful benchmarks for GP (they are reviewed in Section 3),
but still the goal of having many rigorous test problems is far from
being achieved, probably due to the larger complexity of GP com-
pared to GAs or other methods for parameters optimization. This
paper wants to be a contribution in this direction; in fact, we extend
the NK landscapes problem to GP. The new GP benchmark that
we introduce is called K landscapes1. Its definition, together with
a first experimental study aimed at showing the GP behavior on this
benchmark, is contained in the continuation of the paper.

The paper is organized as follows: Section 2 contains a descrip-
tion of the NK landscapes for GAs. In Section 3 we revise previ-
ous contributions in which theoretically hand-tailored benchmarks
for GP have been introduced. In Section 4 we describe the K land-
scapes benchmark for GP proposed in this paper. In Section 5, we
present our experiments, including both a description of the used
experimental settings and a discussion of the obtained results. Fi-
nally, Section 6 concludes the paper.

2. THE NK LANDSCAPES FOR GAS

The NK family of landscapes, introduced by Kauffman between
the end of the eighties and the first part of the nineties [8, 9], is
a problem-independent model for constructing multimodal land-
scapes for GAs that can gradually be tuned from smooth to rugged.
In the model, N refers to the number of (binary) genes in the geno-
type (i.e. the string length) and K to the number of genes that
influence a particular gene (the epistatic interactions). By increas-
ing the value of K from 0 to N − 1, NK landscapes can be tuned
from smooth to rugged. The fitness of a NK landscape is a func-
tion fNK : {0, 1}N → [0, 1), defined on binary strings with N
bits. An “atom” with fixed epistasis level is represented by a fitness
component fi : {0, 1}K+1 → [0, 1) associated to each bit i. Its
value depends on the allele at bit i and also on the alleles at K other
epistatic positions. (K must fall between 0 and N −1). The fitness
fNK(s) of s ∈ {0, 1}N is the average of the values of the N fitness
components fi: fNK(s) = 1

N

PN
i=1 fi(si, si1 , . . . , siK), where

{i1, . . . , iK} ⊂ {1, . . . , i − 1, i + 1, . . . , N}. Many ways have
been proposed to choose the K other bits from the N bits forming
the bit string. Two possibilities are mainly used: adjacent and ran-
dom neighborhoods. With an adjacent neighborhood, the K nearest
bits to the bit i are chosen. With a random neighborhood, the K bits
are chosen randomly on the bit string. Each fitness component fi

is specified by extension, i.e. a number yi
si,si1 ,...,siK

from [0, 1) is

associated with each element (si, si1 , . . . , siK) from {0, 1}K+1.
Those numbers are usually random numbers, uniformly distributed
in the range [0, 1).

As reported by Kauffman, epistasis have a repercussion on fit-
ness that is similar to a house of cards [10]: if a bit is modified in
a given position, all the fitness components that interact with it are
changed, without any correlation with their previous values. Thus,
the modification of one single bit, for instance by the application
of a bit-flip mutation operator, has on fitness the same disruptive
effect as removing a card from a house of cards: to find the same
fitness value again (i.e. to build the same house of cards once again)
one has to restart from scratch and it is not possible to use any of
the previously processed information for doing it. Thus, any algo-
rithm that works by trying to optimize all genes at the same time
clearly encounters serious problems in this kind of benchmark. The

1The “N” in the NK landscapes model represents the length of
the genome codifying GAs individuals. This does not make sense
in GP, where individuals have typically a variable sized represen-
tation. For this reason, we just use the term “K” landscapes to
indicate the proposed benchmark.

interested reader is referred to [1] for a survey on NK landscapes,
where some properties of this benchmark, like the computational
complexity, as well as some implementation details and alternative
variants are discussed.

3. PREVIOUS GP BENCHMARKS
In Koza’s 1992 book [11], several problems that can be solved

with GP are defined: k-even parity, h-multiplexer, various forms of
symbolic regression, the artificial ant on the Santa Fe trail, the inter-
twined spirals problem, etc. For many years, and with few excep-
tions, those problems have mainly represented the only benchmarks
that have been used in GP experimental studies. Only recently, the
GP community has begun to use a larger set of test functions. It
is the case, for instance, of the UCI repository datasets suite [2].
Among them, one can identify problems of different complexities,
from trivial ones, like the IRIS dataset, to more difficult ones, like
the thyroid cancer datasets and many others. Also, contributions
have appeared using as test problems applications like classification
of network intrusion (see for instance [17, 14]). As stated in [13],
we could broadly classify currently used test function in GP into
three categories: regression, classification and design. Typical used
regression functions are sinus, polynomials, mexican hat, Mackey-
Glass time series, etc. For classification, one may quote the UCI
examples, the intertwined spirals, the parity problems, the multi-
plexer, Protein Localization, etc. The class of test problems clas-
sified as design contain applications like adder, multiplier, several
other circuits, trusses, tables and other structures.

All the above quoted test problems, from the early ones intro-
duced by Koza in 1992 to the more recent ones, are definitely inter-
esting, because they cover a set of different possible applications.
Nevertheless, it is also true that compared to the set of typical test
problems used for other optimization methods, like for instance
GAs or particle swarm optimization, this set of benchmarks is still
a restricted one and, even more importantly, lacks a rigorous evalu-
ation. In particular, the majority of these problems have their own,
so to say, "fixed" complexity: it is not possible to define several
instances of them, of different difficulties (from very easy prob-
lems to very hard ones, and including many intermediary cases)
by changing some parameters (this is partially false, for instance,
for the even parity and multiplexer problems, as already pointed
out in [20], but it is surely true for all the problems that consist in
mining a given dataset like, for instance, the UCI ones). Further-
more, as remarked in [13], the above quoted set of test problems
is composed by functions of similar nature, and thus they are too
similar to each other. For instance, these functions would require
too a restricted set of operators and terminals to build individuals,
compared to the huge variety of possibilities offered by GP.

Some attempts of defining new and tunably difficult test prob-
lems for GP have been made so far. One of the earliest ones prob-
ably consists in the introduction of the Royal Trees by Punch and
coworkers [16]. The goal of that contribution was to devise a prob-
lem for GP that could be similar to, and share interesting properties
with, the the Royal Road problem for GAs [12]. In particular, the
Royal Trees are an example of "constructional problems", in the
same vein as the Royal Roads, a concept that had already been in-
troduced in GP by Tackett [18]. More or less in the same vein, con-
tributions [20, 19] contain the extension of tunably difficult prob-
lems typical of GAs, like various forms of trap functions [4], to GP.
In [6], Gustafson and coworkers introduced the Tree-String prob-
lem. The goal of this problem is to derive specific structure and
content elements simultaneously. Instances are defined using a tar-
get solution consisting of a tree shape and content. Candidate so-
lutions are then measured for their similarity to the target solution

1468

with respect to both tree shape and content objectives. Separating
these two concepts, the Tree-String problem makes thus possible
to shade a light on the complex dynamics created by the interde-
pendencies of solution structures and contents. Furthermore, the
authors show how the difficulty of the Tree-String problem can be
tuned by simply modifying the number of used nodes and the size
of the alphabet employed to code contents. Another interesting
contribution, that is related to, but slightly different from, the pre-
viously quoted ones, is [3], where Daida and coworkers introduce
the Lid problem. The Lid problem is tunably difficult, but, con-
trarily to Royal Trees, trap functions, the K landscapes presented
here, and others, it has this property because tuning is accomplished
through changes in structure. So, the difficulty of the problem, and
the possibility to tune it, depend on structural mechanisms and not
on the fitness landscape. Daida’s work on the effect of structures
on the GP search is definitely interesting, but it is outside the scope
of this paper, that is instead based on the concept of fitness land-
scape. Nevertheless, the way structural mechanisms influence the
difficulty of the K landscapes proposed here deserves to be studied
and it will be one of the subjects of our future research.

4. THE K LANDSCAPES FOR GP
We denote a GP individual by T , the root of T by R (T), the

depth of T by D (T) and the set of children of a node N by S (N).
The set of all nodes of T is denoted by N (T). The set of all pos-
sible subtrees of T is denoted by Ψ(T). The set of all functional
symbols used to code individuals is denoted by F and the set of
terminal symbols by T .

Given two numbers a, b ∈ R, with a < b, let v : F ∪ T �→
[a, b] be a function chosen randomly between all (representable)
functions from F ∪ T to [a, b]. The map v returns a number in
[a, b] for each possible tree node, i.e. for each possible element of
the set F ∪ T . Also, given two numbers c, d ∈ R such that c < d,
let w : F × (F ∪ T) �→ [c, d] be a randomly chosen function
that returns a number in [c, d] for each possible connection between
two nodes in a tree. In this paper we choose a = −1, b = 1,
c = 0 and d = 1 and from now on all the considerations will be
done assuming these values for a, b, c and d. Choosing a negative
value for a, we give to the v function the possibility of returning
negative values. For a given K ∈ N, with K smaller or equal to the
maximum admissible depth for the trees in the population (if any
maximum depth is imposed) and a tree T , we define:

fK(T) =

8>>><
>>>:

v (R (T)) +
X

C∈S(R(T))

(1 + w (R (T) , C)) fK−1 (C)

if K > 0

v (R (T)) otherwise

When K = 0, fK(T) simply returns the value of the v function on
the root of T . In all the other cases, fK(T) returns a weighted sum
of the values of v applied to the nodes of T for the first K levels,
where the weights are determined by the values of w.

The fitness function that we propose for the GP K landscapes is
defined as the maximum value of fK calculated over all the nodes
of a GP tree, with a penalty given by a function of the difference
between the depth of the tree and K:

FK (T) =
1

1 + |K − D (T) | max
T ′∈Ψ(T)

˘
fK

`
T ′´¯

The problem that we define introducing this fitness function is a
maximization one (i.e. larger values of the fitness are better).

Now we want to enunciate and prove some properties of the K

landscapes problem defined by such a fitness function. But before
doing it, we need to introduce the following concept:

DEFINITION 1. Given a tree T and a K ∈ N, we indicate with
the term summit of T of level K a structure T ′ that respects the
following properties:

• if K = 0, T ′ is only composed by the node R(T).

• otherwise, R(T ′) = R(T) and if the subtrees of R(T) in
T are S1, S2, ..., Sh, then the subtrees of R(T ′) in T ′ are
U1, U2, ..., Uh, where for each i = 1, 2, ..., h Ui is a summit
of level K −1 of Si if Si is different from the empty tree, and
the empty tree otherwise.

The concept of summit of a tree should be clarified by Figure 1:
the structure in Figure 1(b) is a summit of the tree in Figure 1(a),
while the one in Figure 1(c), even though it is a subtree of the tree
in Figure 1(a), is not a summit of the tree in Figure 1(a). In very

(a) (b) (c)

Figure 1: The structure in figure (b) is a summit of the tree in
figure (a), while the one in figure (c) is not a summit of the tree
in figure (a).

informal terms, we could say that the summit of a tree T is a "top
part" of T : for each path from the root to a leaf in T , a summit of
T contains a subset of this path, from the root to a given node up
to a given prefixed level K, or the whole path if the length of the
path is ≤ K. It is also worth pointing out that a summit of level K
of a tree T does not necessarily have a depth equal to K, but can
also have a smaller depth than K if it is the whole tree T . Further-
more, it is immediate to remark that, if T is the representation of a
GP individual, a summit of T may not represent any GP individual,
given that it may lack some terminals (indeed, it can represent an
individual only if it is equal to T itself). For instance, if we indi-
cate with X a general terminal symbol, the summit in Figure 1(b)
contains one branch that is not complete (it is not ended by a ter-
minal symbol), and thus it cannot represent a GP individual. It is
possible to "transform" a summit of a tree into a GP individual by
adding terminal symbols at the last level, where needed. We call
this process embedding2:

DEFINITION 2. Given a summit T ′ of a tree T , an embedding
of T ′ is a tree that is identical to T ′ except for the fact that terminal
symbols are added in the branches that are not ended by terminal
symbols in T ′.

Figure 2 should clarify the concept of embedding: the tree in
Figure 2(b) is an embedding of the summit in Figure 2(a), given that
a terminal symbol is added in all the branches that are not ended by
a terminal symbol.

We are now ready to enunciate and prove some properties of the
proposed K landscapes.

2An alternative, and maybe more suitable, term may be "exten-
sion", since with this process a tree is "extended" rather than "em-
bedded" in another structure. Nevertheless, given the generality of
the term "extension", we prefer to use the term "embedding".

1469

(a) (b)

Figure 2: The tree in figure (b) is an embedding of the summit
in figure (a).

PROPOSITION 1. For each admissible value of K, if there ex-
ists a tree T such that fK(T) > 0 then all the optima in the search
space must necessarily have a depth of at most K + 1.

Proof: Let us consider the definition of fK(T). It is composed by
a sum of terms. To calculate each one of these terms, the nodes of
T have to be considered from the root up to the level K, or from
the root to the leaf for the paths where the leaf is at depth smaller
than K. Let us consider the structure composed by all the nodes
that have to be analyzed in order to calculate fK(T). It is clearly
a summit of level K of T . This summit can be transformed into a
tree T ′: if the summit is equal to T , then T ′ = T . Otherwise T ′ is
an embedding of T . In the first case T ′ has a depth of at most K,
in the second case T ′ has a depth equal to K + 1. It is interesting
to remark that, in the first case, if the depth of T ′ is smaller than
K, a tree T ′′ of depth K can be considered that has T ′ as one of its
subtrees. By the definition of FK , this new tree will have a better
fitness value than T ′. In fact, given that T ′ is a subtree of T ′′,
we have that maxS1∈Ψ(T ′′){fK(S1)} ≥ maxS2∈Ψ(T ′){fK(S2)}
and the term 1

1+|K−D(T ′′)| is equal to 1, while 1
1+|K−D(T ′)| is

smaller than 1. Thus, we can say that for each tree T it is possible
to generate a tree U that either has a depth equal to K or to K + 1:
depending on the depth of the summit of T of level K, U can be
equal to T itself, an embedding of its summit or a tree (like T ′′)
that has its summit as a subtree.

Now we want to show that each tree that has a depth larger than
K + 1 cannot be an optimum. Let T be a tree with a larger depth
than K + 1. Let us consider the tree U obtained from T by ap-
plying the process described so far. Given that fK(T) is calculated
using only the nodes that belong to the summit of level K of the
subtrees of T , and given that the subtrees of T and the subtrees of
U that maximize fK have the same summit of level K, we have
that maxS1∈Ψ(T){fK(S1)} = maxS2∈Ψ(U){fK(S2)}. But given
that T has a larger depth than U and the depth of U is either K or
K + 1, 1

1+|K−D(T)| < 1
1+|K−D(U)| . Thus the fitness of T must

be smaller than the one of U . We conclude that T cannot be an
optimum. �

PROPOSITION 2. For each K > 0, we have that fK(T) > 0
for some tree T if and only if there exists N ∈ F ∪ T such that
v (N) > 0.

Proof: To prove this property, we prove separately both implica-
tions. First, let us prove that if fK(T) > 0 for some tree T then
N ∈ F ∪ T such that v (N) > 0 exists. The case K = 0 is ob-
vious: if fK(T) > 0 then v applied to the root of T must return a
positive value. In the other cases, fK(T) > 0 implies that at least
one of the terms of the sum that defines fK must be positive. fK is
defined as a sum of terms, where each term is composed by an ap-
plication of function v to a node of T multiplied by an application
of function w to a connection in T . Given that w can only return
positive values, there must exist at least one N ∈ N (T) ⊆ F ∪ T
such that v (N) > 0.

Let us now prove that if an N ∈ F ∪ T such that v (N) > 0
exists, then fK(T) > 0 for some tree T . Let us assume first that

there exists N ∈ T such that v (N) > 0. Then the tree having N
as the only node has a value of fK equal to v (N) > 0. Now let us
assume that N ∈ F such that v (N) > 0 exists and let us consider
a tree T of depth K + 1 with all the leaves at level K + 1 and all
the internal nodes equal to N . The summit T ′ of level K rooted at
R (T) is composed only of nodes with weight v (N). This means
that fK(T) = fK(T ′) � v (R(T)) > 0. �

We also remark that, when fK(T) � 0 for all trees, and the tree
depth is unbounded, for every tree it is always possible to find a tree
with an higher fitness, even if this fitness is always negative. This
is due to the penalty given by the term 1

1+|K−D(T)| that appears
in the definition of FK : as D(T) increases, a negative value of the
fitness increases too.

In our definition of the K landscapes, we want all the global
optima to have a depth not larger than K + 1, because, as it will be
clear shortly, this allows us to define an algorithm to compute the
globally optimal fitness. Thus, for obtaining this goal, from now on
we impose that the v function must assume a positive value for at
least one element of its domain.

We are now ready to enunciate and prove the following property:

PROPOSITION 3. At least one of the optima of the K land-
scapes is a tree T that has all the nodes at the same level identical
to each other.

The tree represented in Figure 3 is an example of a tree that re-
spects the property of Proposition 3. In fact, level 1 is composed
by only B symbols, level 2 is composed by only C symbols and
level 3 is composed by only X symbols; thus only symbols that are
identical to each other appear in the same level.

Figure 3: An example of a tree that respects the property of
Proposition 3.

Now we prove Proposition 3:

Proof: Let us consider an optimum T for the K landscapes. Let
Ψ(T) = {U1, U2, ..., Uh} be the set of all the possible subtrees
of T . For each i = 1, 2, ..., h, let U ′

i be the tree of depth at most
K + 1 obtained from Ui by considering its summit of level K and
eventually embedding it (the process that allows us to generate U ′

i

from Ui is explained at the beginning of the proof of Proposition 1).
Now, among the trees U ′

1, U
′
2, ..., U

′
h, let us consider the one that

maximizes fK and let us call it T ′ (actually the nodes that compose
the summit of level K of T ′ are the ones that are used to calculate
the fitness of T). We call T ′ an fK -optimum.

It is easy to convince oneself that Proposition 3 holds by look-
ing at Figure 4: let us assume that the tree in Figure 4(a) is fK -
optimum. Let T1 be the left subtree of the tree in Figure 4(a) and
T2 be its right subtree (T1 and T2 are the subtrees respectively sur-
rounded by a rectangle and an oval in Figure 4(a)). First of all, we
remark that the property fK(T1) = fK(T2) must hold. In fact,
(without loss of generality) let fK(T1) be larger than fK(T2). If
this is true, it is possible to build a new tree that is identical to
the one in Figure 4(a), but with the only difference that the oc-
currence of T2 is replaced by another occurrence of T1; this new
tree, represented in Figure 4(b), would have a larger value of fK

1470

than the tree in Figure 4(a). But this would contradict the hy-
pothesis that the tree in Figure 4(a) is fK -optimum. We conclude
that fK(T1) = fK(T2) and also that the trees represented in Fig-
ures 4(b) and (c) have the same value of fK as the one in Fig-
ure 4(a), and thus are also fK -optima.

(a) (b) (c)

Figure 4: Suppose that (a) is a fk-optimum. Then both (b) and
(c) must also be fk-optima (see the proof of Proposition 3).

This argument can be generalized, abstracting from the example
of the trees represented in Figure 4: given an fK -optimum, it is
always possible to build another fK -optimum that has all the sub-
trees of its root identical to each other (simply by "replicating" one
of them, as it has been done for transforming the tree in Figure 4(a)
into the tree in Figure 4(b)). In case these subtrees do not respect
the property of Proposition 3, it is possible to iterate the process,
transforming them into trees that have all the subtrees of the root
identical to each other and that have the same value of fK . Iterating
this process until the last level of the tree, it is possible to build an
fK -optimum that respects the property of Proposition 3.

So far we have shown that, for every K, there exists an fK -
optimum that respects the property of Proposition 3. Now, we have
two possibilities to define a candidate optimum for the K land-
scapes problem: (1) consider an fK -optimum chosen between the
trees of depth at most K. If it has depth K, then it is the candidate
optimum. Otherwise, if its depth is smaller than K, we candidate
a tree of depth K that respects the property of Proposition 3 and
contains it as a subtree; (2) consider an fK -optimum chosen be-
tween the trees of depth K + 1 and that respects the property of
Proposition 3. One optimum T of the K landscapes problem can
be obtained either by possibility (1) or by possibility (2), because
in both cases T contains an fK -optimum and the value of the term

1
1+|K−D(T)| is either 1 or 1

2
. In both cases, it respects the property

of Proposition 3 and this allows us to conclude. �

So far, we have proven some properties that at least one optimum
of the proposed K landscapes must have. Using these properties,
we are now able to calculate the optimal fitness of this problem.
The argument that we use is similar to the one used in the proof of
Proposition 3. Let T≤K be an fK -optimum of depth at most K. Let
TK+1 be an fK -optimum of depth K + 1. To find an optimum for
FK we can suppose that both T≤K and TK+1 respect the property
of Proposition 3. Also, it is possible to consider T≤K of depth K
since, if its depth is less than K, it is possible to define a deeper
tree that has T≤K as a subtree. Thus, by the definition of FK , it is
possible to express the K landscapes optimal fitness as follows:

PROPOSITION 4. The optimal fitness of the K landscapes is:

Fopt = max{ 1
1+|K−K|fK (T≤K) , 1

1+|K−(K+1)|fk (TK+1)}
= max{fK (T≤K) , 1

2
fK (TK+1)}

Furthermore, we are also able to define an algorithm to compute
the optimal fitness and the structure of at least one of the optima:
for all the tree depths form 0 to K + 1, we simply exhaustively
consider all the trees that respect the property of Proposition 3 (the

number of these trees is much smaller than the number of all the
trees of depth at most K + 1), finding the one with the maximum
fitness. Because of the properties that we have proven so far, we are
sure that it will be one of the global optima. Even if the algorithm is
exponential in K, it is usable in practice because K cannot be larger
than the maximum depth allowed for the trees in the population.
Thus, only "limited" values of K are used in practice.

We finally point out an interesting characteristic of the K land-
scapes problem introduced here: given a fK -optimum of depth d,
its subtrees of depth d − 1 are not necessarily fK−1-optima. This
fact implies that it is difficult for GP to build an optimum starting
from smaller sub-optima, as it is the case of the NK landscapes
for GAs. The following example shows a case where the subtrees
of depth d − 1 of a fK -optimum of depth d are not fK−1-optima.

Example. Let us consider the following set of functional and ter-
minal symbols used to build GP individuals: F = {A}, T =
{X, Y }. Let us consider the following values of the v and w func-
tions: v(A) = 1, v(X) = 0.75, v(Y) = 1; w(A, X) = 1,
w(A, Y) = 0. It is clear that it is possible to build only two trees of
depth 1 that respect the property of Proposition 3. They are shown
in Figure 5. Let T1 be the tree represented in Figure 5(a) and T2

(a) (b)

Figure 5: The only two trees of depth 1 that respect the prop-
erty of Proposition 3 and that can be built using the sets of sym-
bols F = {A}, T = {X, Y }.

the one represented in Figure 5(b). The value of f1 for these two
trees is: f1(T1) = 1 + 2 ∗ (1 + 1) ∗ 0.75 = 1 + 3 = 4 and
f1(T2) = 1+2∗1∗1 = 3. Thus, T1 is an f1-optimum. But, given
that v(Y) > v(X) the f0-optimum is not the tree composed by the
only X symbol (subtrees of depth 0 of T1), but the one composed
by the only Y symbol.

5. EXPERIMENTAL STUDY
Experimental Settings. All the results presented in this section

have been obtained performing 100 runs of GP with a population
size of 100 individuals running for 100 generations. The initializa-
tion method was ramped half-and-half with an initial maximum tree
depth of 2. The selection method used was tournament selection
with a tournament size of 10. The crossover method used was the
standard subtree swapping crossover [11] with a crossover proba-
bility of 0.9. The mutation method used was point mutation [11]
with a probability of 0.1. During the experiments elitism (i.e. un-
changed copy of the best individual in the next population at each
generation) was used and the maximum allowed tree depth was 17.
The experiments were performed using values for the K parameter
ranging from 2 to 13. Individuals have been built using 2 func-
tional symbols, both with arity 2, and 4 terminal symbols. Since
the fitness is computed considering only the values of the v and
w functions, it was unnecessary to define a semantic for the func-
tional and terminal symbols used. At each generation the fitness,
size and depth of the best individual were recorded. Also the av-
erage fitness, depth and size of the population were recorded. The
median of these values over the 100 runs is reported in this section.
A t-test has been performed over the fitness values obtained in the
last generation for every value of K with the equality of the means
considered as the null hypothesis.

1471

Experimental Results. In all the figures from 7 to 11, different
curves represent different values of K. For the same value of K we
have used, in all these figures, the same line. For this reason, we
report the legend of this figures only once, in Figure 6.

Figure 6: The legend for the plots reported in figures from 7
to 11.

In Figure 7 the median of the average depth of the GP trees in
the population for the different values of K is presented. We can
see that, for every considered K, the average depth after generation
20 is slightly above K. This result shows that the largest part of the
search process is concentrated on trees of a depth near K. This
means that the region of the search space that contains the individ-
uals with the best fitness increases exponentially with K. This can
be considered as a first hint of the fact that the problems get more
difficult as K increases. It is also interesting to remark that the av-
erage size rises quickly from the initial value. This means that the
penalization of individuals with depth different from K is effective
in forcing the search process to sample trees of depth close to K.

Figure 7: Median of the average depth of the GP trees in the
population against generations.

Another indication of the different difficulty of the problem for
different values of K is given by the plots of the median of the
average number of nodes of the trees in the population, reported
in Figure 8. The average number of nodes increases generation
by generation for all the considered values of K. The main dif-
ference between the various cases is that, for small values of K,
the increase in size stops after some generations, while for high
values of K the process continues up to the last studied genera-
tion. This curves show that even if the search process is quickly
directed towards the “right tree depth”, obtaining the optimum is
still a process that increases in difficulty with K. In other words,
while reaching the depth of the optimal tree is easy, producing an
optimal tree of a given depth remains a difficult process for GP.

Given this information on the average size and the depth of the
trees, it is interesting to explore the same information on the best
element of the population. In Figure 9 the median of the depth of
the best individual is presented. As it is possible to see, for each
studied value of K, the depth quickly rises to the corresponding
value of K and remains constant for all the considered generations.
This is consistent with the previous observations and shows that the
best individual in the population after few generations has a depth
that is close to the depth of at least one global optimum.

Figure 8: Median of the average number of nodes of the GP
trees in the population against generations.

Figure 9: Median of the depth of the best GP tree at each gen-
eration.

Figure 10 reports the median of the number of nodes of the best
individual at each generation. These results are consistent with the
ones of the average number of nodes in the population reported so
far. This means that the depth of the best individual, as the depth
of many other individuals in the population, quickly rises to K,
and then GP concentrates on finding the optimal number of nodes,
focusing on the space of trees of depth close to K. Since at least
one of the optima is a tree of a depth close to K that respects the
property of Proposition 3, the number of nodes of that optimum
increases exponentially with K, making the search process more
difficult for high K values.

The fact that the difficulty of the problem increases with K is
confirmed by Figure 11, where the median of the best fitness in the
population at each generation is reported. Fitness values have been
normalized by dividing them by the optimal fitness (that has been
calculated using the algorithm reported at the end of Section 4). In
this way, the global optimum has a normalized fitness equal to 1.
The figure clearly shows that the difficulty increases with K, and
this is visible since the very first generations. Furthermore, we
point out that for K = 2, K = 3, K = 4 and K = 5 a global
optimum has been reached by GP before generation 100 in the ma-
jority of the studied runs, while this is not the case for higher values
of K. In particular, for values of K higher than 10 the displacement
from a random individual (that has expected fitness equal to 0 be-
cause of the uniform random choice of the v function) is very low.
This indicates that for values of K larger than 10, GP is behaving
in a way that is comparable to random search, and the optimization
process is extremely slow.

1472

Figure 10: Median of the number of nodes of the best GP tree
at each generation.

Figure 11: Median of the fitness of the best GP tree in the pop-
ulation at each generation. All fitness values have been normal-
ized dividing them by the optimal fitness.

A more in-depth analysis has been done for the last studied gen-
eration of the runs. In the box plot in Figure 12 the average depth
of the GP trees at the last generation is considered. It is interesting

Figure 12: Average depth of the trees in the population at the
last generation.

to note that the variabilities of the measured depths are low. This
means that the search almost always remains near the desired value.

The box plot of the average number of nodes at the last genera-
tion is presented in Figure 13. It shows that the variability on the
number of nodes increases with K. This behavior can be explained
by the fact that the number of trees of a given depth increases with
K.

The box plot of the best fitness at the last generation is presented
in Figure 14. This figure shows that for different values of K there
are different behaviors: for low values of K the fitness remains
near 1. For intermediate values of K the fitness decreases steadily

Figure 13: Average number of nodes of the trees in the popula-
tion at the last generation.

Figure 14: Fitness of the best individual in the population at
the last generation.

when K increases. Finally, for high values of K the fitness still
decreases but at a slower rate, since the fitness values approach 0,
the expected fitness of a randomly generated GP tree.

We have also performed a t-test over the best fitnesses registered
at the last studied generation for the performed 100 runs. The null
hypothesis is that two means are identical. In Table 1 the p-values
of the t-test are reported for all the different possible combinations
of K. The combinations where the p-value is larger than 0.05 are
written in italic. The results show that the differences between the
recorded fitness values is almost always statistically significant for
different values of K.

In conclusion, the presented experiments show that GP is able
to find a global optimum in few generations for low values of K;
increasing K, the best normalized fitness found by GP gets worse
until, for large values of K, the behavior of GP becomes compa-
rable to the one of random search. Interestingly, the size of the
individuals inside the population increases with K. This allows
us to conclude that, for large values of K, we have a progressive
code growth without a corresponding improvement in fitness. This
is exactly the definition of bloat, as presented, for instance, in [13].
This means that the difficulty of the proposed problem can be effec-
tively tuned by changing the value of K: increasing K we create
problems in which GP is more and more unable to optimize and in
which GP is more and more affected by bloat.

6. CONCLUSIONS AND FUTURE WORK
An extension of the NK landscapes to tree based GP, simply

called K landscapes, has been presented in this paper. In this
benchmark, the epistatic interaction is quantified by the mutual in-
fluence on fitness of larger and larger structures in a tree as the
value of the K parameter increases. The fact that the hardness
of the problem increases with K has been experimentally shown.
Furthermore, we have shown that GP produces more bloat as K
increases.

A formal proof of the fact that the number of local optima in-
creases with K is needed in the future and it is one of the main
subjects of our current research. Furthermore, we plan to inves-
tigate the use of many landscape indicators, like fitness distance

1473

k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13
.0193 .0001 .0000 .1713 .0000 .0000 .0000 .0000 .0000 .0000 .0000 k=2

.0301 .0002 .2728 .0000 .0000 .0000 .0000 .0000 .0000 .0000 k=3
.0365 .5148 .0000 .0000 .0000 .0000 .0000 .0000 .0000 k=4

.9650 .0000 .0000 .0000 .0000 .0000 .0000 .0000 k=5
.0115 .0000 .0000 .0000 .0000 .0000 .0000 k=6

.0000 .0000 .0000 .0000 .0000 .0000 k=7
.0000 .0000 .0000 .0000 .0000 k=8

.0000 .0000 .0009 .0001 k=9
.0000 .2293 .0845 k=10

.7669 .9045 k=11
.7645 k=12

Table 1: The p-values given by the t-test.

correlation, auto-correlation, density of states and many others, on
the proposed benchmark, in order to further corroborate the hypoth-
esis that a more and more rugged fitness landscape is induced by
increasing K. Finally, we plan to extend the proposed benchmark,
overcoming some of its major limitations, namely: (1) the current
model does exhibit epistatic behavior under point mutation, but this
is no longer true when considering subtree crossover; (2) the cur-
rent benchmark cannot model dead code: every subtree contributes
to the fitness; (3) an ideal solution is very repetitive in terms of used
subtrees and this is very far from real world, where it is rarely the
case that an ideal solution can be built from cloned and systemati-
cally arranged subtrees.

7. REFERENCES
[1] L. Altenberg. B2.7.2 NK fitness landscapes. In T. Baeck,

et al., editors, Handbook of evolutionary computation. New
York: Oxford University Press, 1997.

[2] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

[3] J. M. Daida, R. Bertram, S. Stanhope, J. Khoo,
S. Chaudhary, and O. Chaudhary. What makes a problem
GP-hard? analysis of a tunably difficult problem in genetic
programming. Genetic Programming and Evolvable
Machines, 2:165–191, 2001.

[4] K. Deb and D. E. Goldberg. Analyzing deception in trap
functions. In D. Whitley, editor, Foundations of Genetic
Algorithms, 2, pages 93–108. Morgan Kaufmann, 1993.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, 1989.

[6] S. Gustafson, E. Burke, and N. Krasnogor. The tree-string
problem: An artificial domain for structure and content
search. In M. Keijzer, et al., editors, EuroGP 2005, pages
215–226. Springer, 2005.

[7] J. H. Holland. Adaptation in Natural and Artificial Systems.
The University of Michigan Press, Ann Arbor, Michigan,
1975.

[8] S. Kauffman and S. Levin. Towards a general theory of
adaptive walks on rugged landscapes. J. Theoret. Biol.,
128(1):11–45, 1987.

[9] S. A. Kauffman. The Origins of Order. Oxford University
Press, New York, 1993.

[10] J. Kingman. Mathematics of genetic diversity. Number 34 in
CBMS-NSF regional conference series in applied
mathematics. Society for Industrial and Applied
Mathematics, Philadelphia, Pa., 2. druck edition, 1980.

[11] J. R. Koza. Genetic Programming. The MIT Press,
Cambridge, Massachusetts, 1992.

[12] M. Mitchell, S. Forrest, and J. Holland. The royal road for
genetic algorithms: fitness landscapes and ga performance.

In F. J. Varela and P. Bourgine, editors, Toward a Practice of
Autonomous Systems, Proc. of the First European Conf. on
Artif. Life, pages 245–254. The MIT Press, 1992.

[13] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf.
Open issues in genetic programming. Genetic Programming
and Evolvable Machines, 11(3-4):339–363, 2010.

[14] A. Orfila, J. M. Estevez-Tapiador, and A. Ribagorda.
Evolving high-speed, easy-to-understand network intrusion
detection rules with genetic programming. In M. Giacobini,
et al., editors, App. of Evolutionary Computing,
EvoWorkshops2009, LNCS. Springer Verlag, 2009.

[15] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to
genetic programming. Published via http://lulu.com
and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[16] B. Punch, D. Zongker, and E. Goodman. The royal tree
problem, a benchmark for single and multiple population
genetic programming. In P. Angeline and K. Kinnear,
editors, Advances in Genetic Programming 2, pages
299–316, Cambridge, MA, 1996. The MIT Press.

[17] D. Song, M. I. Heywood, and A. N. Zincir-Heywood. A
linear genetic programming approach to intrusion detection.
In E. Cantú-Paz, et al., editors, Genetic and Evolutionary
Computation – GECCO-2003, volume 2724 of LNCS, pages
2325–2336, Chicago, 12-16 July 2003. Springer-Verlag.

[18] W. A. Tackett. Recombination, Selection, and the Genetic
Construction of Computer Programs. PhD thesis, University
of Southern California, Department of Electrical Engineering
Systems, USA, 1994.

[19] M. Tomassini, L. Vanneschi, P. Collard, and M. Clergue. A
study of fitness distance correlation as a difficulty measure in
genetic programming. Evolutionary Computation,
13(2):213–239, Summer 2005.

[20] L. Vanneschi. Theory and Practice for Efficient Genetic
Programming. Ph.D. thesis, Faculty of Science, University of
Lausanne, Switzerland, 2004. Downlodable version at:
http://www.disco.unimib.it/vanneschi.

[21] S. Wright. The roles of mutation, inbreeding, crossbreeding
and selection in evolution. In D. F. Jones, editor, Proceedings
og the Sixth International Congress on Genetics, volume 1,
pages 356–366, 1932.

1474

