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ABSTRACT
The recent Crossover Bias theory has shown that bloat in Ge-
netic Programming can be caused by the proliferation of small
unfit individuals in the population. Inspired by this theory, Op-
erator Equalisation is the most recent and successful bloat control
method available. In this work we revisit two bloat control meth-
ods, the old Brood Recombination and the newer Dynamic Lim-
its, hypothesizing that together they contain the two main ingredi-
ents that make Operator Equalisation so successful. We reassemble
Operator Equalisation by joining these two ingredients in a hybrid
method, and test it in a hard real world regression problem. The re-
sults are surprising. Operator Equalisation and the hybrid variants
exhibit completely different behaviors, and an unexpected feature
of Operator Equalisation is revealed, one that may be the true re-
sponsible for its success: a nearly flat length distribution target. We
support this finding with additional results, and discuss its implica-
tions.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance, Experimentation

Keywords
Genetic Programming, Bloat, Operator Equalisation, Crossover
Bias, Brood Recombination, Dynamic Limits, Regression

1. INTRODUCTION
The most recent theory concerning bloat is the Crossover Bias

theory introduced by Dignum, Poli and Langdon [5, 6, 11]. It ex-
plains code growth in tree based GP by the effect that standard
subtree crossover has on the distribution of tree sizes, or program
lengths, in the population. Whenever subtree crossover is applied,
the amount of genetic material removed from the first parent is the
exact same amount inserted in the second parent, and vice versa.
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The mean tree size, or mean program length, remains unchanged.
However, as the population undergoes repeated crossover opera-
tions, it approaches a particular Lagrange distribution of tree sizes
where small individuals are much more frequent than the larger
ones [6]. For example, crossover generates a high amount of single-
node individuals. Because very small individuals are generally un-
fit, selection tends to reject them in favor of the larger individu-
als, causing an increase in mean tree size. According to the the-
ory, it is the proliferation of these small unfit individuals, perpetu-
ated by crossover, that ultimately causes bloat. Strong theoretical
and empirical evidence supports the Crossover Bias theory. It has
been shown that the bias towards smaller individuals is more in-
tense when the population mean tree size is low, and that the initial
populations resembling the Lagrange distribution bloat more easily
than the ones initialized with traditional methods [11]. It was also
found that the usage of size limits may actually speed code growth
in the early stages of the run, as it promotes the proliferation of
the smaller individuals [6]. Along with further theoretical develop-
ments, it has also been shown that smaller populations bloat more
slowly [14], and that elitism reduces bloat [12, 13].

Inspired by the Crossover Bias theory, Operator Equalisation
[7,17] is the most recent and successful bloat control method avail-
able today. It can bias the population towards a desired program
length distribution by accepting or rejecting each newly created
individual into the population. Operator Equalisation can easily
avoid the small unfit individuals resulting from the crossover bias,
as well as the excessively large individuals that are no better than
the smaller ones already found. Preventing the larger individuals
from entering the population is a common bloat control practice;
preventing the smaller ones is not, however it has been done non
explicitly. We revisit two bloat control methods, the old Brood Re-
combination [21] and the newer Dynamic Limits [16], hypothesiz-
ing that together they contain these two key ingredients that seem
to make Operator Equalisation so successful. We reassemble Oper-
ator Equalisation by joining them in a hybrid method, and test it in
a hard real world regression problem, revealing surprising results.

In the next section we describe Operator Equalisation with some
detail. Sections 3 and 4 describe Brood Recombination and Dy-
namic Limits, explaining why they contain the necessary ingredi-
ents to reassemble Operator Equalisation. Section 5 describes the
data, techniques and parameters used for the experiments, while
Section 6 reports and discusses all the results obtained. Finally,
Section 7 summarizes and draws conclusions, also suggesting fu-
ture work.

2. OPERATOR EQUALISATION
Developed alongside the Crossover Bias theory (see Section 1),

Operator Equalisation is a recent technique to control bloat that al-
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lows an accurate control of the program length distribution inside
a population during a GP run. Already used a number of times in
benchmark and real world problems (e.g. [18–20, 22]), it is how-
ever still fairly new, so we provide a detailed explanation of how it
works.

2.1 Distribution of program lengths
We use the concept of a histogram. Each bar of the histogram

can be imagined as a bin containing those programs (individuals,
solutions) whose length is within a certain interval. The width of
the bar determines the range of lengths that fall into this bin, and the
height specifies the number of programs allowed within. We call
the former bin width and the latter bin capacity. All bins are the
same width, placed adjacently with no overlapping. Each length
value, l, belongs to one and only one bin b, identified as follows:

b =

⌊
l −1

bin_width

⌋
+1 (1)

For instance, if bin_width = 5, bin 1 will hold programs of
lengths 1,..,5, bin 2 will hold programs of lengths 6,..,10, etc. The
set of bins represents the distribution of program lengths in the pop-
ulation.

Operator Equalisation biases the population towards a desired
target distribution by accepting or rejecting each newly created in-
dividual into the population (and into its corresponding bin). The
original idea of Operator Equalisation [7], where the user was re-
quired to specify the target distribution and maximum program
length, rapidly evolved to a self adapting implementation [17] we
here designate as OpEq, where both these elements are automat-
ically set and dynamically updated to provide the best setting for
each stage of the evolutionary process. Other developments of Op-
erator Equalisation were also made [18] but we do not use them
here.

There are two tasks involved in OpEq: calculating the target (in
practical terms, defining the capacity of each bin) and making the
population follow it (making sure the individuals in the population
fill the set of bins).

2.2 Calculating the Target Distribution
In OpEq the dynamic target length distribution simply follows

fitness. For each bin, the average fitness of the individuals within
is calculated, and the target is proportional to these values. Bins
with better average fitness will have higher capacity, because that
is where search is proving to be more successful. Formalizing, the
capacity, or target number of individuals, for each bin b, is calcu-
lated as:

bin_capacityb = round(n× ( f̄b/∑
i

f̄i)) (2)

where f̄i is the average fitness in the bin with index i, f̄b is the
average fitness of the individuals in b, and n is the number of in-
dividuals in the population. Equation 2 is used for maximization
problems where higher fitness is better (so the fitness values must
suffer a transformation for minimization problems, for example a
sign inversion and mapping back to positive values).

Initially based on the first randomly created population, the tar-
get is updated at each generation, always based on the fitness mea-
surements of the current population. This creates a fast moving
bias towards the areas of the search space where the fittest pro-
grams are, avoiding the small unfit individuals resulting from the
crossover bias, as well as the excessively large individuals that are
no better than the smaller ones already found. Thus the dynamic
target is capable of self adapting to any problem and any stage of
the run.

2.3 Following the Target Distribution
In OpEq every newly created individual must be validated before

eventually entering the population, and the ones who do not fit the
target are rejected. Each offspring is created by genetic operators
as in any other GP system. After that, its length is measured and
its corresponding bin is identified using Equation 1. If this bin al-
ready exists and is not full (meaning that its capacity is higher than
the number of individuals already there), the new individual is im-
mediately accepted. If the bin still does not exist (meaning it lies
outside the current target boundaries) the fitness of the individual is
measured and, in case we are in the presence of the new best-of-run
(the individual with best fitness found so far), the bin is created to
accept the new individual, becoming immediately full. Any other
non-existing bins between the new bin and the target boundaries
also become available with capacity for only one individual each.
The dynamic creation of new bins frees OpEq from the fixed max-
imum program length that was present in the original idea. The
criterion of creating new bins whenever needed to accommodate
the new best-of-run individual is inspired by the Dynamic Limits
bloat control technique [16].

When the intended bin exists but is already at its full capacity,
or when the intended bin does not exist and the new individual is
not the best-of-run, the individual is evaluated and, if we are in the
presence of the new best-of-bin (meaning the individual has bet-
ter fitness than any other already in that bin), the bin is forced to
increase its capacity and accept the individual. Otherwise, the indi-
vidual is rejected. Permitting the addition of individuals beyond the
bin capacity allows a clever overriding of the target distribution, by
further biasing the population towards the lengths where the search
is having a higher degree of success. In the second case, when the
bin does not exist and the individual is not the best-of-run, rejection
always occurs.

3. BROOD RECOMBINATION
Brood Recombination, also called Greedy Recombination, was

popularized by Tackett in 1994 [21] as a new recombination op-
erator to serve as a substitute for the standard subtree crossover.
Instead of recombining two parents once to produce one pair of
offspring, Brood Recombination recombines two parents n times,
each time selecting different crossover points, to produce n pairs of
offspring, where n is called the brood size factor. Then only two
offspring are selected, the best of the brood, and the rest discarded.
This idea was originally introduced by Altenberg as Soft Brood Se-
lection [1], to which Tackett added the use of a reduced-cost fitness
evaluation for members of the brood. The primary motivation for
developing Brood Recombination was to improve the efficiency of
GP systems:

“The fitness evaluation of brood members is per-
formed with a ‘culling function’ which is a fractional
subset of the fitness evaluation function for full-fledged
population members. A significant result is that large
reductions in the cost of the culling function pro-
duce small performance degradation of the population
members.” [21]

The secondary motivation was to reduce bloat, based on the early
and long lasting theory that bloat emerges as a protection against
the destructive effects of crossover (e.g. [1, 4, 8, 10], for a review
of bloat theories see [16]). But Tackett refutes this theory based
on the fact that Brood Recombination, being a much less destruc-
tive recombination operator, was not able to reduce code growth.
However, according to the Crossover Bias theory, Brood Recombi-
nation should help control bloat. In practical terms, creating several
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pairs of offspring and then choosing only the best may reduce the
crossover bias to create many small individuals. If it is verified that
the smaller offspring are indeed the most unfit, they will not be se-
lected from among the brood members, and not introduced into the
population. The larger the brood, the larger the reduction of bias.

Therefore, we designate Brood Recombination as the first key
element for assembling a hybrid method that recreates the success-
ful behavior of Operator Equalisation. We do not, however, use
the “culling function” for brood member selection, instead using
the same fitness function used for full-fledged population mem-
bers. This means we are in fact using the original Soft Brood
Selection [1], however we decide to keep the most popular name
of Brood Recombination. We also introduce a variant of Brood
Recombination which we call Batch Recombination. The only dif-
ference is that, instead of repeatedly selecting two offspring from
the 2n brood members produced by each single couple, all the off-
spring needed to form a new generation are now selected only once
from among the several broods produced by all the couples. This
should reduce the crossover bias ever further.

4. DYNAMIC LIMITS
Tree-based GP traditionally uses a static depth limit to avoid ex-

cessive growth of its individuals. When an individual is created that
violates this limit, one of its parents is chosen for the new genera-
tion instead [9].

“This effectively avoids the growth of trees beyond
a certain point, but it does nothing to control bloat un-
til the limit is reached. The static nature of the limit
may also prevent the optimal solution to be found for
problems of unsuspected high complexity.” [16]

These unsolved problems lead Silva et al. to create a bloat con-
trol technique called Dynamic Maximum Tree Depth [15, 16]. It
also imposes a depth limit on the individuals accepted into the pop-
ulation, but this one is dynamic, meaning that it can be changed
during the run. The dynamic limit is initially set with a low value,
usually the same as the maximum depth of the initial random trees.
Any new individual who breaks this limit is rejected and replaced
by one of its parents (as with the traditional static limit), unless it
is the best individual found so far. In this case, the dynamic limit
is raised to match the depth of the new best-of-run and allow it into
the population. Dynamic Maximum Tree Depth can coexist with
the traditional depth limit.

First published in 2003 [15], the original Dynamic Maximum
Tree Depth was then extended to include two variants: a heavy
dynamic limit, called heavy because it falls back to lower values
whenever allowed, and a dynamic limit on size instead of depth.
The entire concept has later been collectively designated as Dy-
namic Limits [16]. The heavy limit is one that accompanies the
depth of the best individual, up or down, with the sole constraint of
not going lower than its initialization value; a very heavy option al-
lows it to fall back even below its initialization value. As expected,
whenever the limit falls back to a lower value, some individuals al-
ready in the population immediately break the new limit. These are
allowed to remain in the population but, when breeding, the limit
that applies to their children is the depth of the deepest parent. The
second variation is the usage of a dynamic size limit, where size is
the number of nodes of the tree. The dynamic size limit also in-
cludes a modified version of the Ramped Half-and-Half initializa-
tion procedure that replaces the concept of depth with the concept
of size.

Since Operator Equalisation itself was inspired by the Dynamic
Limits for the decision on when to open new bins (see Section 2.3),

it is only natural to assume that this is the second key element for
its success. Although a size limit would probably mimic the de-
cisions made by Operator Equalisation more accurately (because
they are based on solution length, which is exactly the same thing),
this variant was never as successful as using depth [16] and has the
additional burden of a modified initialization procedure, so we de-
cided to use the dynamic limit on depth. We have, however, chosen
the very heavy option that allows the limit to fall back as much as
possible, since in Operator Equalisation it is also possible to elimi-
nate any bins from the target, in case they remain empty.

5. EXPERIMENTS
To perform our experiments we chose to use the first real world

problem that was tackled by Operator Equalisation, the prediction
of the human oral bioavailability of a set of candidate drug com-
pounds on the basis of their molecular structure [18,19]. We briefly
describe the problem and then specify how Operator Equalisation
was reassembled using Brood Recombination and Dynamic Limits,
specifying the techniques and parameters used in the experiments.

5.1 Test Problem
Human oral bioavailability is the pharmacokinetic parameter that

measures the percentage of the initial orally submitted drug dose
that effectively reaches the systemic blood circulation after passing
through the liver. This parameter is particularly relevant in the drug
discovery process, and this problem has already been approached
by several machine learning methods, with GP providing the best
results so far [2, 3].

We have used the same dataset as [18, 19], which is freely avail-
able1. The dataset consists of a matrix composed by 260 rows and
242 columns, where each row is a vector of molecular descriptors
of a particular drug, and each column represents a molecular de-
scriptor, except the last one that contains the known target values
of the bioavailability parameter.

Following [18, 19], from this dataset training and test sets were
obtained by random splitting: at each different run, 70% of the
molecules were randomly selected with uniform probability and
inserted into the training set, while the remaining 30% were used
for the test set.

5.2 Techniques and Parameters
To reassemble Operator Equalisation we began by implement-

ing a Standard GP system (StdGP). Then we joined Brood Recom-
bination (Brood), alternatively Batch Recombination (Batch), us-
ing different Brood/Batch sizes (2,5,10). To assess how much the
Brood/Batch Recombination differs from Standard GP, and how
much it pushes the behavior towards Operator Equalisation (OpEq),
we compared all of them to each other.

On a second phase we joined Dynamic Limits (Dyn) to all the
previous variants to create the hybrid techniques, and once again
performed comparisons among them, to assess how much they are
able to approximate the behavior of OpEq. Finally we implemented
OpEq with a flat target distribution (FlatOpEq) to verify some of
our results.

Table 1 shows the numbers and acronyms of the 16 different
techniques used. Some of the plots of Section 6 use the numbers
for lack of space for the acronyms. Table 2 shows the parameter
settings common to all the techniques. Regarding the parameters
specific to each technique, both Operator Equalisation techniques
use a bin width of 1, and none uses the maximum depth limit.

1http://personal.disco.unimib.it/Vanneschi/bioavailability.txt
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Table 1: Numbers and acronyms of the 16 techniques used.
Number Acronym Number Acronym

1 StdGP 9 DynBrood2
2 DynStdGP 10 DynBrood5
3 Brood2 11 DynBrood10
4 Brood5 12 DynBatch2
5 Brood10 13 DynBatch5
6 Batch2 14 DynBatch10
7 Batch5 15 OpEq
8 Batch10 16 FlatOpEq

Table 2: Parameter settings common to all techniques.
Parameter Setting
Number of runs 30
Population size 500
Function and terminal sets {+,−,∗,/}, {x1, ...,x241}
Tree initialization and growth ramped max depth 6, limit 17
Fitness function root mean squared error
Selection for reproduction lexicographic tournament, size 10
Replication rate 0.1
Genetic operators crossover 0.9, mutation 0.1
Selection for survival non elitist, replace all
Stop criterion 50 generations

6. RESULTS AND DISCUSSION
Some of the plots presented in this section are still somewhat

unconventional. They plot the evolution of fitness against length of
the solution, completely disregarding generations, evaluations, or
time spent in the search process. These plots have been first used
by Silva and Dignum [17] and we consider them to be an intuitive
way of visualizing the bloating behavior of any given technique.

Indeed, we are not interested in measuring the performance of
the techniques in terms of how much computational effort is re-
quired to achieve a given fitness. Operator Equalisation is recog-
nized to be inefficient, an issue discussed at length in [17], however
it can find solutions with a fitness/length ratio that other techniques
do not seem to be able to reach. In the real world this is usually one
of the most important quality factor of a solution, regardless of the
more or less lengthy search process that ultimately found it. There-
fore, we also present a few plots showing the evolution of length
along the generations, knowing perfectly well that one generation
represents enormously different computational efforts to different
techniques.

Although the issue of overfitting is not central to this work, we
are using a real world problem where the generalization ability is
important. Therefore, we present some results obtained in the test
set, to show that none of the modified techniques suffers from a
decreased generalization ability that would prevent it from being
successfully used in the real world.

Finally, in most plots and related text we do not discriminate
between the different Brood/Batch sizes except when we consider
the differences to be important.

6.1 Comparing fitness and solution length
Figure 1a shows the best training fitness plotted against the av-

erage length of the solutions in the population, for Standard GP,
the different sizes of Brood/Batch Recombination, and Operator
Equalisation. Figure 1b is similar to 1a except that instead of plot-
ting the best training fitness, it plots the test fitness of the best
training individual. It is immediately apparent that, although some

variants of Brood/Batch Recombination exhibit a more desirable
bloating behavior (fitness/length ratio) than Standard GP, most of
the differences seem to be caused by the simple fact that producing
more offspring allows for more search, since the general trend is
the same. Also Operator Equalisation is allowed more search due
to the number of rejected individuals, however its behavior is not
even remotely approximated by any of the Brood/Batch variants.
The stabilization of average solution length exhibited by Operator
Equalisation had already been observed in other real world prob-
lems (e.g. [20, 22]). Figure 1c shows the evolution of the average
solution length plotted against the generations, where the differ-
ences in code growth are more easily observed. For a visualization
of the distribution of training and test fitness and average solution
length in the final generation consult Figure 5.

Figure 2 is analogous to 1 except that it refers to Standard
GP and Brood/Batch Recombination using Dynamic Limits. Like
Brood/Batch Recombination, Dynamic Limits is a somewhat help-
ful modification by itself (see Figure 4 for a direct comparison),
but the effect of joining both elements is not cumulative, and once
again Operator Equalisation remains a far better technique in terms
of bloating behavior. The usage of Dynamic Limits in Brood/Batch
Recombination causes larger differences in the behavior of differ-
ent Brood/Batch sizes, with size 2 (DynBrood2 and DynBatch2)
resulting in less code growth and less learning (see also Figure 5),
which may simply be a result of less search.

6.2 Exploring the length distributions
Given the previous plots we are forced to conclude that the hy-

brid techniques using Brood/Batch Recombination and Dynamic
Limits do not contain the same ingredients as Operator Equalisa-
tion. By design, the hybrid techniques should emulate the deci-
sions of Operator Equalisation on whether to accept or reject the
individuals (large or small) that fall outside the limits of the tar-
get, so the difference must lie within the target itself. Therefore,
we now focus our attention on the distribution of solution lengths
during the evolution, looking for an explanation to the unique be-
havior of Operator Equalisation. In principle, given the same limits
the solution lengths should follow similar distributions in all the
techniques, since Operator Equalisation enforces a distribution that
is “proportional” to fitness (see Section 2.2), which is exactly what
selection is supposed to do.

Figure 3 contains some actual and target length distributions
of different techniques. The three plots in the first row (a,b,c)
show typical length distributions obtained by Standard GP, Dy-
namic Brood of size 2, and Operator Equalisation. The height of the
peaks is not important for this discussion. DynBrood2 was chosen
for being the hybrid technique with the lowest expected difference
to Standard GP, and it is interesting to compare the length distri-
butions of both. There seems to be no substantial difference in
terms of the larger individuals, at least nothing typical was evident
among the 20 runs. However, in terms of the smaller individu-
als the effect of Brood Recombination can be clearly seen. While
Standard GP keeps producing (and consequently accepting) small
individuals long after the distribution is centered on larger lengths,
Brood Recombination has the ability to prevent them from entering
the population, exhibiting an almost clean cut between zero fre-
quency and high frequency. This effect is stronger as the brood
size increases, and further so when using Batch instead of Brood
(not shown). We naturally assume that, given the similarity of both
distributions, like Standard GP Brood Recombination is also pro-
ducing small individuals. Therefore we conclude that they are in-
deed the most unfit ones and are thus rejected in favor of the best of
the brood. According to the Crossover Bias theory (see Section 1),
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Figure 1: Standard GP versus Brood/Batch Recombination versus Operator Equalisation. (a) Best training fitness versus average
solution length; (b) Test fitness (of the best training individual) versus average solution length; (c) Average solution length versus
generations.
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Figure 2: Dynamic Standard GP versus Dynamic Brood/Batch Recombination versus Operator Equalisation. (a) Best training fitness
versus average solution length; (b) Test fitness (of the best training individual) versus average solution length; (c) Average solution
length versus generations.

this should act against bloat, but our results show only a minimal
effect, at least when compared to Operator Equalisation.

The length distribution of Operator Equalisation (Figure 3c) is
completely different from the previous ones. Instead of showing a
clear preference for given lengths, this distribution spreads the in-
dividuals across most of the available bins, including the bins of the
smaller lengths that presumably contain the worst individuals. This
surprising “flatness” was found to be the main characteristic of all
the 20 distributions of Operator Equalisation. Further investigation
revealed that these distributions are the result of following targets
that are mostly uniform, a truly unexpected finding. The plot of
Figure 3d shows the target that originated the distribution shown
on plot c. Had the target been faithfully followed, the actual distri-
bution would be even flatter, but the several rejections and overrides
gave it a less artificial look.

The explanation for such a flat uniform target became clear after
realizing that the diversity and amplitude of fitness values that occur
in this real world problem almost guarantees the presence of very
unfit outliers in the population, practically every generation. These
fitness values are so much worse than the others that, compared to
them, all the rest looks the same, and all the bins end up getting the
same capacity. Removing these outliers before calculating the tar-
get may prove to be a difficult task, since once we remove the first
lot others will appear in the new distribution. An obvious improve-
ment is to use the best or median fitness of each bin, instead of the
average, to calculate the target, but even so the problem persists
when some bins contain only very unfit individuals.

But is this really a problem that needs to be solved? Certainly an
unintended feature, but also the most probable reason why Operator
Equalisation exhibits a behavior so different and so much better
than all other techniques, at least where bloat is concerned. No
matter where the best individuals are found, Operator Equalisation
maintains an almost uniform search across the entire set of explored
lengths, thus increasing the probability of finding smaller solutions.
In the limit, the number of individuals in the population will not be
enough to ensure one individual per bin, but let us concentrate on
the most immediate issues for now.

6.3 Enforcing a flat target
Assuming the nearly flat length distribution target is the true re-

sponsible for the success of OpEq in this symbolic regression prob-
lem, we wonder what improvements we can achieve if we enforce
a truly flat distribution. So we implemented an Operator Equali-
sation variant that does not calculate the capacity of the bins with
Equation 2, but instead gives the same capacity to all of them. All
the rest, in particular the decision to create new bins, did not suffer
any changes. Note that for most problems the actual length distri-
bution is never exactly equal to the target, because when bins get
full the target begins to be overridden. In our particular problem
this is aggravated by the fact that all the arithmetic operators in the
function set are binary, making it impossible to create solutions of
even length. This means that half of the bins of our perfectly flat
target are never filled, and half or the individuals of the population
are guaranteed to override the target. In fact, because of this limita-
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Figure 3: Examples of actual and target length distributions. (a) Typical length distribution of Standard GP; (b) Typical length
distribution of DynBrood2; (c) Typical length distribution of Operator Equalisation; (d) Target length distribution that originated
the distribution in plot c; (e) Typical target length distribution of Operator Equalisation with flat target; (f) Length distribution
originated by the target in plot e. All frequencies above 25 are not shown.

tion caused by the set of exclusively binary functions, to facilitate
the visualization none of the plots of Figure 3 shows the bins of
even length.

Figure 3e shows a typical target distribution of the new variant
of Operator Equalisation, that we call FlatOpEq, while Figure 3f
shows the actual distribution obtained by using this target. It is
not completely flat for the reasons stated above, but it is typically
much flatter than the actual distributions of OpEq, like the one in
Figure 3c. Next, we compare FlatOpEq with the remaining tech-
niques, in terms of fitness and solution length.

Figure 4 shows a direct comparison between Standard GP with
and without Dynamic Limits, Operator Equalisation with and with-
out flat target, and another choice of a Brood/Batch technique, in
this case Batch5 for being the one with the more desirable bloat-
ing behavior among all the Brood/Batch variants, with or without
Dynamic Limits. Figure 5 shows boxplots of the training and test
fitness values, and the solution lengths, obtained in the final gen-
erations of the 20 runs. The FlatOpEq technique can reach signif-
icantly better fitness values than all other techniques (determined
by non-parametric ANOVA with p = 0.05), but once again the ex-
planation may simply be that more rejections mean more search,
hence more learning. In terms of test fitness there are no statisti-
cally significant differences (Figure 5b), however it is worth noting
that somewhere along the evolution FlatOpEq is able to reach bet-
ter test fitness than the other techniques, before overfitting occurs
(Figure 4b). The average solution length is basically the same for
both Operator Equalisation variants at the end of the run, for de-
spite doing more search FlatOpEq stabilizes the average solution
length at around the same values as OpEq.

All comparisons made, there seems to be no disadvantage in ar-
tificially flattening the target distribution of Operator Equalisation.

7. CONCLUSIONS AND FUTURE WORK
We have hypothesized that the two key ingredients that make

Operator Equalisation such a successful bloat control method can
be found in older methods such as Brood Recombination and Dy-
namic Limits. With Brood Recombination, the usually very unfit
small individuals frequently produced by the parents are rejected
in favor of the best of the brood. According to the Crossover Bias
theory, eliminating the bias to introduce small unfit individuals in
the population helps control bloat. With Dynamic Limits, the indi-
viduals larger than any others already found in the population are
only accepted if they prove to be the best ever found during the
run. This prevents unnecessarily large individuals to enter the pop-
ulation, thus controlling bloat.

We reassembled Operator Equalisation by taking a Standard GP
system and coupling it with these two ingredients, obtaining a hy-
brid method which we tested in a hard real world regression prob-
lem. None of the several variants tested was able to produce a bloat-
ing behavior remotely similar to the one of Operator Equalisation.
We took a deeper look at the dynamics of the search and found
that, for previously unsuspected reasons, the target length distri-
bution used by Operator Equalisation is typically nearly flat, con-
trasting with the peaky and well delimited targets of all the other
approaches. Finally we introduced a new Operator Equalisation
variant that enforces an artificially created flat target, and verified
that the results were even better than the previous version.
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Figure 4: Standard GP with and without Dynamic Limits versus one of the Brood/Batch techniques (Batch5) versus Operator
Equalisation with and without flat target. (a) Best training fitness versus average solution length; (b) Test fitness (of the best training
individual) versus average solution length; (c) Average solution length versus generations.
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Figure 5: Boxplots of all the 16 techniques used (see Table 1 for their acronyms). (a) Best training fitness; (b) Test fitness (of the best
training individual); (c) Average solution length. Values obtained in the last generation of each of the 20 runs. Many outliers not
shown in plot b.

It seems like the flatter the target, the most success is achieved
in bloat control. Instead of avoiding small unfit individuals, the
flat target actually prevents the search from moving away from
the shorter lengths, even long after better and larger solutions have
been found. It simply spreads individuals across all the previously
visited lengths, ensuring that search does not abandon any of them.

After absorbing these results it becomes quite trivial that, to
avoid bloat and reach smaller solutions, we must keep searching
among the shorter lengths. The success of Operator Equalisation is
undeniable, but the current results force us to look back at its previ-
ous successes and check if they were simply the result of an unin-
tended flat distribution target, or if the Crossover Bias theory actu-
ally plays a significant role in the process. We realize just now that
a flat target may appear as a consequence of, not only extremely
high, but also extremely low, phenotypic diversity, and the bench-
mark parity problems immediately come to mind as cases to check.
We leave this as future work. We also intend to provide results
based on some measure of computational effort, for example the
number of evaluations performed, instead of the number of gener-
ations, to make the comparison between techniques more objective
and fair.

We finish with the ironic remark that the original meaning of
equalization was, not surprisingly, flattening the signal along the
entire spectrum.
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