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ABSTRACT 
Robocode is a Java based programming platform where robot 
tanks, controlled by programs written in Java, compete. In this 
paper Grammatical Evolution is used to evolve Java programs to 
control a Robocode robot. This paper demonstrates how 
Grammatical Evolution together with spatial co-evolution in age 
layered planes (SCALP) can harness co-evolution to evolve 
relatively complex behaviour, including robots capable of beating 
Robocode’s sample robots as well as some more complex human 
coded robots. The results of the co-evolution are similar to the 
results obtained by direct evolution against a range of human 
coded robots. This indicates that co-evolution alone is able to 
evolve robots of a similar standard to those evolved against 
graded human coded robots. 

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming – 
program synthesis 

General Terms: Algorithms, Design, Experimentation. 

Keywords: Grammatical Evolution, Genetic Programming, 
Robocode, Co-Evolution, SCALP. 

1. What is Robocode 
Robocode is a Java based programming game platform developed 
by IBM Alphaworks1, where the aim is to program a robot battle 
tank to fight (and beat) other robot battle tanks.  The programs 
controlling the tanks are written in Java and are executed as 
threads in the main program. 

During the game the tank must navigate around its environment, 
avoiding the walls, bullets fired by the other tanks and (unless it 
has chosen to ram a tank) the other tanks. At the same time it 
must locate the other tank, anticipate its likely position (since the 
bullets take time to move) and try to hit it. Programs 
implementing simple strategies such as wall following or moving 
in circles while firing at an opponent are provided as sample 
programs to help the novice Robocode programmer get started. In 
addition there are multiple resources on the internet2 illustrating 
advanced strategies such as pattern matching, gravity movement 

                                                                 
1 http://robocode.sourceforge.net/ 
2 For example, http://robowiki.net/wiki/ 
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and wave surfing, to name a few. These allow robotic tanks of 
high complexity to be built. There is a Robocode league, where 
robots compete against each other with the view of taking league 
table honours. 

2. Aim of this paper 
Although the writing of the Java programs to control such robots 
is in itself an interesting task, the focus of this paper is to test the 
ability to evolve the controlling Java programs. That is - using 
genetic programming principles - is it possible to evolve a Java 
program to compete successfully against hand-coded robot tanks? 
In particular it looks at the ability to successfully harness co-
evolution to derive interesting strategies with the view ultimately 
to evolving a tank that is competitive with a human coded tank. 
The current sophistication of the better human coded tanks is such 
that the evolved tanks require a high level of complexity if they 
are to be competitive. Unless the context makes it otherwise clear 
a reference to a Robocode tank or robot or tank is a reference to 
the Java program controlling the simulated Robocode tank. 

3. Structure of this paper 
This paper begins with a brief overview of the problem area (i.e. 
what is Robocode), discusses the form of the evolution attempted 
and the reasoning behind the design decisions taken. It then 
discusses the environment in which the evolution is to take place, 
that is what opponents are selected, how competitive co-evolution 
is attempted and how evolution versus human written Robocode 
tanks is attempted and finally it presents the results. 

4. Brief Overview of a Robocode Tank 
A tank consists of the tank body, a turret containing the gun, 
which can rotate with or separately from the body, and a scanner 
used to detect enemies that can rotate with or separately from the 
gun. A tank can move forward and/or turn. While turning its 
maximum forward speed is reduced. Each tank starts with a 
certain amount of energy. It loses energy each time it crashes 
(either into a tank or a wall) and each time it is hit (either by a 
bullet or another tank). It gains energy if one of its bullets hits an 
opposing tank. When it fires its gun, it can vary the amount of 
energy used to fire the bullet, the more energy put into the bullet 
the slower it travels but the more damage it does and the higher 
the energy gain to the firing tank (if it hits). Guns also need to 
cool down before they can be fired, the higher the energy of the 
bullet – the longer the gun takes to cool. Tanks can detect other 
tanks, their energy level, speed and direction. They cannot detect 
bullets nor can they directly detect the fact that a bullet has been 
fired, although the energy loss in an opposing tank is noticeable 
and provides an indication that the tank may have fired (or 
suffered an energy loss by other means). The structure of a 
Robocode tank program is explored later. The tanks fight in an 
empty arena of a fixed size, surrounded by walls. Typically the 
start position and orientation of the tanks is randomised for each 
round. A typical battle consists of a number of rounds. Although 
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there are various leagues, including for battles involving multiple 
tanks in the same battleground, this paper only looks at one versus 
one battles. The scoring system is discussed in section 7.5. 

5. Previous Work 
In [3] Eisenstein used a form of genetic evolution, based on a 
fixed size genome that encoded a table version of Leslie 
Kaelling’s REX Language. Effectively the genome encodes a 
number of computation elements, which form the rows of the 
table. Each element can take as inputs either a value from the 
robot’s sensors or from the output of other computation elements 
(referenced by their row in the table). Eisenstein’s work had some 
success in evolving robots to win against the sample robots 
provided. However, he experienced difficulty in getting robots to 
actually fire their gun. Eisenstein hypothesises that this is because 
a miss costs the robot energy and therefore, early in evolution 
when a miss is likely, not firing is a good starting strategy. 
Principally because of this difficulty in getting randomised robots 
to fire, his attempt at using co-evolution to commence an “arms-
race” was not successful. However, using a more traditional 
generational approach he was, amongst other things, able to 
evolve robots that could each beat the starter robot opponent they 
were evolved to compete against. He was less successful in his 
attempts to evolve a robot that could beat all of the five different 
starter robots he used. His best-reported robot was able to beat 
four out of these five robots, the robot it was not able to beat 
being the “tracker” robot3.  

In the same year another study was published relating to the use 
of Machine Learning in a Robocode robot [4]. This study looked 
at splitting up the required functions of a Robocode tank (i.e. 
movement, target acquisition, radar control and gun control) on 
the basis of a subsumption architecture. Reinforcement learning 
was used for target acquisition (unlike this paper, the robots were 
tested in multi-tank fights) a neural network was used to control 
the gun and, relevantly, genetic programming was used for the 
movement and radar control aspects of the robot. The module 
resolving conflicts between layers as well as wall avoiding, 
randomisation of movement and attempts at bullet dodging were 
all hand-coded. Although the robot itself was quite successful, the 
genetic programming part of the robot failed to improve over time 
and did little to help the over all competitiveness of the robot. 

[16] used a more canonical Genetic Programming (GP) style 
system [11] to evolve a robot for the category of HaikuBots. 
HaikuBots are Robocode robots that are limited to four lines of 
code (although there are no length limits imposed on the lines).  
GP was used to evolve numerical expressions that were given as 
arguments to the four lines of code written in the shell program.  
Each line of code controlled one of the main actuators; namely the 
gun/radar, forward/backward movement, turn rate and the 
scanner. Firing the gun was controlled by “side-effects” in the 
numerical evaluation. Like Eisenstein it was noted that if only one 
adversary was included in the evolutionary run specialised 
strategies were evolved which did not generalise well to different 
opponents. However, where multiple adversaries were included in 
the runs this did lead to better generalisation and robot tanks able 
to fight previously unseen opponents.  One of the bots took third 
place in the HaikuBot league in 2004. Limited success was 
                                                                 
3 The tracker robot is one of the starter robots provided with Robocode. It 

tracks its opponent, moving close and firing when possible. 

reported with their attempts to use co-evolution to evolve tanks. 
Their belief as to the reasons for this is that as early generations 
evolved for idleness (conserving energy by not firing or moving 
and hitting walls) the genes responsible for movement and gun 
firing were lost – hampering the later evolution of more complex 
strategies. 

[15] compares the use of NEAT and XCS to evolve controllers to 
control the scanning and targeting of Robocode tanks and [9] used 
evolutionary strategies to combine various hand programmed 
behaviours. Neither of the last two papers explored the use of co-
evolution 

6. Structure of a Robocode tank program 
The program to control a Robocode tank (a robot) is usually 
written in Java. It is executed as a separate thread that is activated 
from the main Robocode program. Each thread has a certain 
amount of time per “tick” of the competition to send its command 
instructions (i.e. what actuators it wants to activate of the tank) 
and these are then executed simultaneously. If a robot thread does 
not respond in time then it misses its turn. If no response is 
received for a period of time (e.g. the thread is stuck in a loop) the 
tank has its energy reduced to zero and is eliminated from the 
round. 

The main run function of a Robocode tank thread should not exit. 
Accordingly, after any initialisation, it typically consists of an 
endless loop containing whatever instructions are relevant. As 
well as the main run() thread each robot receives event 
notifications. Relevant to this paper the following events can be 
received onScannedRobot, which is called when the robot scans 
an enemy robot (i.e. the scanner is pointing at an enemy robot), 
onHitRobot which is called if the robot is hit (or hits) an enemy 
tank, onHitByBullet which is called if the robot is hit by a bullet 
and onHitWall which is called when the robot hits a wall. Each of 
these event notifications is passed a data structure that contains 
information relevant to the notification e.g. OnScannedRobot is 
called with a ScannedRobotEvent parameter, which contains the 
velocity, heading and energy levels of the scanned tank. 

The structure of typical robot therefore looks like this 

public  void  run()  
    {  
     [Initialisation statements];  
     while  (  true  )  
      [Main Loop statements];  
      } 
    } 
public  void  onScannedRobot(ScannedRobotEvent  e)  
    {  
     [onScanned statements;]  
    } 
public  void  onHitByBullet(HitByBulletEvent  e)  
    {  
     [onHitByBullet statements;]  
    } 
public  void  onHitRobot(HitRobotEvent  e)  
    {  
     [onHitRobot statements];  
    } 
public  void  onHitWall(HitWallEvent  e)  
    {  
     [onHitWall statements;]  
    } 
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A very simple tank might therefore use the main thread to turn its 
gun/radar and the onScannedRobot event to fire its gun. Given the 
travel time of bullets such a tank is likely to hit a stationary tank 
but miss a moving one. Obviously human coded robots have 
additional functions and, often, additional classes to carry out 
such things as pattern matching, avoidance, strategies to aim 
ahead of a moving robot etc – but the structure of human designed 
programs will have all of the above elements. 

7. Main elements of the evolutionary design 
7.1 The grammar 
In order to evolve a the Java program controlling a Robocode tank 
the process can be simplified slightly by taking the overall 
structure of the program outlined in section 6 as a given and focus 
on evolving the statements which appear in square brackets of that 
structure. While canonical Genetic Programming (GP) as 
introduced by Koza [11] might be the best known method of 
evolving programs a newer form of evolving programs, namely 
Grammatical Evolution (GE) [14], which uses a grammar based 
on a Backus Naur Form (BNF) grammar is, arguably, better suited 
to evolving programs that comply with the requirements of a fully 
fledged Java program. 

7.2 Grammatical Evolution 
GE is a form of GP that separates the underlying representation of 
each candidate solution (the genotype) from the representation 
(the phenotype). Associated with each GE problem is a BNF 
grammar that dictates the eventual form of all candidate solutions. 
The genotype (which is a bit string) is decoded by the grammar. 
All phenotypes begin as the start non-terminal of the grammar. 
The genotype is read from left to right. The bit string of the 
genotype, grouped into codons (typically 8 or 12 bits) is used to 
select between the different possible expansions of each non-
terminal (again read in a left to right manner) in the current 
phenotype string. If the phenotype string fully expands to 
terminals the individual is valid. If the genotype terminates before 
the phenotype is fully expanded the individual is invalid. 

7.3 Designing the BNF Grammar 
7.3.1 - A quick note about the difference between 
Robots and AdvancedRobots 
The Robocode Robot (which is designed to introduce Robocode 
to beginner tank designers) codes all movement and turning 
commands as blocking actions. That is, if part of the code tells the 
tank to move forward 10 units, the next line of that section of 
code will only be executed once the move has been carried out. 
This means that a Robocode Robot (as distinct from an 
AdvancedRobot) can’t be instructed to turn and move at the same 
time in the one sequence of instructions (although the turn 
command could be executed in one of the event handlers and the 
move command in the main run() loop). An AdvancedRobot on 
the other hand has access to a group of “set” commands which 
can “set” the tank to move forward, turn etc and these are then 
executed when a blocking command is executed (or the execute() 
command is issued). As discussed later (section 8.1) attempts at 
evolving a Robot proved unsuccessful, so the AdvancedRobot 
was used. 

7.3.2 - Commands to be included in the grammar 
 The following commands that could be sent to a Robocode tank 
were identified as being relevant: 

 

Movement 
Related 

Turn Related  Miscellaneous 

setAhead(float) 

setback (float) 

Stop() 

Resume() 

setTurnRight(float) 

setTurnLeft(float) 

setTurnGunLeft(float) 

setTurnGunRight(float) 

setTurnRadarRight(float) 

setTurnRaderLeft(float) 

 

setAdjustRadarFor
RobotTurn(bool) 

setAdjustRadarFor
GunTurn(bool) 

setAdjustRadarFor
RobotTurn(bool) 

Fire(float) 

execute() 

The first three commands in the miscellaneous column control 
whether the radar/gun turn with or independently of the gun/tank. 

7.3.3 - Functions  
There are a number of functions which are globally valid and 
which return relevant information: getX() and getY(), which 
return a tank’s position, getGunHeading(), getGunHeat(), 
getRadarHeading(), getBattleFieldWidth(), getBattleFieldHeight() 
and getEnergy() – all of which should be self explanatory. 

Each of the events (passed to the OnEvent handlers) contain 
information relevant to that event. 

7.3.4 - Additional Data Structures 
Finally in an attempt to make the tanks as flexible as possible, 
they were given access to simple stacks, two global stacks and 
two stacks local to each of the event handlers. Although the 
standard Java stack structure was used, it was wrapped in 
functions to make it more “friendly” to evolution, i.e. if an 
attempt was made to peek at or pop from an empty stack, 0 was 
returned rather than an error. The impact of this change is include 
as “Actions” in the grammar (see section 7.3.5) the ability to push 
a value on to the relevant stacks and as a “globalVariable” the 
appropriate pop and peek function for the global stacks and as a  
“localVariable” the appropriate pop and peek functions from the 
relevant stacks. It was also decided to make available the previous 
event (i.e. in each event handler there is a local variable which has 
the value of the event in the previous call). 

7.3.5 Putting it all together 
From the Java code framework contained in section 6 it can be 
seen there are six places (each a “Statement”) where evolved code 
is required namely:  [Initialisation Statements], [Main Loop 
Statements], [onScanned Statements], [onHitByBullet 
Statements], [onHitByRobot Statements] and [onHitByWall 
Statements].   One could write a BNF grammar that can serve to 
expand these statements into Java code. However, since there are 
local variables unique to each of these Statements, each Statement 
will in effect have to be treated as a separate type. This has two 
relevant effects: 1) the BNF grammar is very long (since it has to 
have near identical rules for each of the six Statements listed 
above); and 2) because the non-terminals used to expand each of 
the Statements will be different it will prevent the GP style 
crossover of GE [5] from swapping expressions between event 
handlers. 

1445



To illustrate: 

We might write the following BNF grammar extract: 

Statements:-  Statement; Statements | 

 Statement; 

Statement:- if ( Bool ) { Statements }  

 else { Statements } | 

 Action 

Action:-  turnAction |  

 moveAction |  

 setAction |  

 fireAction |… 

… 

turnAction:-  setTurnRight( Variable ) | 

 setTurnLeft( Variable ) | … 

Variable:-  CompoundVariable |  

 globalVariable |  

 localVariable 

CompoundVariable:- ( Variable + Variable ) |  

 (Variable – Variable) | …. 

globalVariable:-  getX() |  

 getY() |  

 getHeading() …. 

localVariable:-  ? 

So as can be seen the possible expansions of localVariable are 
different depending on which type of Statement we are 
expanding. For instance in the onScanRobot Statements, 
localVariable might include e.getEnergy() – which returns the 
energy of the scanned tank, but in the onhitWall Statements, the 
event has no e.getEnergy() but only has e.getBearing() – the 
bearing of the wall which was hit. One solution is to have separate 
expansions for Statements for each of the five different parts of 
the code e.g. for the Main Loop: 

MLStatements:- MLStatement; MLStatements | 

 MLStatement; 

MLStatement:- if ( Bool ) { MLStatements }  

 else { MLStatements } | 

 MLAction 

MLAction:-    MLturnAction | MLmoveAction… 

And so on until we get to  

MLLocalVariable:- [local variables for the Main Loop] 

This is repeated for each on the OnScannedStatements, the 
OnHitByBulletStatemets etc. 
Alternatively we can provide some means of allowing the 
grammar to determine which local variables the particular 
derivation of Statements should use. A Christiansen grammar 
such as that in [15] would be up to this task, but is probably more 
complex than required. A simpler and quite neat solution, using a 
similar methodology to Dynamically Defined Functions [6], was 
used. Key words were embedded in the grammar. By encoding, 
say, HITBYBULLETCODE when the local variables relating to 
the onHitByBullet event are available, it is a simple matter of 
allowing the genotype to decode the correct localVariables. What 

is more by allowing each part of the grammar to share the same 
non-terminals, GP-style typed sub-tree crossover is enabled across 
each of the different types of statements. 
With GE a single genome can be used to decode the grammar 
resulting in a phenotype which is a valid java program containing 
each of the event handlers. By virtue of the key statements the 
expansion of “localVariables” is mapped to the correct set of local 
variables for each particular part of the program. 

7.4 The Environment 
Spatial Co-Evolution in Age Layered Planes (SCALP) [7] was 
used as the evolutionary environment to foster co-evolution. 
SCALP is a blend of the spatially separated co-evolutionary 
framework described in such works as [8] and [13] and the age-
layering concepts introduced by Hornby [10]. A full description 
of the SCALP methodology is beyond the scope of this paper, but 
the following is a brief summary. A SCALP layer consists of a 
grid like layer of nodes – which wrap around, each node 
connected to its 4 orthogonal and 4 diagonal neighbours. See 
Figure 1. 

 

Figure 1 – A SCALP Layer 

A creature (a host) exists on each node together with a parasite4. 
Each generation and for each node the host in that node competes 
with the parasite in the node and the parasites in the 8 surrounding 
nodes.  

Hosts and parasites receive different scores. As explained in [2] 
this differentiation between the scores of parasites and hosts has at 
its foundation the dinner/life principle of [1]. The idea behind this 
principle is that for a predator it is less important that there exists 
prey which can outrun it – provided there is some prey it can 
catch. On the other hand for prey the fact that it can outrun some 
predators is of scant interest if it comes across the predator it can’t 
outrun. In fact for many prey it is less important that it can outrun 
predators than it is that it can outrun the other prey. 

The implementation of this in a SCALP environment means a 
host is given a score related to the sum of its battles with the 

                                                                 
4 The terms hosts and parasite are as used in [13] and [2] and are kept here 

for the sake of consistency, although in the case of this paper, we 
perhaps more intuitively, have two teams, say team “A” and team “B” 
and the host is a member of team “A” while the parasite is a member of 
team “B”. 
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parasites, whereas a parasite is given a score solely related to its 
worst battle. As I discuss in section 8 I believe that this different 
method of scoring leads to the different strategies that emerged 
from the hosts and the parasites.  

After each node has been evaluated the host and parasite allowed 
to occupy a particular node in the next generation is determined 
stochastically based on the scores of the surrounding hosts or 
parasites, as appropriate. 40% of the nodes are occupied not by 
the selected host but with a child of the host (the other parent is 
selected randomly from the surrounding nodes). Similarly with 
the parasites. Finally in 20% of the nodes the occupying host is 
mutated and in 10% of the nodes the occupying parasite is 
mutated. 

The layered part of SCALP means that there are a number of 
these layers of nodes, stacked above each other. For each layer 
the hosts are tested against not only the parasites in their own 
node and the eight surrounding nodes but (other than in the case 
of the bottom layer) also with the node directly below them and 
the eight nodes surrounding that node. Candidates selected to stay 
in a node or to be used as parents for the child that will occupy the 
node are chosen from this extended neighbourhood. This allows 
successful hosts on lower layers to move up layers. Similarly with 
the parasites. Each layer has a genetic age limit, which increases 
as we move through the layers. The genetic age of a host/parasite 
is the number of generations that host or parasite has survived. A 
child inherits the genetic age of its oldest parent, incremented by 
one. If a host or parasite exceeds the maximum genetic age of a 
particular layer it is eliminated and replaced with the host (or 
parasite) in the node directly below it (or in the case of the bottom 
layer a freshly randomised individual). The idea behind this is that 
the lower levels serve as a “nursery” allowing code which has not 
evolved much to compete against other less evolved code and 
begin evolving towards its own “basin of attraction” without 
being overwhelmed by the more evolved code in higher layers 
(which is potentially trapped in a local maxima).  The creation of 
random individuals in the lowest layer serves to continually 
introduce new genetic material into the system. 

For the co-evolutionary part of this experiment both the hosts and 
the parasites were evolved. They were kept apart in the sense that 
there are two different populations which do not “inter-breed” 
(even though – since they both used the same grammar – they 
could). Where the system was used to try to evolve tanks to beat 
various human coded opponents, the parasites were those human 
coded tanks. Each of the different possible tanks was numbered, 
the parasite just being a number corresponding to one of the 
opponents. There was no “breeding” of parasites but mutation was 
possible, with the number (and therefore the tank) changing. More 
details of the tanks used and the way this was integrated with the 
layering of SCALP is discussed later (section 9). 

7.5 Scoring 
The Robocode system scores each participant in a fight. The score 
is based on a number of factors, there are 1) survivability points if 
the tank survives a round (i.e. wins); 2) points for bullet damage 
which related to the damage done by the tank’s bullets; and 3) 
points for ramming which are awarded at twice the rate of points 
for similar damage done by a tank’s bullets. 

Although it appeared to make good sense just to use the points 
scored in each battle as the fitness score for a particular 

combatant, one side-effect of this was noticed when the system 
was run with human coded opponents. Because a tank gains 
energy when it hits an opponent – if you allow your opponent 
tank to hit you sometimes (but still ultimately win the round) then 
you will need to do more damage to it than if your opponent never 
hit you. This means that a tank which dodges all incoming fire 
and kills its opponent in short order will score fewer raw points 
than a tank which allows itself to be hit a few times and takes a 
long time to kill its opponent. With the human coded opponents it 
became apparent because the weaker human coded tanks were 
getting better scores than the human tanks that annihilated the 
hosts. Although this “oddity” of the scoring system may well 
actually be an interesting dynamic, for the purposes of the paper – 
in the second part (where tanks are evolved against human coded 
tanks) the percentage of the total points scored was used as the 
fitness function. Thus a tank which keeps its opponents score to a 
minimum (while killing it) will get a far higher percentage of the 
points scored that round than a tank that allows itself to be hit. 

7.6 Setup 
The experiments were run on a 15x16 SCALP grid (240 nodes), 
consisting of (up to) 4 Layers. The layer lives (the maximum 
genetic age allowed in the layer) were: [40,70,130,258]. 
Initialisation of individuals (hosts and, for co-evolution, parasites) 
was via Luke’s PTC2 initialisation [12]. Each individual was 
given a unique name. Each generation a sub-directory was created 
and the phenotype of each host (and for co-evolution each 
parasite) was constructed and saved as a .java file in that sub-
directory. The .java files were then batch compiled and the .class 
files created (this only took a second or two). In order to assess 
the fitness each of the requisite battles was scheduled (nine battles 
for each node on the first layer, 27 per node for each subsequent 
layer5) and farmed off to helper applications that would run the 
Robocode battle as a separate process and return the result. On an 
eight-core MacPro running six helper applications approximately 
100 battles could be processed each minute (this slows down as 
the battles become more intense). A battle consisted of a number 
of rounds of a Robocode competition. Each round the robots are 
placed in a random place in the arena with a random orientation. 
Placement can give a large advantage to one of the opponents. For 
co-evolution each “battle” consisted of 5 rounds. Where the 
opponents were human-coded robots, in order to minimise the 
stochastic nature of battles, the battles consisted of 15 rounds. 

8. Co-Evolution results. 
8.1 Using the “Robot” Class 
The initial experimental setup used the Robocode “Robot”, rather 
than the “AdvancedRobot” – see section 7.3.1 for a brief 
discussion of the differences. With the “Robot” attempts at co-
evolution were not particularly successful, but for different 
reasons than those experienced by [3]. Early on both the hosts and 
the parasites developed a strategy of spinning in place and firing 
every time the onScannedRobot() event handler was called. 
Although there were variations in the strength of the bullet, this 
appeared to be a very difficult local maximum for the system to 
escape from. Because of the blocking nature of movement calls 
any attempt to move during the main loop slowed the spin and 

                                                                 
5 Being the host (layer1) v 9 parasites (layer1), host (layer1) v 9 parasites 

(layer0) and host (layer0) v 9 parasites(layer1) 
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thus the frequency with which the onScannedRobot event handler 
was called and any movement in that event handler delayed the 
firing rate. It was possible for movement to occur in other event 
handlers and indeed some individuals who moved when 
onHitByBullet was called were observed, but overall the results 
were not satisfactory, with limited variation and no different 
strategies observed even over 100 generations. Although SCALP 
(and ALPS) is designed to obviate the need for multiple runs, five 
runs were carried out, with similar results. 

An analysis of the human coded robots showed that many of the 
competitive robots and even the more interesting sample robots 
(such as spinBot which moves in circles and fires when it sees an 
opponent) all used the AdvancedRobot class.  

8.2 Using the “Advanced Robot” class 
Moving the system to use the “AdvancedRobot” class proved to 
be successful. Within a few generations robots emerged that 
moved and fired at each other. Within 20 or 30 generations 
different behaviour between hosts and parasites could be 
observed, presumably directly as a result of their different fitness 
functions (see section 7.5). The hosts very aggressively tracked 
and charged at their opponents (in a similar way to the sample 
human coded robot “ramfire” – see table 1), firing as they went, 
whereas the parasites tended to rely on moving in circles and 
firing at their opponents (in a similar way to the sample robot 
“spinBot” – see table 1). By about 60 generations, the parasites 
had developed a tactic of moving backwards, in a circular motion, 
away from the on coming hosts and firing at their opponent as it 
charged them. This is the same tactic that many human coded 
robots use to defeat robots using the ramFire strategy (the strategy 
works because the retreating robot can be pretty sure where the 
attacking robot will be, but the attacking robot has to guess the 
direction the fleeing robot will turn in). After about generation 
195 the hosts abandoned their ramfire strategy and had developed 
a circular movement, with strafing shot strategy. By generation 
245 (when the simulation was stopped) the hosts and parasites 
were involved in some quite complex looking battles, although 
from a qualitative perspective the behaviour of the robots still 
appears less “purposeful” than human coded robots. One 
interesting behaviour that was noted is that when the evolved 
robots (the hosts in this case) were just about to run out of energy 
they slowed their turn and fired off one last shot directly at the 
opponent – allowing them to win if their opponent was disabled – 
an all or nothing approach. 

After the run was complete, in an attempt to achieve some 
empirical data as to how well the co-evolution was working, the 
individuals in each generation were made to compete in a 
knockout competition and the top 24 individuals (the 
“Generational Winners”) were retained. This was the first time 
that hosts had competed directly against hosts and parasites 
against parasites. It was noted that in each generation the 
Generational Winners were a mixture of parasites and hosts, the 
number of parasites or hosts in a particular set of Generational 
Winners varied depending on the generation, presumably 
reflecting whether the parasites or hosts were stronger in that 
particular generation. The Generational Winners were allowed to 
compete against each other in a knockout competition. This was 
carried out five times. Although the top 10 individuals in the 
tournament varied each time the tournament was run (with closely 
matched robots, such is the random nature of Robocode) in all 

cases the top 10 consisted only of parasites. In each of the 5 
knockout tournaments the robots which made up the top 10 robots 
were dominated by parasites from the last 15 generations (the 
youngest parasite to make any of the top 10 lists was from 
generation 191). This provides evidence that the robot populations 
(both the hosts and parasites) were continuing to evolve 
throughout the process.  

8.3 Assessing against the Sample robots 
These top 24 individuals from each generation were then assessed 
against each of the sample robots listed in table 1. 

TABLE 1 – DESCRIPTION OF ROBOCODE SAMPLE ROBOTS 

Robot Behaviour 

Crazy Moves randomly 

RamFire Attempts to ram and fire on an opponent. 

SpinBot Moves in circles. 

Tracker Tracks, moves close then fires 

TrackFire Sit still firing at an opponent. 

VelociRobot Varies speed. 

Walls Moves along the walls (which makes it quite 
difficult to hit). 

Although none of the co-evolved robots had seen these sample 
robots before, they performed well against them. Unlike the 
tournament situation (where the co-evolved robots competed with 
each other), there was a mixture of hosts and parasites in the 
robots that preformed best against the sample robots. Using the 
percentage of points scored in a battle (so 50% indicates matched 
opponents), then, of the robots tested, the robot that had the 
highest average of scores across all categories was a host in 
generation 243. 

TABLE 2 – SAMPLE CO-EVOLVED ROBOTS (AT VARIOUS GENERATIONS) .V. 
ROBOCODE SAMPLE ROBOTS 

Opponent Gen 243(H) Gen 244(P) Gen 193(H) 

 Crazy 86% 88% 78% 

 RamFire 74% 80% 52% 

 Spin Bot 82% 84% 75% 

 Tracker 89% 85% 54% 

 TrackFire 78% 77% 40% 

 VelociRobot 79% 81% 69% 

 Walls 38% 26% 58% 

Walls did appear to give the co-evolved robots some difficulty – 
presumably because they had not faced that type of movement 
before. Earlier generation hosts (which exhibit more dramatic 
chase and kill behaviour) could defeat Walls; they trapped it in a 
corner and rammed it to death. However, as can be seen from 
table 2, the behaviour which allowed them to defeat walls led to 
them losing to Trackfire (a stationary robot) because their chasing 
behaviour meant that they did not dodge bullets on their way and 
lost out on the shoot-out with Trackfire. To defeat Trackfire a 
robot needs to dodge at least some of its bullets. 
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8.4 Assessing against competitive human coded 
robots 
As previously mentioned there are many Robocode tournaments and 
a lot of the robots that compete in the tournaments are available for 
download. A selection of robots were downloaded (see table 3), and 
the co-evolved robots where assessed against them. In selecting the 
robots for download it was decided to avoid adaptive robots (that is 
those that adapted to their opponents behaviour) since it was 
difficult to enable a repeatable result against such robots (it was 
likely they would perform better as the number of rounds 
increased). 

TABLE 3 – DESCRIPTION OF HUMAN CODED ROBOCODE ROBOTS USED 

Robot Comments and ranking6 
Guess Factor Uses a predictive gun – current ranking about 783 

in the robot leagues7 
Peryton A robot that is marked as “exemplary” and was 

competitive in the earlier days of Robocode, but is 
not so competitive now. 

Squigbot Like Pertyon, very competitive once, not so much 
now. 

Sparrow A micro bot (limited size) ranked 434th 
Duelist Ranked 483rd. 
NanoLauLectrick
TheCannibal 

Ranked 367th 

Tron 2.0.2 Ranked about 148th 
Aspid Ranked about 167th 
Cigaret A mini robot (limited size), ranked 107th 

Table 4 shows some of the results for the better individuals against 
these hand coded robots. As can be seen ones that do well against 
one type of robot, might not do as well as against some of the 
others. Robots did evolve (through co-evolution alone) which could 
beat two of the easier ones and some evolved that were competitive 
against robots that were ranked in the high 400s. 

TABLE 4 – RESULTS OF CO-EVOLVED ROBOTS .V. SELECTED ROBOTS 

Generation and 
(H)ost or 
(P)arasite 

214 
(P) 

243 
(P) 

200 
(H) 

195 
(H) 

Best score 
by any 
robot 

GuessFactor 53% 41% 21% 24% 60% 

Peryton 54% 59% 22% 26% 59% 

SquigBot 24% 20% 50% 43% 50% 

Sparrow 30% 35% 9% 9% 43% 

Duelist 20% 29% 6% 6% 44% 

Cannibal 15% 17% 35% 45% 45% 

Tron 9% 7% 22% 25% 25% 

Aspid 11% 8% 16% 20% 20% 

Cigaret  12% 8% 15% 12% 16% 

Significantly the co-evolution results are better than any previous 
result reported where co-evolution has been attempted. 

                                                                 
6http://darkcanuck.net/rumble/Rankings?version=1&game=roboru
mble as at 14 January 2011 
7 http://robowiki.net/wiki/GuessFactor_Targeting_Tutorial 

9. Evolution against human coded robots 
One concern was that the grammar chosen might limit the robots 
that could be evolved. For instance it was noted that the human 
coded robots tended to make extensive use of trigonometric 
functions (to calculate angles of fire) and random number generation 
(for non-predictable movement). Although, in theory, 
approximations to the trigonometric functions might be evolved – 
this could potentially place undue demands on the evolution of 
human competitive robots. 

It was decided to try and see if direct evolution against the human 
coded robots would yield different results from the co-evolution – it 
was hoped to evolve robots that were competitive with the more 
advanced robots coded by humans. 

Since the principle behind SCALP is that the earlier layers are 
“nursery” layers, it was decided to implement a system whereby the 
parasites (now hand coded robots) increased in difficulty as the 
layers increased. This would help to prevent a flat fitness function 
(i.e. all the hosts being beaten by the better human coded robots and 
scoring very few points). The first layer was reserved for the sample 
robots and GuessFactor. After that an attempt was made to select 
robots of increasing sophistication and difficulty. The next layer 
also used Sparrow, Peryton and Squigbot in addition to those 
previously used.. The third layer included Duelist and Cannibal and 
each subsequent layer allowed any of the hand coded robots as 
parasites. One parasite could mutate into any other parasite, subject 
to the layer limits. Initially the first layer was “seeded” with the co-
evolved hosts, although subsequently when the first layer was re-
generated (after generation 40 in the system used) randomly created 
hosts (by PTC2 initialisation [12]) were used.  

TABLE 5 – RESULTS OF INDIVIDUAL EVOLVED ROBOTS  

Opponent  Gen 
440 

Gen 
389 

Gen 
330 

Best score by 
any robot 

Crazy 86% 79% 83% 90% 

RamFire 67% 58% 81% 86% 

Spin Bot 72% 79% 66% 90% 

Tracker 83% 60% 81% 94% 

TrackFire 64% 64% 78% 87% 

VelociRobot 74% 79% 77% 85% 

Walls 65% 52% 25% 77% 

GuessFactor 51% 53% 46% 66% 

Peryton 55% 20% 44% 56% 

SquigBot 28% 41% 35% 48% 

Sparrow 25% 27% 22% 41% 

Duelist 19% 15% 22% 48% 

Cannibal 21% 32% 27% 42% 

Tron 8% 9% 15% 31% 

Aspid 8% 9% 13% 25% 

Cigaret  15% 9% 27% 27% 

 

Interestingly the “seeded” layer was out evolved after about 80 
generations. The entire system was allowed to evolve for 440 
generations. Once again it was noted that robots that performed well 
against some robots tended to perform worse against others. This 
was entirely expected. Encouragingly robots emerged that could 
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defeat every one of the sample robots as well as GuessFactor and 
Peryton on a regular basis emerged. Robots capable of defeating 
Squigbot almost 50% of the time also emerged, but such robots 
tended to perform, relatively, poorly against Pertyton and Walls 
(and often the trackers). This was the same with the co-evolved 
robots. The robots which preformed best against the later robots 
(Tron/Aspid and Cigaret) were only capable of winning about 6 out 
of 30 fights and also had poorer performance against the “easier” 
robots. It appeared that in the time the system was given it was 
finding it hard to find robots that could generalise against the harder 
opponents. Given this is probably the hardest part of the challenge – 
it is not surprising. Table 5 shows some of the better sample robots 
that illustrate the points made above. The first column is one of the 
best robots against the sample robots, Peryton and GuessFactor. The 
second column contains one of the better robots that could achieve a 
decent score against Squigbot while still beating the sample robots. 
The third column shows the best against Cigaret (note how poorly it 
performs against Walls and Peryton) and the final column shows the 
highest score any robot achieved against each opponent (each score 
in this column is from a different robot). By way of comparison 
Peryton scores 20-26% against Aspid and Cigaret, Squigbot about 
30-35%. 

10. Conclusions and Future Work 
The system was able to successfully co-evolve robots of sufficient 
complexity to win battles against unseen human coded robots that 
historically used to top the league but not robots that are currently 
ranked in the top 500 of the league. However, the successful co-
evolution of robots that are able to beat human coded robots that 
were, at one time, leading contenders is very encouraging. This is 
particularly the case as successful co-evolution in this domain does 
not appear to have been previously reported. The predator/prey 
scoring system used with SCALP did appear to lead to different 
strategies being adopted by the two competing populations and it is 
believed helped the successful co-evolution of relatively robust 
strategies (i.e. robots able to compete against unseen opponents). 
Although the co-evolutionary system (unlike the direct evolutionary 
system) did not find a strategy that would beat all the sample robots 
(the unusual movement of “Walls” defeated it) it may just have 
required more time. Of some concern was the fact that even with 
direct evolution against a number of selected human coded robots a 
strategy was not developed that could beat any of the robots used in 
this paper that are in the top 500 of the league. It may be that, once a 
certain sophistication is reached, robots need to be trained against 
specific opponents and not always the ones they are weakest against 
– as that may lead to cycling rather than improvement. It might also 
be the case that the grammar itself was insufficient to allow 
sufficiently complex robots to be evolved; it may be that access to 
random numbers (to allow random movement patterns) and 
trigonometric functions (to allow easier firing calculations) is 
required. One oddity that was noticed is that the Java programs did 
not appear to suffer from bloat. The reason for this is unclear and 
tracking this down might suggest other ways to allow the robots to 
evolve even more complexity. 
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