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ABSTRACT

Defects are a major concern in software systems. Unsurpris-
ingly, there are many tools and techniques to facilitate the
removal of defects through their detection and localisation.
However, there are few tools that attempt to repair defects.
To date, evolutionary tools for software repair have evolved
changes directly in the program code being repaired. In this
work we describe an implementation: pyEDB, that encodes
changes as a series of code modifications or patches. These
modifications are evolved as individuals. We show pyEDB to
be effective in repairing some small errors, including variable
naming errors in Python programs. We also demonstrate
that evolving patches rather than whole programs simplifies
the removal of spurious errors.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging Aids; I.2.2 [Artificial Intelligence]: Automatic
Programming—Program Modification

Keywords

Debugging,Fault-Repair,Genetic-Programming,Python

1. INTRODUCTION
Software defects are a ubiquitous concern in software sys-

tems. Once a defect is introduced into the code it has enor-
mous potential to distress customers and vex developers.
It is estimated that just the software bugs that make it
through testing cost $20 billion per year in the United States
alone[21].
Unsurprisingly, given this cost, a rich body of knowledge

has developed to assist in the process of software defect re-
moval. Specifically, there are many works describing tools
that help detection of software defects. These include auto-
matic test generators[6, 7], algorithms that assess the quality
of tests[26]. Likewise there are a number of algorithms to
help locate software defects[24, 12, 3]. There are still other
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systems assist with both detection and localisation, stati-
cally [5, 4, 14] and dynamically [15, 18, 8]

By contrast, there is relatively little work on the auto-
mated repair of code defects[2, 1, 11, 22, 23, 19, 16, 20, 25].
This is in spite of the often long lead times for manually
fixing defects even when they are located[16]. Current work
on automatic repair falls into three broad categories. First
there are implementations to locate and repair specific types
of error with distinctive signatures such as buffer overflows or
heap allocation errors[19, 16]. Second there are implementa-
tions that locate and repair errors by brute-force search[20,
25]. Third there are implementations using heuristic search
to locate and repair errors[2, 1, 11, 22, 23]. The implemen-
tations in this third category, have used genetic program-
ming[13] (GP) to search the space of code-corrections, with
the aim of minimising the number of test-cases failed. These
implementations are applicable to a variety of errors. Inter-
estingly, these GP solutions for software repair have all used
individual variations on the original defective program as
the genotype. With this encoding, care needs to be taken
to limit the number of changes inserted into the original
code to prevent the individuals from drifting too far from
the original code.

Like the work above, we also describe a GP approach to
automatic defect repair. However, in contrast to the work
above, we evolve patches to the defective program as indi-
viduals rather than evolving variations on the programs as
a whole. This encoding keeps individuals short and makes
it trivial put an upper bound on the number of corrections
expressed thus strictly limiting the number of spurious cor-
rections that can arise.

The implementation described here is extensible to any
repair expressible as a rewrite-rule. This makes our frame-
work, at least potentially, very general. However here, in
the first instance, we demonstrate our approach for two dif-
ferent types of point repairs: replacing incorrect relational
operators (<,≤, >,≥,==); and replacing incorrect variable
names. We choose these two types of repair because they
are simple, relatively common and require contrasting ap-
proaches to generating rewrite rules1.

Our implementation, which we call pyEDB (python evo-
lutionary debugger), is written in Python and corrects de-
fects in Python applications but its underlying algorithm
is non-language specific. Python was chosen due to ease
of implementation – most of the modules we require are

1Rewrite rules for relational operators can be generated stat-
ically, rewrite rules for variable name errors must by gener-
ated dynamically.

1427



part of the standard library, including Abstract-Syntax-Tree
(AST) compilation and modification, and tracing of execu-
tion paths of programs.
The contributions of this work are as follows. We express

defect fixes as short program patches rather than changes
embedded in a program (section 4.1); this expression of
changes as patches allows genetic operators to work on in-
dividual changes rather than programs as a whole. We de-
scribe a genotype-to-phenotype mapping (section 4.2) that
reduces the search-space by avoiding changes giving rise to
syntax and variable naming errors. We demonstrate that
by using patches, controlling the number of changes is triv-
ial(section 4.4). We describe a simple and efficient algorithm
for removing any spurious changes from the patch that is ul-
timately selected (section 5.3) thus minimising the extent of
changes needed for repair.
The remainder of this article is structured as follows. Next

we review related work. In section 3 we precisely state the
problem we are solving. In section 4 we describe the algo-
rithm used by PyEDB. In section 5 describe our experimen-
tal setup and present our results and, finally, in section 6 we
conclude and canvass future work.

2. RELATEDWORK
The most closely related work in software repair is that of

Arcuri[2, 1] and Weimer and Forrest[11, 22]. In both cases
the authors use GP to evolve variants on the original defec-
tive program, both utilised fault localisation techniques to
help locate errors, and in both frameworks extra care had
to be taken to ensure that individuals did not diverge too
much from the original program. Arcuri’s JAFF framework
introduced diverse mutations into the original defective pro-
gram. To prevent the evolved programs from diverging too
much from the original code Arcuri first took the approach
of re-introducing the original program into the population
at each generation[1]. Later he simply limited the number
of nodes that could be added or modified in any single mu-
tation operation[2]. Arcuri also introduced a novel way to
co-evolve tests and code in a predator/prey relationship.
Arcuri’s framework can make general changes to small

programs. In contrast Weimer and Forrest dealt with much
larger programs but limited changes to deleting, moving
and copying extant lines of code Weimer and Forrest took
a different approach. Dealing with much larger programs,
their framework[11, 22] limited changes to deleting, moving
and copying existing lines of code. Divergence was limited
by “crossing-back” individuals with the original program.
Weimer and Forrest also utilised delta-debugging[24] as a
post-processing step to help cull unnecessary changes from
the fittest individual. The cost of this post-processing rises
with the size of the program whereas in pyEDB, the max-
imum amount of post processing is a constant bounded by
the short patch genome.
Wilkerson[23] used GP to co-evolve C++ applications in

competition with sets of test cases. As with previous ap-
proaches, individuals were expressed as variants of the orig-
inal defective program.
Outside the field of evolutionary search Sidiroglou[19] de-

scribes a system that adaptively patches servers against zero-
day exploits by worms. Novark[16] presents a tool to patch
memory allocation errors. These systems have the common
feature of addressing specific issues with a recognisable sig-
nature.

Finally, there is a literature of brute-force approaches to
program debugging ([20, 25] are two examples). Like ours,
these approaches are able to strictly limit the number and
type of changes but the brute-force search limits their ap-
plicability to smaller programs.

3. PROBLEM STATEMENT
Given an abstract syntax tree for a program P and a list

of tests ts = [t0, . . . , tn−1] derive a list of modifications (a
patch) mds = [md0, . . . ,mdm−1] that, when applied to P
minimises the number of tests failed. More formally we want
to minimise:

fc = testsFailed(applyMods(rs, P ), ts)

where testsFailed(P ′, ts) returns a non-negative integer rep-
resenting the number of tests P ′ fails when applied to ts and
applyMods(mds, P ) applies the repairs in mds in turn to P
producing a new, possibly better, program P ′.

Ideally, we expect our pyEDB framework, for a given
benchmark P , to be effective in evolving a list of modifica-
tions; efficient in evolving modifications in reasonable time;
accurate, that is, not induce spurious changes and not overfit
the test data.

4. THE ALGORITHM
This section describes how patches are evolved in pyEDB.

It is divided into the following parts: encoding the modifica-
tions (next); genotype to phenotype mapping (section 4.2);
biasing the mapping to speed up search (section 4.3); and a
description of evolutionary framework (section 4.4).

4.1 Encoding of Modifications
Each modification mdi in the modification list mds takes

the form of a pair:

mdi = (loci, targi)

the first element of this pair loci is the unique location of
an AST node in P and the second element targi is the new
value for the node after the modification is applied. Each
modification mdi in mds is applied in sequence. In our cur-
rent configuration, if the are two modifications mdi and mdj
in mds that modify the same location, the second of these to
appear in the list overwrites the first one2. As an example
of how mds can be applied consider the following (incorrect)
python code snippet for bounding access into an array a:

if x > length:

return -1

else:

return a[a]

maps to the AST in Figure 1(a). This tree contains two small
errors. A wrong operator > at node 1 and an incorrect index-
value a at node 9. A modification list that will fix this tree
is mds = [(1, >=), (9, x)] produces the tree in Figure 1(b).
This tree corresponds to the correct code:

if x >= length:

return -1

else:

return a[x]

2Addresses are are interpreted relative to the AST in its
original form before any modifications are applied – changes
to any previously modified part of the tree are ignored.
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Figure 2: Snapshot of the construction of the mod-tables for the AST from Figure 1
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Figure 1: An AST before (a) and after (b) the appli-
cation of the modification list: mds = [(1, >=), (9, x)]

Note, that the potential set of mdi to choose from is
large. Even restricting ourselves to encoding the operator
swap: (>→>=), and swaps to variables, the exhaustive set
of mds’s of length one for the AST in Figure 1(a) is:

{ [(0, >=)], [(0, x)], [(0, length)], [(0, a)],
[(1, >=)], [(1, x)], [(1, length)], [(1, a)],
. . . ,
[(9, >=)], [(9, x)], [(9, length)], [(9, a)]}

most of these modifications cannot validly be applied to the
AST – the search space is replete with invalid individuals.
To limit the search space, pyEDB uses a genotype to pheno-
type mapping, partly inspired by that used in Grammatical
Evolution[17], to ensure modifications are restricted to fea-
sible locations. We describe this mapping next.

4.2 The Genotype to Phenotype Mapping
In pyEDB the modification list mds is the phenotype. The

genotype g is a variable length bit-string. The key to the
genotype to phenotype mapping is a small set of lookup-
tables, called, mod-tables. These mod-tables are built during
the initialisation of the evolutionary process. They encode
the set of allowable changes to the AST P for a given type

of modification. A mod-table takes the form:

MTt = { (loc1 → {targ
11
, targ

12
, . . . , targ

1n}),
(loc2 → {targ

21
, targ

22
, . . . , targ

2n}),
. . .
(locm → {targm1

, targm2
, . . . , targmn})}

where the subscript t is a number denoting the type of mod-
ification handled by the table. In pyEDB: MT1 handles
modifications for relational operators: >,≥, <,≤,== and
MT2 handles modifications of variable names. Each row in
a mod-table consists of a node address: loci and the set of
target values {targi1, targi2, . . . , targin} that the node at loci
in P can take during program modification.

During fitness evaluation, each genome is broken into 32-
bit genes which are then used perform a staged-lookup of the
mod-tables to produce a sequence of individual (loci, targi)
modifications.These building and subsequent lookup processes
warrant further elaboration. We explain these in turn.

4.2.1 Building the Mod-Tables

The mod-tables are built prior to the evolutionary process
with the assistance of structures called target-sets. Target
sets are generalised rewrite rules encoding all of the modifi-
cations that it is possible to make to each value. An example
of a target set is TS1, the current set of valid operator swaps
in pyEDB:

TS1 = { (>→ {>=, <,<=,==}),
(>=→ {>,<,<=,==}),
(<→ {>,>=, <=,==}),
(<=→ {>,<,<=,==})}

The variable target-set TS2 maps each unique variable oc-
currence in the AST to the variables in scope of that occur-
rence. In our experiments TS2 contains exactly the same
entries as MT2

3. Given these TSi we can build the corre-
sponding MTi by traversing the AST and looking up the
appropriate entry in TSi for each node4.

To illustrate the process, a snapshot of the of building the
mod-tables for the AST in Figure 1(a) is shown in Figure 2.
This process works by traversing the AST P and using the
target-sets to add entries to the mod-tables. The arrows
in the figure represent corresponding values used for lookup

3Though this would of course change if we changed the vari-
able substitution rules so that the set of valid rewrites was
not dependent on node location.
4For general rewrite rules this process would include match-
ing any indeterminates. But this step isn’t needed in our
examples.
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Figure 3: Three-stage lookup of the mod-table from
the genome

and update. In the figure, P has already been traversed to
node eight. The variable name corresponding to this node
can be found in target-set TS2 containing the possible target
values each variable in P . The entry for node 8 maps to the
set of target values {length, x}. This set, containing the other
variables currently in scope of this access to a, is added to
the mod-table MT2 along with the node number5.
Note, that each target-set in Figure 2 has different origins.

TS1 contains a fixed mapping supplied by the builders of
pyEDB while TS2 was populated by walking over P and
collating other variables in the scope of each variable. This
concludes the explanation of how the mod-tables are built
next we explain how they are looked-up.

4.2.2 Looking up the Mod-Tables

As mentioned earlier, the genotype to phenotype mapping
breaks the genome into a series of 32-bit genes each of which
is used to code a single (loci, targi) modification6. Figure 3
illustrates the process of looking up entries in the completed
versions of the mod-tables from Figure 2 to create a single
modification. The top part of the Figure shows the genome
and the numerical values derived from it with the help of
the mod-tables. The top row describes the gene itself. The
first four bits are the opcode describing type of modification.
The second field is a 20-bit value for locating the change in
the AST. The last eight bits choose the target value for the
modification. The lookup process has three stages: first, use
the opcode to lookup the chosen mod-table; second, use the
location to lookup the chosen location in the chosen mod-
table; third, use the target-offset to lookup the chosen target
value at the chosen location.
All of these lookups are done modulo the number of choices

available so every gene will map to a valid modification with
respect to the mod-tables. Before the lookup commences we
convert each binary field to decimal. In the first stage the

5For our current variable substitution rules, the production
of MT2 from TS2 is a simple line-by-line transcription.
6Any surplus bits at the end of the genome are ignored.

decimal value for the op-code (5 in this case) is modded with
the number of mod-tables (two) to produce the first mod in-
dex (1 in this case). This index 1 denotes the second of the
mod-tables (lookup A) yielding MT2. Next, the length of
MT2 (4 in this case) is transmitted back (length A) as an
index range for the next lookup. The next lookup is for the
location to be modified, the decimal value 76477 is modded
with 4 to also produce 1 which is used to index into MT2

(lookup B). The indexed row of the lookup table (3, {x, a})
contains two target entries so the number 2 (length B) is
transmitted back for the third lookup which proceeds anal-
ogously to isolate the final target value a. This value is then
paired with the location to produce the modification: (3, a)
(i.e. replace the value at node 3 with “a”).

This concludes our description of the genotype to phe-
notype mapping. This mapping produces only allowable
changes7. There is scope for reducing the search space fur-
ther by biasing the mapping using trace and contextual in-
formation.

4.3 Biasing the Mapping
The genotype to phenotype mapping described thus far

is unbiased – for each operator every allowable change is
equally likely. This is a good scheme if we don’t have access
to reliable information about where the defects might be
and what the defects might be. However, if we do have
such information then biasing modifications to the potential
targets should reduce the search space.

In the following we describe, in turn, mechanisms we use
to bias the search to the likely locations of defects (the
where) and the likely cause of defects (the what). In pyEDB
both biasing mechanisms can be switched on or off, at the
request of the user, prior to an evolutionary run.

4.3.1 Biasing to location

Past work in evolutionary defect repair has used defect
localisation algorithms to give a rough indication of where
defects might reside[2, 11]. This has succeeded in reducing
the search space thus making the defect repair more effec-
tive.

In this work we use a similar approach using the Tarantula
defect localisation algorithm[12]. Tarantula counts the num-
ber of times each line of code is executed during both failing
and passing tests. The counts are then used to produce a
suspiciousness index Si for each statement i in the program.
Statements that are executed only during failed tests are re-
garded as highly suspicious. We implemented Tarantula for
pyEDB to extract the Si. pyEDB then runs through the
following process to bias the lookup First, we share Si for
each statement among all the nodes in that statement giv-
ing a per-node Sj . Second, we normalise the sum of Sj for
each mod-table so the Sj for each mod-table sums to one.
Finally we add a cumulative index field to each map table
entry being the sum of normalised Sj from the start of the
table to that node.

The cumulative index fields described above, implicitly
allocate each node a floating-point range that is proportional
to its share of sum of Sj for its table. Now indexing into
each mod-table, under the biased scheme, is then simply a
matter of linearly mapping the location code in the gene to

7This, of course says nothing about the correctness of the
allowable changes, for instance it is easy to induce type-
errors.
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a value x between zero and one and then searching for the
first entry with a cumulative index field above x. The nodes
on the most suspicious lines will be hit more often.

4.3.2 Biasing to error

Biasing to error applies only to modifications of variable
names. It is intended to make it easier to correct typo-
graphical errors. It is implemented by sorting the targets
{targi1, . . . , targin} in each entry (loci, {targi1, . . . , targin})
of the variable mod-table MT2. The sorting is done by a
measure of edit distance between the targij and the variable
at loci, and is performed in two steps: first, we sort the target
variables by string length; then, we perform a stable sort by
minEditDist, the minimum edit distance between the vari-
able at loci and the current target variable targi. These two
sorting steps have the effect of favouring longer strings over
shorter in the case of equal minimum edit distance. That is,
we consider “count” and “counts” to be closer together than
say “x” and “j”.
Once the sorting of the targets is done, the target vari-

able in scope which is typographically closest to the current
is first in the target list. During evolution, the lookup is then
done by generating an index: index = rand()2.5× len(targsi)
where rand() randomly generates a number in the range
[0 . . . 1), and len(targsi) is the length of the target list for
the current variable. The use of the power 2.5 biases index-
ing toward the first elements.

4.4 Evolutionary Framework
For maximum flexibility we built a simple bespoke genetic

algorithm (GA) framework in Python. The framework im-
plements a generational GA and is configurable, allowing
different forms and frequency of crossover, mutation and se-
lection operations to be performed. The framework is set
up to create the mod-tables and prepare for biasing opera-
tions prior to starting the first generation. All individuals
are random bit-strings ranging in length from 32-bits – one
gene – up to a user-specified maximum length. This maxi-
mum length trivially sets an upper-bound on the number of
changes that can be encoded.
The first generation is seeded with individuals ranging lin-

early from 32-bits to to the maximum genome length. If
a genome shrinks to less than 32-bits in length during the
evolutionary process it is padded out to 32-bits with random
values. Other settings of the algorithms are user-specified
and we describe these along with our experimental results.

5. EXPERIMENTAL RESULTS
Our results fall into the categories of: Effectiveness, how

well pyEDB fixes errors; Efficiency how well pyEDB finds
errors; Accuracy,avoidance of over-fitting and absence of
of spurious changes;Sensitivity to Genome Length; and
Effect of Biasing. We present these in turn after the fol-
lowing outline of the experimental setup.
Except where stated otherwise, the results below were

generated with the following settings and benchmarks. A
cut and splice crossover was used, with each pair of parents
yielding two offspring. Crossover can occur at any point on
the genome8. Crossover is applied with a probability of 0.8.
Mutation randomly inserts, deletes or replaces up to eight

8We attempted to force crossover points to 32-bit gene
boundaries but this worked extremely poorly.

def middleFunc(x,y,z):

m = z

if y < z:

if x < y:

m = y

elif x < z:

m = x

else:

if x > y:

m = y

elif x > z:

m = x

return m

Figure 4: The middleFunc benchmark

bits of the genome. Mutation applies to an individual with
probability 0.3. We use tournament selection with a tour-
nament size of four. We implemented elitism, preserving
the single best individual in each generation. Except where
noted, population size is 200.

In each experiment pyEDB is given a program file con-
taining defects and six to eight tests, most of which fail on
the given program. pyEDB gives minimum fitness to any
program that fails to compile, raises an exception or takes
more time than a user-defined limit to complete. The eval-
uative function returns the number of test cases failed. A
fitness of zero indicates that all test have passed. pyEDB is
configured to subtract a small bonus (< 1.0), inversely pro-
portional to the length of the genome, for shorter genomes
that also pass all tests. Most tests were run until either an
individual with an evaluative function score of zero or less
was found or a maximum of 50 generations was reached9.
Except where stated otherwise we used a maximum genome
length of five corrections (160 bits) in our experiments.

Two benchmarks were used. A small benchmark, called
middleFunc shown in Figure 4. And a larger benchmark, a
publicly available python solution10 to the facebook smallWorld
puzzle challenge[10]. This program contains 61 lines, 130
variable accesses and complex conditional logic.

5.1 Effectiveness
To assess effectiveness we pyEDB against the two bench-

marks. For the middleFunc benchmark we randomly added
three variable and operator errors using pyEDB’s modifica-
tion framework to make ten different benchmark programs.
We ran pyEDB 30 times on each of these ten benchmarks
(with biases off) and counted number of generations each
run took to either isolate an individual that passed all tests,
or give up at 50 generations. Results varied widely with
one, benchmark, tending to be solved after one generation,
taking approximately 30 seconds on our desktop machine.
In contrast the most difficult benchmark took an average
of 22 generations (about 8 minutes) but this includes indi-
vidual runs that gave up after 50 generations. On average
the framework ran for an average 8.6 generations across all
programs.

pyEDB is sensitive to the placement and nature of de-

950 is quite low but because we intend to refine pyEDB into
a tool we need relatively fast runs.

10see: http://cs.adelaide.edu.au/~brad/smallworld.py
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fects. This is perhaps unsurprising, because it is known
that defects can hide each other[9]. This is especially the
case with errors in relational operators which can redirect
control away from some sections of code altogether. In the
worst case, defects can be placed such that no correct out-
put is produced unless all defects are fixed, which leads to a
featureless fitness landscape.
For the larger smallWorld benchmark we ran fewer tests

to measure effectiveness. We ran 10 trials on fixing a sin-
gle defect, in this case a a few characters transposed in a
randomly selected variable reference. Again we had biasing
switched off. The resulting runs all isolated the error with
a mean run of 6.6 generations (corresponding to about 10
minutes run-time) and a maximum run of 16 generations.
In order to test pyEDB on more defects we ran a small

number of single experiments on smallWorld with two er-
rors with minimum-edit distance bias on for variable swaps.
For all of these were able to get results within 20 genera-
tions. However, searches for multiple typographical errors
with search bias off and search for more than two errors in
general failed to yield results after 50 generations.
In summary pyEDB can be effective in removing small

numbers of operator and typographical errors from small
benchmarks in reasonable time. However, effectiveness ap-
pears quite sensitive to the placement of errors. This is
likely to be acceptable in its intended environment where
it provides assistance to remove defects rather than blan-
ket assurance of defect removal. Next we briefly assess the
efficiency of pyEDB.

5.2 Efficiency
As a simple assessment of efficiency we compared the

number of new individuals generated by pyEDB with the
number of individuals generated for random search on the
middleFunc benchmark. To implement random search we
simply set the population size to 10000 and stopped search-
ing after generation zero. This gives an upper bound of
10000 on the extent of our random search. Given this setup,
using our genotype-to-phenotype encoding, a-priori a ran-
dom individual has respectively, an approximate 1/850 and
1/9000 chance of fixing, two and three errors involving only
relational operators in middleFunc. The corresponding fig-
ures are 1/31000 and 1/1500000 for two and three errors in-
volving only incorrect variable-names. Our ten benchmarks
involve different mixes of relational operator and variable
name errors and we expect probabilities to range between
these upper and lower bounds.
We ran trials for a middleFunc with two and three errors

using both pyEDB and random search. Note we deliberately
avoided testing the search for one error since we found that
both pyEDB and random search would typically find the so-
lution in generation zero, before any evolutionary operators
had been applied. The position of the first individual to pass
all tests was recorded as the search length. The results are
summarised in Table 1 The results on the first three rows re-
flect the outcomes from 30 trials. The results on the last row
reflect the outcomes of 20 trials (by which time the results
were clear).
As can be seen pyEDB on two errors moderately outper-

forms random search both in terms of both average per-
formance and reliability. For three errors the result is much
stronger with the random search running out of time in most
cases. In future, it would also be good to compare pyEDB

method mean stdev median

pyEDB 2 errors 445.3 190.5 411
random 2 errors 1360.7 1487.9 891.5
pyEDB 3 errors 900.6 242.5 833.5
random 3 errors 9375.5 2103.2 10000

Table 1: Comparison of random search to pyEDB
(number of individuals generated before finding a
solution)

set bestGenome = G
for all 2n possible sub-lists s of G

if s is perfectly fit and shorter than bestGenome then
set bestGenome = s

end loop
return bestGenome

Figure 5: Algorithm for eliminating redundant mod-
ifications

with a hill-climbing algorithm to assess the relative effec-
tiveness of the genetic operators in this context.

5.3 Accuracy
The positive behaviours we assess in this section are the

avoidance of overfitting, and the avoidance of spurious changes.
Overfitting occurs when the algorithm specialised the pro-
gram to the test cases but fails to produce a solution that
generalises to other tests. In our trials, overfitting was rare.
In almost all cases the individuals that passed all tests were
identical to the original program without the defects11. At
least in part, this is due to our choice of benchmarks: both
the middleFunc and smallWorld are very sensitive to the
perturbation of both relational operators and variable names
– there is little scope for neutral changes.

We observed no spurious changes in any of the large num-
ber individuals we inspected. In any case, spurious changes
can be weeded out by the very simple algorithm, shown
in Figure 5 that can be applied to a perfectly fit genome
G = [g0, . . . , gn−1] where each gi is a gene encoding one
modification. Through exhaustive search, this algorithm is
guaranteed to find the shortest version of G that passes all
the tests. Because, in practice,we limitG to a sensible length
(always less than five here) this exhaustive search take less
time than to run pyEDB for an extra generation.

5.4 Genome Length Settings
Programs can be quite sensitive to peturbation and pyEDB

quite reliably encodes its genes into perturbations. This
gives rise to the risk of deleterious genes undoing the good
work of other parts of the genome. As a preliminary inves-
tigation into whether deleterious affected search we re-ran
all the trials in the experiments from section 5.1 with dif-
ferent maximum genome lengths. If the presence of delete-
rious genes is a problem we would expect to see better per-
formance with maximum genome lengths closer to number
of repairs required. The results for the middleFunc bench-

11An interesting exception to this occurred when pyEDB
found a way to engineer the smallWorld benchmark to cause
tests to run zero times – giving perfect fitness!
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Figure 6: Time to correct benchmarks with varying maximum genome length for middleFunc benchmark

max changes mean stddev median

max 1 change 5.4 4.2 4.0
max 2 changes 4.2 3.3 4.0
max 3 changes 6.6 5.0 8.0

Table 2: Effect of varying max genome length for
smallWorld benchmark (number of generations used
to generate correct solution)

max changes mean stddev median

max 1 change 3.8 4.7 1.0
max 2 changes 3.0 4.0 2.0
max 3 changes 3.4 4.3 2.0

Table 3: Results of trials from Table 2 with
minimum-edit-distance bias switched on.

mark are shown in Figure 6. These graphs show, that for all
benchmarks the there is some benefit derived from setting
the maximum allowable genome length to somewhat more
than the minimum length required to make the change (this
minimum is three changes in this case).
To verify these results extend to larger examples we re-ran

the trials from section 5.1 on smallWorld. The results are
shown in Table 2 Each row’s results come from ten trials.
Though these results need to be confirmed with larger num-
bers of trials, they indicate that there is some benefit for ex-
tending the maximum genome length beyond the minimum
needed (in this case one gene) but this benefit tails off quite
rapidly as the genome is made larger. This may indicate a
stronger effect from deleterious genes for larger examples.

5.5 Biasing
As mentioned previously, there are two types of search

bias available in pyEDB:minimum-edit-distance (MED) on
strings to help choose targets, and tarantula weightings on
locations. We present the results of our experiments from
using these in turn.
To test the effect of bias in minimum edit distance we

reran the smallWorld benchmarks from section 5.1 above on
the same small typographical error. The results are shown in
Table 3. These results seem indicative improvement. How-
ever, if the variable name error is not small, as may be the

case if the programmer just uses the wrong variable, then
the MED bias will work against you. The decision on using
the MED bias depends on whether you are quickly search-
ing for typographical errors or slowly searching for variable-
substitution errors.

The Tarantula bias directs the search to locations where
the error is more likely to be. We ran a number of pre-
liminary experiments using this bias and found that, when
the Tarantula data was accurate it was helpful in shorten-
ing the search time. However, in the presence of more than
one defect the Tarantula data could be very inaccurate –
for instance it is very easy switch relational operators in the
middleFunc example so that Tarantula gives poor results
on the rest of the code. In our experiments, especially those
with errors in relational operators we found that Tarantula’s
error localisation was often misleading. This is likely to be,
in part, a function of the benchmarks we are using and the
fact that we concentrate on relational operators. In any case,
we found that the worst-case behaviour of our benchmarks
was better with defect localisation bias switched off. This
concludes our review of our experimental results. Next we
briefly review similar work on defect repair.

6. CONCLUSIONS AND FUTUREWORK
In this paper we have described a new method for auto-

matic defect repair based on evolving patches rather than
programs. The results thus far show promise especially in
terms of minimising the extent of the repair.

In future we would like to extend the framework with a
greater variety of repair types. There is much scope for work
to ascertain, across a broader range of benchmarks, whether
it is generally useful to combine repair types or search for one
type of repair at a time. There is also scope apply much more
intelligence to the choice of useful candidates for variable
swaps. We would also like to experiment with running fault
localisation software incrementally as repairs are applied to
improve its reliability. Finally, we would like to explore the
prospect of building pyEDB into a continuous integration
system as a background mechanism for suggesting repairs to
code failing regression testing. If the brevity of corrections
it produced here can be maintained more broadly it might
prove a very useful tool.
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