
Co-Evolving Robocode Tanks
 Robin Harper

Sydney, Australia
rharper2@bigpond.net.au

ABSTRACT
Robocode is a Java based programming platform where robot
tanks, controlled by programs written in Java, compete. In this
paper Grammatical Evolution is used to evolve Java programs to
control a Robocode robot. This paper demonstrates how
Grammatical Evolution together with spatial co-evolution in age
layered planes (SCALP) can harness co-evolution to evolve
relatively complex behaviour, including robots capable of beating
Robocode’s sample robots as well as some more complex human
coded robots. The results of the co-evolution are similar to the
results obtained by direct evolution against a range of human
coded robots. This indicates that co-evolution alone is able to
evolve robots of a similar standard to those evolved against
graded human coded robots.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
program synthesis

General Terms: Algorithms, Design, Experimentation.

Keywords: Grammatical Evolution, Genetic Programming,
Robocode, Co-Evolution, SCALP.

1. What is Robocode
Robocode is a Java based programming game platform developed
by IBM Alphaworks1, where the aim is to program a robot battle
tank to fight (and beat) other robot battle tanks. The programs
controlling the tanks are written in Java and are executed as
threads in the main program.

During the game the tank must navigate around its environment,
avoiding the walls, bullets fired by the other tanks and (unless it
has chosen to ram a tank) the other tanks. At the same time it
must locate the other tank, anticipate its likely position (since the
bullets take time to move) and try to hit it. Programs
implementing simple strategies such as wall following or moving
in circles while firing at an opponent are provided as sample
programs to help the novice Robocode programmer get started. In
addition there are multiple resources on the internet2 illustrating
advanced strategies such as pattern matching, gravity movement

1 http://robocode.sourceforge.net/
2 For example, http://robowiki.net/wiki/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

and wave surfing, to name a few. These allow robotic tanks of
high complexity to be built. There is a Robocode league, where
robots compete against each other with the view of taking league
table honours.

2. Aim of this paper
Although the writing of the Java programs to control such robots
is in itself an interesting task, the focus of this paper is to test the
ability to evolve the controlling Java programs. That is - using
genetic programming principles - is it possible to evolve a Java
program to compete successfully against hand-coded robot tanks?
In particular it looks at the ability to successfully harness co-
evolution to derive interesting strategies with the view ultimately
to evolving a tank that is competitive with a human coded tank.
The current sophistication of the better human coded tanks is such
that the evolved tanks require a high level of complexity if they
are to be competitive. Unless the context makes it otherwise clear
a reference to a Robocode tank or robot or tank is a reference to
the Java program controlling the simulated Robocode tank.

3. Structure of this paper
This paper begins with a brief overview of the problem area (i.e.
what is Robocode), discusses the form of the evolution attempted
and the reasoning behind the design decisions taken. It then
discusses the environment in which the evolution is to take place,
that is what opponents are selected, how competitive co-evolution
is attempted and how evolution versus human written Robocode
tanks is attempted and finally it presents the results.

4. Brief Overview of a Robocode Tank
A tank consists of the tank body, a turret containing the gun,
which can rotate with or separately from the body, and a scanner
used to detect enemies that can rotate with or separately from the
gun. A tank can move forward and/or turn. While turning its
maximum forward speed is reduced. Each tank starts with a
certain amount of energy. It loses energy each time it crashes
(either into a tank or a wall) and each time it is hit (either by a
bullet or another tank). It gains energy if one of its bullets hits an
opposing tank. When it fires its gun, it can vary the amount of
energy used to fire the bullet, the more energy put into the bullet
the slower it travels but the more damage it does and the higher
the energy gain to the firing tank (if it hits). Guns also need to
cool down before they can be fired, the higher the energy of the
bullet – the longer the gun takes to cool. Tanks can detect other
tanks, their energy level, speed and direction. They cannot detect
bullets nor can they directly detect the fact that a bullet has been
fired, although the energy loss in an opposing tank is noticeable
and provides an indication that the tank may have fired (or
suffered an energy loss by other means). The structure of a
Robocode tank program is explored later. The tanks fight in an
empty arena of a fixed size, surrounded by walls. Typically the
start position and orientation of the tanks is randomised for each
round. A typical battle consists of a number of rounds. Although

1443

there are various leagues, including for battles involving multiple
tanks in the same battleground, this paper only looks at one versus
one battles. The scoring system is discussed in section 7.5.

5. Previous Work
In [3] Eisenstein used a form of genetic evolution, based on a
fixed size genome that encoded a table version of Leslie
Kaelling’s REX Language. Effectively the genome encodes a
number of computation elements, which form the rows of the
table. Each element can take as inputs either a value from the
robot’s sensors or from the output of other computation elements
(referenced by their row in the table). Eisenstein’s work had some
success in evolving robots to win against the sample robots
provided. However, he experienced difficulty in getting robots to
actually fire their gun. Eisenstein hypothesises that this is because
a miss costs the robot energy and therefore, early in evolution
when a miss is likely, not firing is a good starting strategy.
Principally because of this difficulty in getting randomised robots
to fire, his attempt at using co-evolution to commence an “arms-
race” was not successful. However, using a more traditional
generational approach he was, amongst other things, able to
evolve robots that could each beat the starter robot opponent they
were evolved to compete against. He was less successful in his
attempts to evolve a robot that could beat all of the five different
starter robots he used. His best-reported robot was able to beat
four out of these five robots, the robot it was not able to beat
being the “tracker” robot3.

In the same year another study was published relating to the use
of Machine Learning in a Robocode robot [4]. This study looked
at splitting up the required functions of a Robocode tank (i.e.
movement, target acquisition, radar control and gun control) on
the basis of a subsumption architecture. Reinforcement learning
was used for target acquisition (unlike this paper, the robots were
tested in multi-tank fights) a neural network was used to control
the gun and, relevantly, genetic programming was used for the
movement and radar control aspects of the robot. The module
resolving conflicts between layers as well as wall avoiding,
randomisation of movement and attempts at bullet dodging were
all hand-coded. Although the robot itself was quite successful, the
genetic programming part of the robot failed to improve over time
and did little to help the over all competitiveness of the robot.

[16] used a more canonical Genetic Programming (GP) style
system [11] to evolve a robot for the category of HaikuBots.
HaikuBots are Robocode robots that are limited to four lines of
code (although there are no length limits imposed on the lines).
GP was used to evolve numerical expressions that were given as
arguments to the four lines of code written in the shell program.
Each line of code controlled one of the main actuators; namely the
gun/radar, forward/backward movement, turn rate and the
scanner. Firing the gun was controlled by “side-effects” in the
numerical evaluation. Like Eisenstein it was noted that if only one
adversary was included in the evolutionary run specialised
strategies were evolved which did not generalise well to different
opponents. However, where multiple adversaries were included in
the runs this did lead to better generalisation and robot tanks able
to fight previously unseen opponents. One of the bots took third
place in the HaikuBot league in 2004. Limited success was

3 The tracker robot is one of the starter robots provided with Robocode. It

tracks its opponent, moving close and firing when possible.

reported with their attempts to use co-evolution to evolve tanks.
Their belief as to the reasons for this is that as early generations
evolved for idleness (conserving energy by not firing or moving
and hitting walls) the genes responsible for movement and gun
firing were lost – hampering the later evolution of more complex
strategies.

[15] compares the use of NEAT and XCS to evolve controllers to
control the scanning and targeting of Robocode tanks and [9] used
evolutionary strategies to combine various hand programmed
behaviours. Neither of the last two papers explored the use of co-
evolution

6. Structure of a Robocode tank program
The program to control a Robocode tank (a robot) is usually
written in Java. It is executed as a separate thread that is activated
from the main Robocode program. Each thread has a certain
amount of time per “tick” of the competition to send its command
instructions (i.e. what actuators it wants to activate of the tank)
and these are then executed simultaneously. If a robot thread does
not respond in time then it misses its turn. If no response is
received for a period of time (e.g. the thread is stuck in a loop) the
tank has its energy reduced to zero and is eliminated from the
round.

The main run function of a Robocode tank thread should not exit.
Accordingly, after any initialisation, it typically consists of an
endless loop containing whatever instructions are relevant. As
well as the main run() thread each robot receives event
notifications. Relevant to this paper the following events can be
received onScannedRobot, which is called when the robot scans
an enemy robot (i.e. the scanner is pointing at an enemy robot),
onHitRobot which is called if the robot is hit (or hits) an enemy
tank, onHitByBullet which is called if the robot is hit by a bullet
and onHitWall which is called when the robot hits a wall. Each of
these event notifications is passed a data structure that contains
information relevant to the notification e.g. OnScannedRobot is
called with a ScannedRobotEvent parameter, which contains the
velocity, heading and energy levels of the scanned tank.

The structure of typical robot therefore looks like this

public void run()
 {
 [Initialisation statements];
 while (true)
 [Main Loop statements];
 }
 }
public void onScannedRobot(ScannedRobotEvent e)
 {
 [onScanned statements;]
 }
public void onHitByBullet(HitByBulletEvent e)
 {
 [onHitByBullet statements;]
 }
public void onHitRobot(HitRobotEvent e)
 {
 [onHitRobot statements];
 }
public void onHitWall(HitWallEvent e)
 {
 [onHitWall statements;]
 }

1444

A very simple tank might therefore use the main thread to turn its
gun/radar and the onScannedRobot event to fire its gun. Given the
travel time of bullets such a tank is likely to hit a stationary tank
but miss a moving one. Obviously human coded robots have
additional functions and, often, additional classes to carry out
such things as pattern matching, avoidance, strategies to aim
ahead of a moving robot etc – but the structure of human designed
programs will have all of the above elements.

7. Main elements of the evolutionary design
7.1 The grammar
In order to evolve a the Java program controlling a Robocode tank
the process can be simplified slightly by taking the overall
structure of the program outlined in section 6 as a given and focus
on evolving the statements which appear in square brackets of that
structure. While canonical Genetic Programming (GP) as
introduced by Koza [11] might be the best known method of
evolving programs a newer form of evolving programs, namely
Grammatical Evolution (GE) [14], which uses a grammar based
on a Backus Naur Form (BNF) grammar is, arguably, better suited
to evolving programs that comply with the requirements of a fully
fledged Java program.

7.2 Grammatical Evolution
GE is a form of GP that separates the underlying representation of
each candidate solution (the genotype) from the representation
(the phenotype). Associated with each GE problem is a BNF
grammar that dictates the eventual form of all candidate solutions.
The genotype (which is a bit string) is decoded by the grammar.
All phenotypes begin as the start non-terminal of the grammar.
The genotype is read from left to right. The bit string of the
genotype, grouped into codons (typically 8 or 12 bits) is used to
select between the different possible expansions of each non-
terminal (again read in a left to right manner) in the current
phenotype string. If the phenotype string fully expands to
terminals the individual is valid. If the genotype terminates before
the phenotype is fully expanded the individual is invalid.

7.3 Designing the BNF Grammar
7.3.1 - A quick note about the difference between
Robots and AdvancedRobots
The Robocode Robot (which is designed to introduce Robocode
to beginner tank designers) codes all movement and turning
commands as blocking actions. That is, if part of the code tells the
tank to move forward 10 units, the next line of that section of
code will only be executed once the move has been carried out.
This means that a Robocode Robot (as distinct from an
AdvancedRobot) can’t be instructed to turn and move at the same
time in the one sequence of instructions (although the turn
command could be executed in one of the event handlers and the
move command in the main run() loop). An AdvancedRobot on
the other hand has access to a group of “set” commands which
can “set” the tank to move forward, turn etc and these are then
executed when a blocking command is executed (or the execute()
command is issued). As discussed later (section 8.1) attempts at
evolving a Robot proved unsuccessful, so the AdvancedRobot
was used.

7.3.2 - Commands to be included in the grammar
 The following commands that could be sent to a Robocode tank
were identified as being relevant:

Movement
Related

Turn Related Miscellaneous

setAhead(float)

setback (float)

Stop()

Resume()

setTurnRight(float)

setTurnLeft(float)

setTurnGunLeft(float)

setTurnGunRight(float)

setTurnRadarRight(float)

setTurnRaderLeft(float)

setAdjustRadarFor
RobotTurn(bool)

setAdjustRadarFor
GunTurn(bool)

setAdjustRadarFor
RobotTurn(bool)

Fire(float)

execute()

The first three commands in the miscellaneous column control
whether the radar/gun turn with or independently of the gun/tank.

7.3.3 - Functions
There are a number of functions which are globally valid and
which return relevant information: getX() and getY(), which
return a tank’s position, getGunHeading(), getGunHeat(),
getRadarHeading(), getBattleFieldWidth(), getBattleFieldHeight()
and getEnergy() – all of which should be self explanatory.

Each of the events (passed to the OnEvent handlers) contain
information relevant to that event.

7.3.4 - Additional Data Structures
Finally in an attempt to make the tanks as flexible as possible,
they were given access to simple stacks, two global stacks and
two stacks local to each of the event handlers. Although the
standard Java stack structure was used, it was wrapped in
functions to make it more “friendly” to evolution, i.e. if an
attempt was made to peek at or pop from an empty stack, 0 was
returned rather than an error. The impact of this change is include
as “Actions” in the grammar (see section 7.3.5) the ability to push
a value on to the relevant stacks and as a “globalVariable” the
appropriate pop and peek function for the global stacks and as a
“localVariable” the appropriate pop and peek functions from the
relevant stacks. It was also decided to make available the previous
event (i.e. in each event handler there is a local variable which has
the value of the event in the previous call).

7.3.5 Putting it all together
From the Java code framework contained in section 6 it can be
seen there are six places (each a “Statement”) where evolved code
is required namely: [Initialisation Statements], [Main Loop
Statements], [onScanned Statements], [onHitByBullet
Statements], [onHitByRobot Statements] and [onHitByWall
Statements]. One could write a BNF grammar that can serve to
expand these statements into Java code. However, since there are
local variables unique to each of these Statements, each Statement
will in effect have to be treated as a separate type. This has two
relevant effects: 1) the BNF grammar is very long (since it has to
have near identical rules for each of the six Statements listed
above); and 2) because the non-terminals used to expand each of
the Statements will be different it will prevent the GP style
crossover of GE [5] from swapping expressions between event
handlers.

1445

To illustrate:

We might write the following BNF grammar extract:

Statements:- Statement; Statements |

 Statement;

Statement:- if (Bool) { Statements }

 else { Statements } |

 Action

Action:- turnAction |

 moveAction |

 setAction |

 fireAction |…

…

turnAction:- setTurnRight(Variable) |

 setTurnLeft(Variable) | …

Variable:- CompoundVariable |

 globalVariable |

 localVariable

CompoundVariable:- (Variable + Variable) |

 (Variable – Variable) | ….

globalVariable:- getX() |

 getY() |

 getHeading() ….

localVariable:- ?

So as can be seen the possible expansions of localVariable are
different depending on which type of Statement we are
expanding. For instance in the onScanRobot Statements,
localVariable might include e.getEnergy() – which returns the
energy of the scanned tank, but in the onhitWall Statements, the
event has no e.getEnergy() but only has e.getBearing() – the
bearing of the wall which was hit. One solution is to have separate
expansions for Statements for each of the five different parts of
the code e.g. for the Main Loop:

MLStatements:- MLStatement; MLStatements |

 MLStatement;

MLStatement:- if (Bool) { MLStatements }

 else { MLStatements } |

 MLAction

MLAction:- MLturnAction | MLmoveAction…

And so on until we get to

MLLocalVariable:- [local variables for the Main Loop]

This is repeated for each on the OnScannedStatements, the
OnHitByBulletStatemets etc.
Alternatively we can provide some means of allowing the
grammar to determine which local variables the particular
derivation of Statements should use. A Christiansen grammar
such as that in [15] would be up to this task, but is probably more
complex than required. A simpler and quite neat solution, using a
similar methodology to Dynamically Defined Functions [6], was
used. Key words were embedded in the grammar. By encoding,
say, HITBYBULLETCODE when the local variables relating to
the onHitByBullet event are available, it is a simple matter of
allowing the genotype to decode the correct localVariables. What

is more by allowing each part of the grammar to share the same
non-terminals, GP-style typed sub-tree crossover is enabled across
each of the different types of statements.
With GE a single genome can be used to decode the grammar
resulting in a phenotype which is a valid java program containing
each of the event handlers. By virtue of the key statements the
expansion of “localVariables” is mapped to the correct set of local
variables for each particular part of the program.

7.4 The Environment
Spatial Co-Evolution in Age Layered Planes (SCALP) [7] was
used as the evolutionary environment to foster co-evolution.
SCALP is a blend of the spatially separated co-evolutionary
framework described in such works as [8] and [13] and the age-
layering concepts introduced by Hornby [10]. A full description
of the SCALP methodology is beyond the scope of this paper, but
the following is a brief summary. A SCALP layer consists of a
grid like layer of nodes – which wrap around, each node
connected to its 4 orthogonal and 4 diagonal neighbours. See
Figure 1.

Figure 1 – A SCALP Layer

A creature (a host) exists on each node together with a parasite4.
Each generation and for each node the host in that node competes
with the parasite in the node and the parasites in the 8 surrounding
nodes.

Hosts and parasites receive different scores. As explained in [2]
this differentiation between the scores of parasites and hosts has at
its foundation the dinner/life principle of [1]. The idea behind this
principle is that for a predator it is less important that there exists
prey which can outrun it – provided there is some prey it can
catch. On the other hand for prey the fact that it can outrun some
predators is of scant interest if it comes across the predator it can’t
outrun. In fact for many prey it is less important that it can outrun
predators than it is that it can outrun the other prey.

The implementation of this in a SCALP environment means a
host is given a score related to the sum of its battles with the

4 The terms hosts and parasite are as used in [13] and [2] and are kept here

for the sake of consistency, although in the case of this paper, we
perhaps more intuitively, have two teams, say team “A” and team “B”
and the host is a member of team “A” while the parasite is a member of
team “B”.

1446

parasites, whereas a parasite is given a score solely related to its
worst battle. As I discuss in section 8 I believe that this different
method of scoring leads to the different strategies that emerged
from the hosts and the parasites.

After each node has been evaluated the host and parasite allowed
to occupy a particular node in the next generation is determined
stochastically based on the scores of the surrounding hosts or
parasites, as appropriate. 40% of the nodes are occupied not by
the selected host but with a child of the host (the other parent is
selected randomly from the surrounding nodes). Similarly with
the parasites. Finally in 20% of the nodes the occupying host is
mutated and in 10% of the nodes the occupying parasite is
mutated.

The layered part of SCALP means that there are a number of
these layers of nodes, stacked above each other. For each layer
the hosts are tested against not only the parasites in their own
node and the eight surrounding nodes but (other than in the case
of the bottom layer) also with the node directly below them and
the eight nodes surrounding that node. Candidates selected to stay
in a node or to be used as parents for the child that will occupy the
node are chosen from this extended neighbourhood. This allows
successful hosts on lower layers to move up layers. Similarly with
the parasites. Each layer has a genetic age limit, which increases
as we move through the layers. The genetic age of a host/parasite
is the number of generations that host or parasite has survived. A
child inherits the genetic age of its oldest parent, incremented by
one. If a host or parasite exceeds the maximum genetic age of a
particular layer it is eliminated and replaced with the host (or
parasite) in the node directly below it (or in the case of the bottom
layer a freshly randomised individual). The idea behind this is that
the lower levels serve as a “nursery” allowing code which has not
evolved much to compete against other less evolved code and
begin evolving towards its own “basin of attraction” without
being overwhelmed by the more evolved code in higher layers
(which is potentially trapped in a local maxima). The creation of
random individuals in the lowest layer serves to continually
introduce new genetic material into the system.

For the co-evolutionary part of this experiment both the hosts and
the parasites were evolved. They were kept apart in the sense that
there are two different populations which do not “inter-breed”
(even though – since they both used the same grammar – they
could). Where the system was used to try to evolve tanks to beat
various human coded opponents, the parasites were those human
coded tanks. Each of the different possible tanks was numbered,
the parasite just being a number corresponding to one of the
opponents. There was no “breeding” of parasites but mutation was
possible, with the number (and therefore the tank) changing. More
details of the tanks used and the way this was integrated with the
layering of SCALP is discussed later (section 9).

7.5 Scoring
The Robocode system scores each participant in a fight. The score
is based on a number of factors, there are 1) survivability points if
the tank survives a round (i.e. wins); 2) points for bullet damage
which related to the damage done by the tank’s bullets; and 3)
points for ramming which are awarded at twice the rate of points
for similar damage done by a tank’s bullets.

Although it appeared to make good sense just to use the points
scored in each battle as the fitness score for a particular

combatant, one side-effect of this was noticed when the system
was run with human coded opponents. Because a tank gains
energy when it hits an opponent – if you allow your opponent
tank to hit you sometimes (but still ultimately win the round) then
you will need to do more damage to it than if your opponent never
hit you. This means that a tank which dodges all incoming fire
and kills its opponent in short order will score fewer raw points
than a tank which allows itself to be hit a few times and takes a
long time to kill its opponent. With the human coded opponents it
became apparent because the weaker human coded tanks were
getting better scores than the human tanks that annihilated the
hosts. Although this “oddity” of the scoring system may well
actually be an interesting dynamic, for the purposes of the paper –
in the second part (where tanks are evolved against human coded
tanks) the percentage of the total points scored was used as the
fitness function. Thus a tank which keeps its opponents score to a
minimum (while killing it) will get a far higher percentage of the
points scored that round than a tank that allows itself to be hit.

7.6 Setup
The experiments were run on a 15x16 SCALP grid (240 nodes),
consisting of (up to) 4 Layers. The layer lives (the maximum
genetic age allowed in the layer) were: [40,70,130,258].
Initialisation of individuals (hosts and, for co-evolution, parasites)
was via Luke’s PTC2 initialisation [12]. Each individual was
given a unique name. Each generation a sub-directory was created
and the phenotype of each host (and for co-evolution each
parasite) was constructed and saved as a .java file in that sub-
directory. The .java files were then batch compiled and the .class
files created (this only took a second or two). In order to assess
the fitness each of the requisite battles was scheduled (nine battles
for each node on the first layer, 27 per node for each subsequent
layer5) and farmed off to helper applications that would run the
Robocode battle as a separate process and return the result. On an
eight-core MacPro running six helper applications approximately
100 battles could be processed each minute (this slows down as
the battles become more intense). A battle consisted of a number
of rounds of a Robocode competition. Each round the robots are
placed in a random place in the arena with a random orientation.
Placement can give a large advantage to one of the opponents. For
co-evolution each “battle” consisted of 5 rounds. Where the
opponents were human-coded robots, in order to minimise the
stochastic nature of battles, the battles consisted of 15 rounds.

8. Co-Evolution results.
8.1 Using the “Robot” Class
The initial experimental setup used the Robocode “Robot”, rather
than the “AdvancedRobot” – see section 7.3.1 for a brief
discussion of the differences. With the “Robot” attempts at co-
evolution were not particularly successful, but for different
reasons than those experienced by [3]. Early on both the hosts and
the parasites developed a strategy of spinning in place and firing
every time the onScannedRobot() event handler was called.
Although there were variations in the strength of the bullet, this
appeared to be a very difficult local maximum for the system to
escape from. Because of the blocking nature of movement calls
any attempt to move during the main loop slowed the spin and

5 Being the host (layer1) v 9 parasites (layer1), host (layer1) v 9 parasites

(layer0) and host (layer0) v 9 parasites(layer1)

1447

thus the frequency with which the onScannedRobot event handler
was called and any movement in that event handler delayed the
firing rate. It was possible for movement to occur in other event
handlers and indeed some individuals who moved when
onHitByBullet was called were observed, but overall the results
were not satisfactory, with limited variation and no different
strategies observed even over 100 generations. Although SCALP
(and ALPS) is designed to obviate the need for multiple runs, five
runs were carried out, with similar results.

An analysis of the human coded robots showed that many of the
competitive robots and even the more interesting sample robots
(such as spinBot which moves in circles and fires when it sees an
opponent) all used the AdvancedRobot class.

8.2 Using the “Advanced Robot” class
Moving the system to use the “AdvancedRobot” class proved to
be successful. Within a few generations robots emerged that
moved and fired at each other. Within 20 or 30 generations
different behaviour between hosts and parasites could be
observed, presumably directly as a result of their different fitness
functions (see section 7.5). The hosts very aggressively tracked
and charged at their opponents (in a similar way to the sample
human coded robot “ramfire” – see table 1), firing as they went,
whereas the parasites tended to rely on moving in circles and
firing at their opponents (in a similar way to the sample robot
“spinBot” – see table 1). By about 60 generations, the parasites
had developed a tactic of moving backwards, in a circular motion,
away from the on coming hosts and firing at their opponent as it
charged them. This is the same tactic that many human coded
robots use to defeat robots using the ramFire strategy (the strategy
works because the retreating robot can be pretty sure where the
attacking robot will be, but the attacking robot has to guess the
direction the fleeing robot will turn in). After about generation
195 the hosts abandoned their ramfire strategy and had developed
a circular movement, with strafing shot strategy. By generation
245 (when the simulation was stopped) the hosts and parasites
were involved in some quite complex looking battles, although
from a qualitative perspective the behaviour of the robots still
appears less “purposeful” than human coded robots. One
interesting behaviour that was noted is that when the evolved
robots (the hosts in this case) were just about to run out of energy
they slowed their turn and fired off one last shot directly at the
opponent – allowing them to win if their opponent was disabled –
an all or nothing approach.

After the run was complete, in an attempt to achieve some
empirical data as to how well the co-evolution was working, the
individuals in each generation were made to compete in a
knockout competition and the top 24 individuals (the
“Generational Winners”) were retained. This was the first time
that hosts had competed directly against hosts and parasites
against parasites. It was noted that in each generation the
Generational Winners were a mixture of parasites and hosts, the
number of parasites or hosts in a particular set of Generational
Winners varied depending on the generation, presumably
reflecting whether the parasites or hosts were stronger in that
particular generation. The Generational Winners were allowed to
compete against each other in a knockout competition. This was
carried out five times. Although the top 10 individuals in the
tournament varied each time the tournament was run (with closely
matched robots, such is the random nature of Robocode) in all

cases the top 10 consisted only of parasites. In each of the 5
knockout tournaments the robots which made up the top 10 robots
were dominated by parasites from the last 15 generations (the
youngest parasite to make any of the top 10 lists was from
generation 191). This provides evidence that the robot populations
(both the hosts and parasites) were continuing to evolve
throughout the process.

8.3 Assessing against the Sample robots
These top 24 individuals from each generation were then assessed
against each of the sample robots listed in table 1.

TABLE 1 – DESCRIPTION OF ROBOCODE SAMPLE ROBOTS

Robot Behaviour

Crazy Moves randomly

RamFire Attempts to ram and fire on an opponent.

SpinBot Moves in circles.

Tracker Tracks, moves close then fires

TrackFire Sit still firing at an opponent.

VelociRobot Varies speed.

Walls Moves along the walls (which makes it quite
difficult to hit).

Although none of the co-evolved robots had seen these sample
robots before, they performed well against them. Unlike the
tournament situation (where the co-evolved robots competed with
each other), there was a mixture of hosts and parasites in the
robots that preformed best against the sample robots. Using the
percentage of points scored in a battle (so 50% indicates matched
opponents), then, of the robots tested, the robot that had the
highest average of scores across all categories was a host in
generation 243.

TABLE 2 – SAMPLE CO-EVOLVED ROBOTS (AT VARIOUS GENERATIONS) .V.
ROBOCODE SAMPLE ROBOTS

Opponent Gen 243(H) Gen 244(P) Gen 193(H)

 Crazy 86% 88% 78%

 RamFire 74% 80% 52%

 Spin Bot 82% 84% 75%

 Tracker 89% 85% 54%

 TrackFire 78% 77% 40%

 VelociRobot 79% 81% 69%

 Walls 38% 26% 58%

Walls did appear to give the co-evolved robots some difficulty –
presumably because they had not faced that type of movement
before. Earlier generation hosts (which exhibit more dramatic
chase and kill behaviour) could defeat Walls; they trapped it in a
corner and rammed it to death. However, as can be seen from
table 2, the behaviour which allowed them to defeat walls led to
them losing to Trackfire (a stationary robot) because their chasing
behaviour meant that they did not dodge bullets on their way and
lost out on the shoot-out with Trackfire. To defeat Trackfire a
robot needs to dodge at least some of its bullets.

1448

8.4 Assessing against competitive human coded
robots
As previously mentioned there are many Robocode tournaments and
a lot of the robots that compete in the tournaments are available for
download. A selection of robots were downloaded (see table 3), and
the co-evolved robots where assessed against them. In selecting the
robots for download it was decided to avoid adaptive robots (that is
those that adapted to their opponents behaviour) since it was
difficult to enable a repeatable result against such robots (it was
likely they would perform better as the number of rounds
increased).

TABLE 3 – DESCRIPTION OF HUMAN CODED ROBOCODE ROBOTS USED

Robot Comments and ranking6
Guess Factor Uses a predictive gun – current ranking about 783

in the robot leagues7
Peryton A robot that is marked as “exemplary” and was

competitive in the earlier days of Robocode, but is
not so competitive now.

Squigbot Like Pertyon, very competitive once, not so much
now.

Sparrow A micro bot (limited size) ranked 434th
Duelist Ranked 483rd.
NanoLauLectrick
TheCannibal

Ranked 367th

Tron 2.0.2 Ranked about 148th
Aspid Ranked about 167th
Cigaret A mini robot (limited size), ranked 107th

Table 4 shows some of the results for the better individuals against
these hand coded robots. As can be seen ones that do well against
one type of robot, might not do as well as against some of the
others. Robots did evolve (through co-evolution alone) which could
beat two of the easier ones and some evolved that were competitive
against robots that were ranked in the high 400s.

TABLE 4 – RESULTS OF CO-EVOLVED ROBOTS .V. SELECTED ROBOTS

Generation and
(H)ost or
(P)arasite

214
(P)

243
(P)

200
(H)

195
(H)

Best score
by any
robot

GuessFactor 53% 41% 21% 24% 60%

Peryton 54% 59% 22% 26% 59%

SquigBot 24% 20% 50% 43% 50%

Sparrow 30% 35% 9% 9% 43%

Duelist 20% 29% 6% 6% 44%

Cannibal 15% 17% 35% 45% 45%

Tron 9% 7% 22% 25% 25%

Aspid 11% 8% 16% 20% 20%

Cigaret 12% 8% 15% 12% 16%

Significantly the co-evolution results are better than any previous
result reported where co-evolution has been attempted.

6http://darkcanuck.net/rumble/Rankings?version=1&game=roboru
mble as at 14 January 2011
7 http://robowiki.net/wiki/GuessFactor_Targeting_Tutorial

9. Evolution against human coded robots
One concern was that the grammar chosen might limit the robots
that could be evolved. For instance it was noted that the human
coded robots tended to make extensive use of trigonometric
functions (to calculate angles of fire) and random number generation
(for non-predictable movement). Although, in theory,
approximations to the trigonometric functions might be evolved –
this could potentially place undue demands on the evolution of
human competitive robots.

It was decided to try and see if direct evolution against the human
coded robots would yield different results from the co-evolution – it
was hoped to evolve robots that were competitive with the more
advanced robots coded by humans.

Since the principle behind SCALP is that the earlier layers are
“nursery” layers, it was decided to implement a system whereby the
parasites (now hand coded robots) increased in difficulty as the
layers increased. This would help to prevent a flat fitness function
(i.e. all the hosts being beaten by the better human coded robots and
scoring very few points). The first layer was reserved for the sample
robots and GuessFactor. After that an attempt was made to select
robots of increasing sophistication and difficulty. The next layer
also used Sparrow, Peryton and Squigbot in addition to those
previously used.. The third layer included Duelist and Cannibal and
each subsequent layer allowed any of the hand coded robots as
parasites. One parasite could mutate into any other parasite, subject
to the layer limits. Initially the first layer was “seeded” with the co-
evolved hosts, although subsequently when the first layer was re-
generated (after generation 40 in the system used) randomly created
hosts (by PTC2 initialisation [12]) were used.

TABLE 5 – RESULTS OF INDIVIDUAL EVOLVED ROBOTS

Opponent Gen
440

Gen
389

Gen
330

Best score by
any robot

Crazy 86% 79% 83% 90%

RamFire 67% 58% 81% 86%

Spin Bot 72% 79% 66% 90%

Tracker 83% 60% 81% 94%

TrackFire 64% 64% 78% 87%

VelociRobot 74% 79% 77% 85%

Walls 65% 52% 25% 77%

GuessFactor 51% 53% 46% 66%

Peryton 55% 20% 44% 56%

SquigBot 28% 41% 35% 48%

Sparrow 25% 27% 22% 41%

Duelist 19% 15% 22% 48%

Cannibal 21% 32% 27% 42%

Tron 8% 9% 15% 31%

Aspid 8% 9% 13% 25%

Cigaret 15% 9% 27% 27%

Interestingly the “seeded” layer was out evolved after about 80
generations. The entire system was allowed to evolve for 440
generations. Once again it was noted that robots that performed well
against some robots tended to perform worse against others. This
was entirely expected. Encouragingly robots emerged that could

1449

defeat every one of the sample robots as well as GuessFactor and
Peryton on a regular basis emerged. Robots capable of defeating
Squigbot almost 50% of the time also emerged, but such robots
tended to perform, relatively, poorly against Pertyton and Walls
(and often the trackers). This was the same with the co-evolved
robots. The robots which preformed best against the later robots
(Tron/Aspid and Cigaret) were only capable of winning about 6 out
of 30 fights and also had poorer performance against the “easier”
robots. It appeared that in the time the system was given it was
finding it hard to find robots that could generalise against the harder
opponents. Given this is probably the hardest part of the challenge –
it is not surprising. Table 5 shows some of the better sample robots
that illustrate the points made above. The first column is one of the
best robots against the sample robots, Peryton and GuessFactor. The
second column contains one of the better robots that could achieve a
decent score against Squigbot while still beating the sample robots.
The third column shows the best against Cigaret (note how poorly it
performs against Walls and Peryton) and the final column shows the
highest score any robot achieved against each opponent (each score
in this column is from a different robot). By way of comparison
Peryton scores 20-26% against Aspid and Cigaret, Squigbot about
30-35%.

10. Conclusions and Future Work
The system was able to successfully co-evolve robots of sufficient
complexity to win battles against unseen human coded robots that
historically used to top the league but not robots that are currently
ranked in the top 500 of the league. However, the successful co-
evolution of robots that are able to beat human coded robots that
were, at one time, leading contenders is very encouraging. This is
particularly the case as successful co-evolution in this domain does
not appear to have been previously reported. The predator/prey
scoring system used with SCALP did appear to lead to different
strategies being adopted by the two competing populations and it is
believed helped the successful co-evolution of relatively robust
strategies (i.e. robots able to compete against unseen opponents).
Although the co-evolutionary system (unlike the direct evolutionary
system) did not find a strategy that would beat all the sample robots
(the unusual movement of “Walls” defeated it) it may just have
required more time. Of some concern was the fact that even with
direct evolution against a number of selected human coded robots a
strategy was not developed that could beat any of the robots used in
this paper that are in the top 500 of the league. It may be that, once a
certain sophistication is reached, robots need to be trained against
specific opponents and not always the ones they are weakest against
– as that may lead to cycling rather than improvement. It might also
be the case that the grammar itself was insufficient to allow
sufficiently complex robots to be evolved; it may be that access to
random numbers (to allow random movement patterns) and
trigonometric functions (to allow easier firing calculations) is
required. One oddity that was noticed is that the Java programs did
not appear to suffer from bloat. The reason for this is unclear and
tracking this down might suggest other ways to allow the robots to
evolve even more complexity.

REFERENCES
[1] Dawkins, R. and Krebs, J (1979) Arms races between and

within species. In Proceedings of the Royal Society of London.
Series B, Biological Sciences, volume 205 of the Evolution of
Adaptation by Natural Selection, pages 489-511.

[2] Folkert De Boer, Master’s Thesis, The role of speciation in
Spatial Co Evolutionary Function Approximation. Utrecht
University 2007.

[3] Eisenstein, J 2003,‘Evolving Robocode TankFighters’,
Technical Report 2003-026, Massachusetts Institute of
Technology Computer Science and Artificial Intelligence
Laboratory, 2003.

[4] Gade, M, Knudsen, M,Kjær, RA,Christensen, T,Larsen, CP,
Pedersen, MD & Andersen, JSK 2003, Applying Machine
Learning to Robocode, Aalborg University, Aalborg,
Denmark.

[5] Robin Harper and Alan Blair, A Structure Preserving
Crossover in Grammatical Evolution, Proceedings of the 2005
IEEE Congress in Evolutionary Computation, Vol.3, pp. 2537-
2544, IEEE Press, 2-5 September 2005.

[6] Robin Harper and Alan Blair, Dynamically Defined Functions
in Grammatical Evolution, Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, Vol.3 pp 2537-2544.
IEEE Press, 2-5 September 2005.

[7] Robin Harper, Spatial co-evolution in Age Layered Planes
(SCALP), 2010 IEEE Congress on Evolutionary Computation
(CEC 2010), IEEE Press, 18-23 July.

[8] Daniel Hillis, Co-evolving parasites improves simulated
evolution as an optimization procedure. Artificial Life II Santa
FE Institute Studies in the Sciences of Complexity, Vol. X pp.
313-324, Addison-Wesley, February 1990.

[9] Hong, J, & Cho,SB2004,‘Evolution of Emergent Behaviours
for Shooting Game Characters in Robocode’, Congress on
Evolutionary Computation 2004, vol. 1, pp. 634-638

[10] Gregory Hornby, ALPS: The Age-Layered Population
Structure for Reducing the Problem of Premature
Convergence, GECCO 2006, July 8-12, 2006, Seattle
Washington.

[11] John R. Koza, Genetic Programming, On the programming of
computers by means of natural selection, 1992, The MIT Press.
p.93.

[12] Sean Luke, Two Fast Tree-Creation Algorithms for Genetic
Programming, IEEE Transactions on Evolutionary
Computation, 4(3), pp. 274-283, September 2000.

[13] Melanie Mitchell (2006) Co evolutionary learning with
spatially distributed populations. In G.Y. Yen and D.B. Fogel
(editors) Computational Intelligence: Principles and Practice.
New York: IEEE.

[14] Michael O’Neill and Conor Ryan, Grammatical Evolution,
IEEE Transactions on Evolutionary Computation, 5(4), pp.
349-358, August 2001.

[15] A. Ortega, M. de la Cruz, M. Alfonseca. Christiansen grammar
evolution: grammatical evolution with semantics. IEEE Trans.
Evol Comput. 11(1), 77-90 (2007).

[16] David Nidorf, Luigi Barone, A Comparative Study of NEAT
and XCS in Robocode, WCCI 2010 IEEE World Congress on
Computational Intelligence July 18-23 CCIB Barcelona Spain,
page 86.

[17] Yehonatan Shichel, Eran Ziserman and Moshe Sipper,
2005,‘GP- Robocode: Using Genetic Programming to Evolve
Robocode Players’, Proceedings of the 8th European
Conference on Genetic Programming, vol. 3447, pp. 143–154.

1450

