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ABSTRACT
Estimation of Distribution Algorithms were introduced into
Genetic Programming over 15 years ago, and have demon-
strated good performance on a range of problems, but there
has been little research into their limitations. We apply two
such algorithms – scalar and vectorial Stochastic Grammar
GP – to Daida’s well-known Lid problem, to better under-
stand their ability to learn specific structures. The scalar
algorithm performs poorly, but the vectorial version shows
good overall performance. We then extended Daida’s prob-
lem to explore the vectorial algorithm’s ability to find even
more specific structures, finding that the performance fell off
rapidly as the specificity of the required structure increased.
Thus although this particular system has less severe struc-
tural difficulty issues than standard GP, it is by no means
free of them.

Track: Genetic Programming

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.2.6 [Artificial Intelligence]: Learning—Concept Learn-
ing

General Terms
Experimentation

Keywords
Estimation of Distribution Algorithms, Genetic Program-
ming, Structural Difficulty

1. INTRODUCTION
Estimation of Distribution Algorithms (EDA) [1, 7] have

formed a very successful strand in evolutionary optimisa-
tion, as a result of both their efficiency in particular con-
texts, and of their greater theoretical transparency leading
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to a better understanding of their behaviour than is achiev-
able for more typical evolutionary algorithms. The same
considerations have led a number of authors to explore their
use in Genetic Programming (GP) problems [11, 14] in the
field often known as EDA-GP. In this paper, we examine the
so-called ’structural difficulty’ problem for EDA-GP.

Some years after the introduction of EDA-GP, Daida [3]
showed that it was surprisingly difficult for ordinary GP to
find specific tree structures when the trees were either very
full or very narrow. While not a lot has been subsequently
published on this issue, it has been the subject of substan-
tial informal discussion. Initially, it was suggested that the
result might simply be the result of the sparsity of full and
narrow trees – that they are hard to find because they are
rare. However Hoai et al’s demonstration [5] that the diffi-
culty was very much reduced in GP search using TAG trees
showed that this could not be the case, since the sparsity is
similar in TAG search spaces – the major difference lies in-
stead in the connectivity of the search space, with the TAG
space being much more densely connected.

If this were all there was to it, Daida’s work could have
spelt the death-knell of GP: he showed that there were large
classes of reasonable problems where GP could not find the
solutions. But there is an easy ’out’. Were Daida’s diffi-
culties of practical relevance? Typical GP problem spaces
differ from the Daida spaces in having enormous numbers
of redundant solutions containing introns (Daida’s spaces
have no introns). Even if the simplest solutions to a spe-
cific problem may be difficult to find, there will generally be
other solutions of intermediate fullness that GP (because of
bloat) can readily find. Thus the general consensus today is
that the issue is intriguing, but of little practical relevance
because of bloat (i.e. in this case, bloat, far from being a
problem, comes to the rescue of GP). In many applications
of GP, so the argument goes, we are equally happy to accept
larger solutions so long as they are accurate. It really does
not matter whether specific solutions are hard to find.

One of the key arguments for EDA-GP, repeatedly put for-
ward by its proponents [10, 9, 12], has been its propensity
to find small, compact solutions: it avoids the bloat so often
generated by purely evolutionary GP systems. But in doing
so, it also avoids the easy ’out’ above. If EDA-GP generally
finds the simplest solutions, then it had better be able to find
full or narrow trees, since these might well be those simplest
solutions. We explore this issue in this paper, specifically
testing the ability of two well-known EDA-GP systems, Ra-
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tle and Sebag’s Scalar and Vectorial Stochastic Grammar
GP (SG-GP) to solve Daida’s problems and some natural
extensions, and comparing them with Koza-style GP.

The rest of the paper is structured as follows. In section 2
we provide additional background on Daida’s Lid problem,
and more detail on EDA and EDA-GP, with particular ref-
erence to SG-GP. In section 3, we detail the experimental
methods we used, and detail the experimental regime and
parameters. Section 4 presents the results of the experi-
ments, including some extended experiments that further
explore the structural exploration ability of SG-GP. In sec-
tion 5, we discuss the implications of these experiments for
SG-GP in particular, and more generally how they might
relate to other forms of EDA-GP, concluding in section 6
with discussion of the assumptions and limitations of our
study, a summary of the general conclusions, and directions
for further work.

2. BACKGROUND
In this paper, we compare the performance of EDA-GP

on Daida’s problems [3] with Daida’s own experiments with
GP. Here, we briefly background Daida’s problems and ex-
periments. We also provide a brief introduction to EDA-GP
in general, and detail the specific forms we are using.

2.1 Structural Difficulty and Genetic Program-
ming

2.1.1 Daida’s Genetic Programming Experiments

Table 1: Daida’s GP Parameter Settings

Runs 1,000
Generations 200
Population 500
Crossover Rate 90%
Crossover Bias 90% internal
Reproduction Rate 10%
Maximum Depth 512

Daida used Koza’s classic form of GP [6], in which indi-
viduals are represented as trees, and the evolutionary oper-
ators are ramped half-and-half initialisation, subtree cross-
over and mutation, and roulette wheel selection. His detailed
GP parameter settings are shown in table 1.

2.1.2 The Lid Problems
Daida’s Lid problems explore the space of trees built from

two components, a single binary function J (join) and a
single terminal X. The fitness function varies with problem,
and is defined so as to pick out a specific target shape of trees
in terms of depth and number of terminals. The fitness is
defined as in equation 1:

fitnessraw = metricdepth (1)

+metricterminal

where the component metrics are defined in equations 2
and 3:

metricdepth = Wdepth(1− (
|dtarget−dactual |

dtarget
)) (2)

metricterminals (3)

=

8><
>:

Wterminals(1−
(
|ttarget−tactual |

ttarget
)) if metricdepth = Wdepth

0 otherwise

and

W = Wdepth + Wterminals = 100

2.1.3 Searching Sparse Tree Shapes
Daida’s results on these problems are illustrated in fig-

ures 1 and 2.1 Figure 1, known as the horizontal cut, shows
the success rate (the proportion of individuals finding a cor-
rect solution) for different target depths while the target
number of terminals is held constant at 256; Figure 2 (the
vertical cut) shows the reverse – the success rate for different
target numbers of terminals when the target depth is 15.

2.2 Estimation of Distribution Algorithms in
Genetic Programming

2.2.1 Estimation of Distribution Algorithms
Estimation of Distribution Algorithms (EDAs) are model-

based search algorithms, which build a statistical model of
the solution space by sampling a new population from the
current model, and then updating the model from good so-
lutions. The key concepts of EDAs are derived from two
different research streams: (probabilistic) graphical models
(GM) and evolutionary algorithms (EA). The outer loop in-
cludes the two basic stages of a conventional evolutionary
algorithm:

1. Construct a new population from selected members of
the previous population

2. Select the best solutions in the new population

However it interposes a further step in the loop: after the
best solutions have been selected, a probability model is
built (or more usually, updated) from them. The next gen-
eration’s individuals are then constructed, not directly from
the best individuals of the previous generation, but rather
by sampling from this (now updated) probability model. In
a sense, this sampling stage may be viewed as a huge gen-
eralisation of crossover, in which information is combined,
not just from two parents, but from all the previous popula-
tions of the process. The probability model, and its update
mechanism, are thus crucial in determining what kinds of
information are to be incorporated into this sampling, and
how the information is aged. The probability model includes
both probabilistic nodes (representing the probability distri-
butions of the values of specific random variables – usually,

1We plotted Daida’s results with SG-GP anew in figures 1
and 2. In his paper, only the points with 100% success ratio
are described in detail, so we estimated the intermediate and
zero ratio points as accurately as possible from his original
figures. It is possible that there are small differences from his
data, which is unavailable, so we refer readers to his original
paper [3] for accrurate comparisons.
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the value of a specific gene) and dependencies between them,
often represented as a Bayesian Network (BN), a kind of
GM.

The overall process may be described as in algorithm 1:

Algorithm 1 Estimation of Distribution Algorithm

Initialise a probability model M0 from prior knowledge
{Usually, some form of uniform distribution}
i← 0
while not termination condition do

i← i + 1
Sampling: Generate new population Pi by sampling
from Mi−1

Evaluation: Evaluate individuals with the problem fit-
ness function
Selection: select a subset Si of individuals from Pi

Update: Generate the new probabilistic model Mi from
Mi−1 and Si

end while

Compared with a conventional evolutionary algorithm, it
has two additional processes, sampling and update. In the
sampling step, EDAs construct individuals by selecting a
value for each gene, based on the probability model (usually,
from a random variable describing the value at that gene).
Fitter individuals are selected from them, and used to up-
date the statistical model. In the simplest case, only proba-
bility values are updated; in more sophisticated algorithms,
the structure of the model may also be updated to better re-
flect dependencies between the genes. Their major applica-
tion has been in fixed-complexity optimisation – the problem
domains that are the focus of Genetic Algorithms (GA) or
Evolutionary Strategies (ES). Domains requiring variable-
complexity solutions (rather than variable-complexity solu-
tion models) have been much less studied. GP is one of the
few exceptions, and a number of model based approaches
have been developed, often under the names EDA-GP or
Probabilistic Model Building GP. General surveys are avail-
able in [14]. Compared to GP, EDA-GP has received far
less research attention, and many theoretical issues have not
yet been studied – including its ability to learn different GP
tree structures.

2.2.2 Grammar Guided GP and EDA-GP
Grammars as a formalism for GP were introduced in the

mid-1990s [18, 16], and have been widely used since, in the
form of Grammar-Guided GP (GGGP). In most GGGP, so-
lutions are represented as parse trees in a specific grammar,
and the parse trees are evolved in a similar way to the ex-
pression trees in classical GP. They are popular for a variety
of reasons, notably the ease of specifying new problem do-
mains by defining an appropriate grammar. Subsequently,
they have formed one of the main strands in EDA-GP work
as well.

Ratle and Sebag’s stochastic grammar GP (SG-GP) [9]
was one of the first EDA-GPs. It uses a grammar to de-
fine the target search space, but the grammar is a Stochas-
tic Context Free Grammar (SCFG), incorporating a proba-
bilistic weight for each production. Thus the grammar can
represent a probability distribution over the search space,
rather than merely (as in GGGP) delineating the bound-
ary. In its simplest version, scalar SG-GP (vSG-GP), that
is all there is to the probability model. It is a stochastic

grammar representing the whole search space. However Ra-
tle and Sebag rapidly found this limiting, and introduced an
extension, vectorial SG-GP (vSG-GP), in which the proba-
bility distributions are vectorised over the depth in the GP
tree. Each production has a separate copy for each depth
in the tree, with a separate probability distribution, so that
different probability distributions may be learnt (and used)
at different depths.

We used scalar and vectorial SG-GP in this work, as sim-
ple, easy-to-understand representatives of a whole strand of
EDA-GP [17, 9, 12, 13, 2, 15, 8, 4].

3. EXPERIMENTS

3.1 Fitness Functions
We used two problems for our experiments. One was the

original Lid Problem described in Daida’s [3], summarised
in section 2. For reasons which will become apparent, we
extended this with a more complex problem, not merely
finding specific size/depth combinations, but amongst those,
finding specific ratios of right and left branches (we call this
the ’balance’ of the tree). Thus we extend equation 1 with
an additional term, metricbalance , as in equation 4:

fitnessbal = metricdepth (4)

+metricterminal

+metricbalance

This new metricbalance is defined in equation 5:

metricbalance = Wbalance

„
1−

„ |Btarget −Bactual |
Btarget

««
(5)

where as before, Wbalance, Wdepth and Wterminal are arbi-
trarily selected to satisfy equation 6:

W = Wdepth + Wterminal + Wbalance = 100 (6)

and Bactual is defined in equation 7:

Bactual (7)

=

(
#(Unbalanced to left)
#(Unbalanced nodes)

if |Bactual −Btarget| > ε

Btarget otherwise

where ε = 0.5
#(Unbalanced nodes)

and Btarget is a number be-

tween 0 and 1. Btarget = 0.5 implies that the tree has the
same number of extensions to left and right, while values of
0 and 1 correspond to right and left oriented trees. Apart
from its use of ε, metricbalance is entirely consistent in form
with Daida’s metrics.

3.2 EDA-GP Test Algorithms
The grammars used for sSG-GP and vSG-GP are shown

in table 2.
Both these grammars generate exactly the same search

space as in Daida’s work. Depth Limit is the available depth
for GP trees, set to 512 in Daida’s work. In the case where
generating an individual within this depth fails, we re-do
sampling that individual from the model distribution. In
each case, the initial probability distribution over the possi-
ble right-hand-sides for each production is set as uniform.

We used a maximum depth, DepthLimit, set to 512 as
in Daida’s work, for model sampling. When, in generating
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Table 2: Grammars for SG-GP
Scalar

E → (E,E) | (E,X) | (X,E) | (X,X)
Vectorial

Ei → (Ei+1, Ei+1)|(Ei+1, X)
|(X, Ei+1)|(X, X)
i = {0, 1, · · · , (Depth Limit− 2)}

EDepth Limit−1 → (X, X)

an individual, we exceeded this depth bound, we re-did the
sampling using the same model distribution. In the EDA-
GP systems, especially in the early stages before the system
had started to learn models that restrict the size of individu-
als, there was a tendency to generate individuals so large as
to cause computer memory problems. We applied a similar
approach as with depth, imposing a maximum limit of node
size, and aborting the generation of individuals once they
exceed this size, re-sampling from the model distribution.

3.3 Experimental Parameters Setting

Table 3: Parameter Settings for Experiments
Set 1 Set 2 Set 3

Runs 100 30 30
Generations 200 200 200
Population 500 500;50 50
Selection ratio 40% 2% 2%
Discount ratio 50% 90% 90%

We performed three different set of experiments.

1. Using sSG-GP to solve Daida’s problem

2. Using vSG-GP to solve Daida’s problem

3. Using vSG-GP to solve the modified problem incorpo-
rating balance

For the first and second set, we followed a similar approach
to Daida’s, fixing one of the targets (horizontal cut : depth,
vertical cut : terminal set size) and varying the other.

For the horizontal cut, we set the terminal size to 256 (28)
and varied the depth from 8 to 15 with an interval of one,
and from 20 to 250 with an interval of 10. For sSG-GP,
we ran 100 trials, but computational cost prevented this for
vSG-GP, where we were only able to run 30 trials for each
treatment. However memory limits caused severe problems
for vSG-GP: in the early stages of evolution, before it had
learnt that relatively small trees were fitter, it tended to gen-
erate extremely large trees (note that with the initial uni-
form distribution over the productions, the expected size of
individuals is unbounded). We handled this in two ways, nei-
ther of which is completely satisfactory for comparison with
GP. Both under-estimate the actual performance of vSG-
GP, so should not cause too many problems. In the first, we
set a size bound of 32,784 (215, aborting the construction
of individuals larger than this, and re-sampling them from
the distribution as with the depth bound. Since this is far
larger than the target tree size, we expected that it would
have very little effect on the evolution; but memory bounds

meant that we could only run this version with a popula-
tion of 50, thus crippling its performance by comparison to
GP. In the second, we restricted the size too a much lower
bound – 2,048 (211) – which is closer to the target size, so
that it might have a small effect on evolution, but also small
enough that we were able to run the same population (500)
for vSG-GP as for GP.

For the vertical cut, we set the depth to 15 and varied
the target terminal set size from 16 to 32 with an interval of
one (narrow trees), and from 64 to 16,384 (214) (full trees),
multiplying by 2 to obtain the next point. For each con-
figuration, we ran 100 trials for the first case (narrow), but
could only afford 30 trials for the second case because of
the computational cost for vSG-GP. As with the horizon-
tal cut, we set a size limit of 32,784 (215), and correspond-
ingly smaller population of 50. Since vSG-GP substantially
out-performed GP in this setting, even with the reduced
computational resources available, we saw no advantage in
re-running with a smaller size limit and larger population.

For the third set of experiments, we used three target bal-
ance values, 1, 2

3
and 1

2
. For each value, we tested all com-

binations of target depth and terminal size which were used
in the preceding experiments. As before, we ran 30 trials for
each configuration with a 32,784-node size limitation.

All experiments used typical EDA settings of probabilistic
logic sampling, truncation selection and incremental learn-
ing for sampling, selection, and update. The selection ratio
used in truncation selection, and the discount ratio used to
determine the effect of old information in the model, were
determined based on preliminary experiments

Detailed parameter settings are shown in Table 3.

4. RESULTS

4.1 Horizontal and Vertical Cuts for EDA-GP
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Figure 1: Success Rate, Horizontal Cut (EDA-GP)

Figure 1 shows the results for EDA-GP corresponding to
Daida’s horizontal cut with his results. That is, it is the re-
sult of holding the target number of terminal nodes constant,
and varying the target depth. It is immediately apparent
that the performance of scalar SG-GP was very poor rela-
tive to GP (a result that would surprise no-one in the field:
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scalar SG-GP has no way to model the important properties
of the target solution). The scalar system was unable to find
any solutions at all outside the target depth range 20 . . . 100,
and even within this range, search was rarely successful.

Vectorial SG-GP did substantially better than scalar, out-
performing GP for small target depths even with reduced
computational resources (i.e. it was slightly more effective
at finding full trees), but less effective (with reduced compu-
tational resource) for greater depths. Using the same com-
putational resources as GP, it maintained 100% success rate
up to depth 60 (i.e. quite narrow trees), which is equivalent
to GP performance within the limitations of the information
available to us (i.e. figure 1).
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Figure 2: Success Rate, Vertical Cut (EDA-GP)

Figure 2 shows the corresponding results for the vertical
cut (c.f. Daida’s results in the figure). That is, it is the
result of holding the target depth constant, and varying the
target number of terminal nodes. In this case, there was a
small surprise in the performance of scalar SG-GP: it gave
very good performance for small target sizes – substantially
better than GP, and even than vectorial SG-GP. However
performance rapidly degraded with increasing target size,
with the success rate dropping below 100% beyond target
size 26, and never finding any solutions beyond a target
size of 28. While vectorial SG-GP performance was slightly
worse for small target sizes, it was still comparable to that of
GP despite the much more modest computational resources
provided to it. At larger target sizes, its effectiveness was
even more pronounced; it had a 100% success rate at a target
size of 212 (GP was completely unsuccessful), and still main-
tained a respectable 25% success rate at a target size of 215,
where our runs had to stop because of memory limitations.

4.2 Searching Tree Balance with vSG-GP
In the preceding experiments, vectorial SG-GP demon-

strated a relatively good ability to explore different regions
of the structural search space, in terms of tree fullness – it
was able to find both full and narrow trees with a level of
reliability at least equal to, and generally better than, GP.
But fullness is not the only structural constraint GP trees
might need to solve. For commutative operators such as ‘+’
or ‘×’, tree balance is unimportant. For non-commutative
operators – for example arithmetic ‘−’ and ‘/’, or Boolean

‘→’, but also including many operators in real-world prob-
lems – tree balance is important. For example, the left-heavy
expression (a ∗ b)− c cannot readily be re-expressed in bal-
anced or right-heavy form without a significant increase in
complexity. Thus it is of interest to see whether vectorial
SG-GP can handle different levels of balance, given a specific
target depth and target node size.
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Figure 3: Success Rate, Balance-Horizontal Cut
(vSG-GP)

Figure 3 shows an analogue of Daida’s horizontal cut, in
which both the target number of nodes and the level of bal-
ance were held constant, and the target depth was varied.

Achieving even a specific balance of 0.5 (i.e. completely
balanced) made the problem much harder than just finding
the right combination of number of nodes and depth, and at
no setting was vSG-GP 100% successful. For depths greater
than 60, vSG-GP found no solutions at all. A skew of 50%
(i.e. balance setting 0.66) made the problem a little harder,
while increasing the skew to 100% (i.e. a completely un-
balanced tree with a setting of 1.0) made the problem very
substantially harder, and no solutions at all were found for
depths greater than 15 with a balance of 1.0, or greater than
50 with balance of 0.66.

Correspondingly, figure 4 shows an analogue of Daida’s
vertical cut, in which both the target depth and the level of
balance were held constant, and the target number of nodes
was varied. Achieving a specific balance of 0.5 was fairly
reliable around 25 terminal nodes, and the success rate re-
mained around 80% from a target of 25 right up to 512,
declining fairly rapidly thereafter and finding no solutions
at all for targets greater than 16,383 (8,192 terminals). A
balance of 0.66 was harder to achieve, succeeding over 60%
of the time up to 255 nodes, but decreasing as with the 0.5
balance thereafter, and failing completely after 16,383 nodes.
There was an almost compete failure to find completely un-
balanced trees, with the success rate remaining below 5%
for all target sizes, and no success at all larger than 8,191
nodes.

4.3 How does vSG-GP solve the Balance Prob-
lem?

One of the important characteristics of EDA-GP is that
once we solve a problem, we have useful information avail-
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Figure 4: Success Rate, Balance-Vertical Cut (vSG-
GP)

able to understand the solution: not merely the successful
solutions, but the probability model that generated them
(for this reason, it is often useful to continue an EDA-GP
beyond its first hitting time, to obtain a probability model
that generates solutions with high reliability)

Tables 4, 5 and 6 show typical examples of the final model
distributions of successful runs, with respective balance tar-
gets of 1.0, 0.5 and 0.66. They are collected from the depth
10, 256-terminal target setting. By the definition of vSG-
GP, all models have a 512-component probability model,
storing the distributions of productions. In all cases, vSG-
GP has learnt the depth limit of 10 perfectly, selecting the
right hand side (X,X) with probablity 1.0 (as is required to
terminate the tree at that level).2 We discuss the compo-
nents slightly out-of-order for ease of explanation (simplest
first).

Table 4: Successful Model Distribution, Target Bal-
ance 1.0)

depth Probability for each Production
(E,E) (E,X) (X,E) (X,X)

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0
7 0.853 0.147 0 0
8 0.206 0.423 0 0.371
9 0.825 0 0.004 0.171
10 0 0 0 1
11-512 0.25 0.25 0.25 0.25

In table 4 (corresponding to balance 1.0), at depths up

2We do not show deeper components here because they are
uninteresting. They start with a uniform distribution; this
may be perturbed in the first few generations, but once the
system learns the required depth, they are no longer sam-
pled, so exponentially rapidly restore the uniform distribu-
tion.

to 6, the distribution has converged to a probability of 1.0
for (E,E), ensuring that any sampled tree is full (and hence
balanced) up to that depth. The distribution at lower depth
converges to (E,E), which does nott affect the balance. From
level 7 to 9, there are a variety of distributions, but levels
7 and 8 are skewed to the left by 0.147 and 0.423 (and no
right skew), while level 9 is skewed to the right by only
0.004. Thus the probability of generating trees with only
left productions (E,X) and no right productions (X,E) is
quite high, leading to samples containing perfect solutions
with a balance of 1.0.

Table 5: Successful Model Distribution, Target Bal-
ance 0.5

depth Probability for each Production
(E,E) (E,X) (X,E) (X,X)

1 1 0 0 0
2 1 0 0 0
3 1 0 0 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0
7 0.164 0.537 0.300 0
8 0.078 0 0.372 0.551
9 0 0.346 0.016 0.638
10 0 0 0 1
11-512 0.25 0.25 0.25 0.25

Table 5 (balance 0.5) shows an identical distribution to
the preceding for depths up to 6. The distributions at depths
7, 8 and 9 are very different, though. It might appear that
the distribution is somewhat unbalanced, since depths 7 and
9 are more skewed to the left than depth 8 is to the right.
However we can calculate the expected distribution exactly.
The expected number of internal nodes at depth i, denoted
by Ni, is given by equation 8:

Ni = Ni−1 ∗ (2 ∗ Pi (E, E) + Pi (E, X) + Pi (X, E)) (8)

Since the probability of generating (E,E) from depth 5 nodes,
shown at depth 6, is 1.0, repeatedly applying equation 8, we
get the expected number of nodes using (E,X) as equation 9:

N6 × 0.537 + N7 × 0 + N8 × 0.346 = 0.750 (9)

The corresponding calculation for (X,E) gives an expecta-
tion of 0.743, so that the balance calculated from the expec-
tations is

0.750

0.750 + 0.743
= 0.502

which is quite close to the target balance of 0.5, so that the
probability of generating perfect solutions is high.

From table 6, by the same process we can compute an
expected balance value of:

17.596

17.596 + 8.621
= 0.671

which again is similar to the 2
3

target balance.
From these examples, we can see that the vSG-GP model

distribution can converge to a distribution that leads to a
high probability of success in sampling perfect solutions.
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Table 6: Successful Model Distribution, Target Bal-
ance 0.66

depth Probability for each Production
(E,E) (E,X) (X,E) (X,X)

1 1 0 0 0
2 1 0 0 0
3 0 0.675 0.325 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0
7 0.820 0.002 0.177 0
8 0.282 0.194 0.376 0.148
9 0.060 0.850 0.084 0.006
10 0 0 0 1
11-512 0.25 0.25 0.25 0.25

5. DISCUSSION
The first point to note about these results, as in all EDA

work, is the huge dependence on the underlying probability
model. Scalar SG-GP is almost entirely unable to handle
the Lid problem, except in some very narrowly defined cases,
whereas vectorial SG-GP – differing only in the probability
model – overall performs rather better than standard GP.
With its simple probability model, sSG-GP is unable to even
represent the solution space, let alone learn it.

However the probability model does not have to be able to
explicitly represent the problem structure. While vectorial
SG-GP has an explicit representation of the depth aspect
of the Lid problem, it only represents the fullness (and bal-
ance) aspects of solutions implicitly through the differing
probabilities in the grammar.

Specifically with respect to vectorial SG-GP, while it does
perform quite well on the basic Lid problem, showing less
bias against full or narrow trees than does GP, this does not
mean that it is without shape bias. It is much less effective
at finding specific levels of imbalance. This may possibly
be because of a high level of epistasis in this problem with
vSG-GP representation, but this hypothesis requires further
verification. It is quite possible that other probability mod-
els would reduce such epistasis, and thus perform better on
this problem. Especially, this may be the case for systems
such as GMPE [13] which learn the structure of the proba-
bility model, rather than merely the probabilities.

6. CONCLUSIONS

6.1 Summary
In this paper, we argued that whatever may be the case

for GP, EDA-GP systems need to be able to find arbitrary
structural forms. If they cannot, their strong parsimony
bias will lead them to miss solutions to some problems. We
showed that their ability to do this depended heavily on the
probability model: a simple probability model such as in
scalar SG-GP gave very poor performance on Daida’s Lid
problem. On the other hand, a slightly more sophisticated
model, such as in vectorial SG-GP – permitting direct repre-
sentation of the depth-dependence of solutions – performed
somewhat better than GP, though by no means perfectly.

While it might thus seem that shape biases are a minor
issue for vectorial SG-GP, we introduced an extension of the

Lid problem incorporating the balance of the tree shape be-
ing sought. We found that performance of vectorial SG-GP
on this problem was much reduced from that on the ba-
sic Lid problem, and thus that vectorial SG-GP still suffers
from serious problems in finding specific tree shapes. We
hypothesised that this poorer performance may result from
epistasis in this problem.

6.2 Future Directions
The most promising future direction in this work is to ex-

plore in more detail the relationship between the probability
model in EDA-GP and its performance in learning specific
tree shapes. We note that the probability model depends
not only on the learning system, but also on the specific im-
plementation. For example, the grammar in table 2 is one
way to represent the Lid problem in vectorial SG-GP. But
it is far from the only one. To what extent would changes
in the grammar (without any other change in the learning
system, or the problem space) affect performance in learn-
ing specific structures? Equally interesting is the possibility
of extension to EDA-GPs that learn the structure of the
probability model. Would these algorithms be able to learn
the structure of models that could represent structural con-
straints, while at the same time learning the probabilities
themselves?
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