
An Ant Colony Optimization Algorithm to Solve the
Minimum Cost Network Flow Problem with Concave Cost

Functions

Marta S. R. Monteiro
Faculdade de Economia and

LIAAD-INESC Porto L.A.,
Universidade do Porto
Rua Dr. Roberto Frias,

4200-464 Porto PORTUGAL
martam@fep.up.pt

Dalila B. M. M. Fontes
Faculdade de Economia and

LIAAD-INESC Porto L.A.,
Universidade do Porto
Rua Dr. Roberto Frias,

4200-464 Porto PORTUGAL
fontes@fep.up.pt

Fernando A. C. C. Fontes
Faculdade de Engenharia

and ISR-Porto,
Universidade do Porto
Rua Dr. Roberto Frias,

4200-465 Porto PORTUGAL
faf@fe.up.pt

ABSTRACT

In this work we address the Singe-Source Uncapacitated
Minimum Cost Network Flow Problem with concave cost
functions. Given that this problem is of a combinatorial na-
ture and also that the total costs are nonlinear, we propose
a hybrid heuristic to solve it. In this type of algorithms one
usually tries to manage two conflicting aspects of search-
ing behaviour: exploration, the algorithm’s ability to search
broadly through the search space; and exploitation, the al-
gorithm ability to search locally around good solutions that
have been found previously. In our case, we use an Ant
Colony Optimization algorithm to mainly deal with the ex-
ploration, and a Local Search algorithm to cope with the
exploitation of the search space. Our method proves to be
very efficient while solving both small and large size problem
instances. The problems we have used to test the algorithm
were previously solved by other authors using other popula-
tion based heuristics and our algorithm was able to improve
upon their results, both in terms of computing time and
solution quality.

Categories and Subject Descriptors: G.2.2 [Discrete
Mathematics]: Graph Theory — Network problems

General Terms: Algorithms.

Keywords: Ant Colony Optimization, Concave Costs, Hy-
brid, Local Search, Network Flow.

1. INTRODUCTION
The Minimum Cost Network Flow Problem (MCNFP) in-

cludes a wide range of combinatorial optimization problems.
Many applications exist, for instance supply chains, logistics,
production planning, communications and transportations
[16, 1]

MCNFPs with linear costs are solvable in polynomial time,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

that is, they are considered easy to solve. In this work, we
consider nonlinear costs comprising fixed costs as well as
variable costs associated with the flow in each arc. Regard-
ing the variable costs we consider both linear and nonlinear
concave costs. As such, the total costs incurred when us-
ing an arc are always nonlinear and concave. When concave
costs are introduced in MCNFPs, then the difficulty to solve
them increases and they become NP-Hard [17]. The special
case of the Single-Source Uncapacitated Minimum Cost Net-
work Flow Problem (SSU MCNFP) with fixed-charge costs
has also been proven to be NP-Hard [18, 26, 16].

Most of the work developed on concave MCNFP considers
only problems with fixed-charge costs, that is functions hav-
ing a fixed component and a linear routing component. Re-
cent works on fixed-charge MCNFPs are those of [26] where
the authors propose a bilinear formulation from which an
exact algorithm is derived; [22] where a series of concave
piecewise linear network flow problems are solved by using
a dynamic slope scaling first proposed by [20]; [23] provide
an exact algorithm, a branch-and-cut for such problems.

Other works considering nonlinear concave routing costs
[17, 19, 29] do not include a fixed component.

As far as we are aware of, the only works considering non-
linear concave routing costs and fixed costs simultaneously
are those of [7], [14, 15, 12] and [13].

Following on the work of Fontes and Gonçalves [13], in
this work we propose an Ant Colony Optimization (ACO)
and a Hybrid Ant Colony Optimization (HACO) algorithm
to solve Single-Source Uncapacitated (SSU) Minimum Cost
Network Flow Problems (MCNFP) with a fixed costs com-
ponent and a variable component, both considering a linear
and a nonlinear concave routing component. The HACO al-
gorithm incorporates a Local Search (LS) procedure, based
on swap moves, in order to improve the best solution found
at each iteration. The results show the effectiveness and effi-
ciency of our HACO algorithm for both small and large size
problems.

2. PROBLEM DEFINITION
Consider a directed graph G = (N,A), where N is a set

of n + 1 nodes and A is a set of m arcs (i, j). A single-
source minimum cost network flow problem is a problem
that minimizes the total costs gij incurred with the network

139

while satisfying the nodes demand dj . The commodity flows
from a single source t to the n demand nodes i ∈ N \ {t}.

The mathematical model for the Minimum Cost Network
Flow Problem can then be written as follows:

min:
∑

(i,j)∈A

gij(xij) (1)

s.t.:
∑

{i|(i,j)∈A}

xij −
∑

{k|(j,k)∈A}

xjk = bj ,∀j∈N\{t},(2)

xij ≥ 0, ∀(i,j)∈A, (3)

where xij are the decision variables representing the amount
of flow routed through arc (i, j). The objective in this prob-
lem is to minimize the costs incurred with the use of the
network and with the flows routed through it which are rep-
resented as given in equation (1). Constraints (2) are called
the flow conservation constraints. The first term of these
constraints represents the flow entering the node and the
second term represents the flow coming out from the node.
Therefore, the flow conservation constraints state that the
difference between the flow going into a node and the flow
coming out from a node must be the demand of the node.
Constraints (3) refer to the positive nature of the variables.

We consider two types of cost functions both including a
fixed cost cij which is incurred whenever arc (i, j) is used.
Cost functions of Type 1 consider a linear routing cost bij
per unit of flow routed through arc (i, j) as follows:

gij(xij) =

{

0, if xij = 0,
bij · xij + cij , otherwise.

(4)

Regarding cost function of Type 2 we consider a concave
routing cost, in addition to the fixed cost, as follows:

gij(xij) =

{

0, if xij = 0,
−aij · x2

ij + bij · xij + cij , otherwise.
(5)

Concave MCNFPs have the combinatorial property that if
a finite solution exists, then there exists an optimal solution
that is a vertex (extreme point) of the corresponding feasible
domain (defined by the network constraints). SSU concave
MCNFPs have a finite solution if and only if there exists a
direct path going from the source to every demand vertex
and if there are no negative cost cycles, otherwise an un-
bounded negative cost solution would exist. Therefore, for
the SSU concave MCNFP, an extreme flow is a tree rooted at
the single source spanning all demand vertices. For details
and proofs see Zangwill [31].

3. METHODOLOGY
In this section we review the Ant Colony Optimization

methodology and the Hybrid ACO that was developed to
solve the SSU concave MCNFP.

3.1 Ant Colony Optimization
Ant Colony Optimization (ACO) principles are based on

the natural behaviour of ants while searching for the short-
est path between their nest and some food source. One may
argue that their goal is not to find the shortest path but, in
the end, and with their behaviour, that is exactly what they

end up achieving. Ants have to travel several times between
their nest and a food source and, while travelling, they de-
posit in the path a chemical substance called pheromone1. If
a path has a large concentration of pheromone, this is prob-
ably due to its shorter length that allowed ants to travel
faster, resulting in a larger number of travellers and thus
of ants depositing pheromone throughout the path. When
an ant, later after, has to choose between paths to follow to
reach the food source, the ant will choose with higher proba-
bility the path with the largest pheromone concentration. It
was the observation of this sort of communication developed
by the ants that inspired Dorigo and Stützle to develop the
first ant based algorithm which was called Ant System [10],
which was used to solve the Travelling Salesman Problem
(TSP), a well known NP-Hard problem.

The Ant System (AS) has two main phases, the construc-
tion of the tour/solution and the pheromone update. Nev-
ertheless, other decisions have to be made before the ants
can start finding a solution, such as defining the structure
of the solution, deciding on the number of ants to use and
the initial pheromone quantity to spread in each path.

Ants move on the network by going from one node to
another. The one where it moves to is probabilistically cho-
sen based on the pheromone quantities deposited on the arcs
outgoing from the current node. Since each ant starts on the
same source node, when all nodes have been passed through,
a feasible solution has been achieved. After the ants have
constructed their respective solutions, the pheromone trails
are updated. The update is done in two ways: on the one
hand pheromone values are decreased through evaporation,
that is its values are decreased by a constant decay; on the
other hand, pheromone values are increased for the parts
of the network which are present in the best solution(s).
Such increase is proportional to the solution(s) quality. The
process of solution construction and pheromone updating is
repeated until some stopping criterion has been reached.

Following the first Ant Algorithm, improvements were
attempted and sometimes achieved by modifying and/or
adding some features. Nonetheless, the most important
development that followed was the description of the Ant
Colony Optimization Metaheuristic (ACO) by [11].

The main difference from the basic structure of the AS
algorithm is the introduction of a Daemon. The daemon
can perform operations that use global knowledge of the
solutions, thus having a very active and important role in
the algorithm, in contrast to the AS algorithm where each
ant was supposed to deposit pheromone in its solution de-
spite what the other solutions were like. This is a task that
has no equivalence in nature. The daemon can control the
feasibility of each solution, for example, by evaporating a
percentage of the pheromone quantity in its arcs as a way of
penalizing such a solution. Or can give an extra pheromone
quantity to the best solution found from the beginning of
the run of the algorithm, or even to the best solution in the
current iteration.

Another important feature, commonly used by authors in
the ant algorithms that were developed ever since, is the in-
troduction of a Local Search feature following the construc-
tion of the solutions. This is an optional feature but has
been proved to be very important in the exploitation of the

1This behaviour is shared by several animal species and even
by some plants.

140

search space nearby good solutions, leading almost always
to better performances of the ACO.

Ant colony based algorithm have been applied to solve a
broad set of problems, mainly due to their versatility: net-
work design problems [25], assignment problems [28, 5], fa-
cility location problems [3, 8], transportation problems [21,
27], just to mention but a few.

In the past few years authors have also developed hy-
brid algorithms between ACO algorithms and Local Search
[24], Simulated Annealing [6], Post Processing Procedures
[9], and even with Genetic Algorithms as is the case of [2].

Next, we will describe the approach we have made with
ACO to solve the SSU concave MCNFP.

3.2 An Ant Colony Optimization Approach
ACO algorithms are characterized by a set of decisions

that have to be made regarding the construction of the so-
lution and some of the used parameters. The first and most
important decision to be made is the representation of the
solution to the problem being solved, because a poor repre-
sentation can lead to not so good solutions.

3.2.1 Representation of the solution

As said before, a feasible extreme solution for the SSU
MCNFP with concave costs is a set of existing arcs forming
a tree, i.e., a connected graph without cycles. So, each ant
solution consists on a number of arcs that equals the number
of demand nodes.

3.2.2 Pheromone Update

After the construction of all the solutions for iteration T
the best of them is identified, and the algorithm updates the
pheromones. The pheromone update is performed according
to the following update function:

τij = (1− ρ) · τij +∆τij . (6)

Initially, and simulating the natural process of evapora-
tion, the pheromone values are reduced in every existing arc
(i, j) ∈ A. This is represented by the first component of
equation (6), that is (1 − ρ) · τij , where ρ represents the
pheromone evaporation rate and ρ ∈]0, 1], and τij is the
pheromone quantity in arc (i, j). The value of the evapora-
tion rate indicates the relative importance of the pheromone
values from one iteration to the following one. If ρ takes a
value near 1, then the pheromone trail will not have a lasting
effect, while a small value will increase the importance of the
arcs a lot longer. The second component, ∆τij , represents
the pheromone quantity to be deposited, and is given by:

∆τij =

{

Q

g(S)
if (i, j) belongs to solution S

0 otherwise,
(7)

where S is the best solution found at the current iteration,
g(S) is its corresponding cost, and Q is a positive propor-
tionality parameter.

3.2.3 Pheromone bounds

Initially, each arc on the problem is given a small amount
of pheromone,

τij = τ0,∀(i, j) ∈ A. (8)

At each iteration, after the pheromone update is per-
formed a check is done to find out if its value is bounded
in the interval [τmin, τmax], following the work of [30]. The
τmax value depends on the cost of the best solution found so
far G∗ and on the pheromone evaporation rate ρ, equation
(9).

τmax =
1

(1− ρ) ·G∗
(9)

The τmin value depends on the upper bound for the pher-
omone value τmax and on a parameter pbest, equation (10),

τmin =
τmax · (1− n

√
pbest)

(n
2
− 1) · n

√
pbest

. (10)

Since both τmin and τmax depend on the cost of the best
solution found so far, they only have to be updated each
time the best solution is improved. After each pheromone
update a check is made to ensure that pheromone values are
within the limits. If on the one hand, some pheromone value
is bellow τmin, it is set to τmin. On the other hand, if some
pheromone value is above τmax, it is set to τmax.

3.2.4 Construction of the solution

The method that is used to construct solutions for the
SSU MCNFP guarantees that a solution is always feasible.
All ants begin their solution construction at the source node.
Initially, an ant selects an existing arc linking the source t
and one of the demand nodes i ∈ N \ {t}. Then, the ant
selects another arc, from the set of available arcs linking the
source or one of the demand nodes already in the partial
solution to another demand node not yet considered. This
last step is performed until all the demand nodes are in
the solution. Therefore the admissibility of the solution is
guaranteed. The choice of the arc entering the solution is
made using the probability function defined bellow:

Pij =
[τij]

α · [ηij]β
∑

(i,j)∈A
[τij]α · [ηij]β

, (11)

where τij is the pheromone present in arc (i, j) at the current
iteration; ηij is the heuristic information for the problem and
is given by ηij = 1

cij+bij
; α > 0 and β > 0 are both param-

eters weighting the relative importance of the pheromone
value and the heuristic information, respectively.

3.2.5 Algorithm

The pseudo-code for the ACO heuristic is given bellow:

Initialize pheromones

WHILE the no. of iterations <= maximum

FOR each ant

Construct solution

END

Identify the best solution of the iteration

Compare with the best solution from the beginning

and update it if necessary

Evaporate Pheromones

Reinforce the pheromone values in the arcs of the

best solution of the current iteration

FOR all arcs

IF the pheromone values are out of the

established bounds

141

THEN modify values accordingly

END

END

3.2.6 Tested Parameters

There are a few decisions regarding the values to be taken
by the parameters described in the previous sections. The
development of our algorithm was achieved in several phases
and we had to set some values for our first experiences. In an
initial phase we tested the parameter values given in Table
1. We used all the problems mentioned in section 4.1 as our
training set.

Parameter Values

α 1, 3
β 2, 3, 5
ρ 0.05, 0.1, 0.2, 0.5
Q 1, 2, 5

pbest 0.5, 0.05, 0.005
τ0 1, 1000000

no. of ants n, 2n
no. of iterations 100, 200, 1000

Table 1: Interval of values tested for the ACO pa-

rameters.

The ones with the best results are summarized in Table
2. After developing the last phase of the hybrid algorithm,
we tested the parameter values once more. The results in-
dicated that the ones chosen in the first tests were still the
ones with the best average results.

Parameter Value

α 1
β 3
ρ 0.1
Q 2

pbest 0.5
τ0 1000000

no. of ants n
no. of iterations 200

Table 2: ACO parameter configuration.

3.3 Local Search
After each iteration of the ACO heuristic has ended, and

after the best solution of the iteration is found, the local
search procedure takes place. The local search allows the
algorithm to search a neighbour solution that might have a
lower cost. For this problem a solution S′ is a neighbour
solution of solution S if S′ is obtained from S by swapping
an arc (i, j) ∈ S by another arc (k, j) /∈ S. Therefore, after
the swap takes place node j gets its demand from node k
instead of node i.

Local search is applied right after the tour construction
and the best solution in the iteration is identified (see sec-
tion 3.2.5). Five ants are selected from the current iteration
to perform local search on their respective solutions, one is
always the best for the iteration the other four are randomly
selected. The pseudo-code of the local search algorithm is
given by:

Sort solution S by ascending arc pheromone

FOR each arc (i,j) in solution S

Sort all the arcs (k,j) that can replace arc

(i,j) in descending order of pheromone

FOR each arc(k, j)

Replace arc (i,j) with the arc (k,j) with the

largest pheromone value

IF cost improved

GOTO next arc in solution S

ELSE

Undo Replace

END

END

END

The arcs in the selected solution are sorted in ascending
order of the value of their pheromone. For each of these
arcs we will try to find an alternative one that improves the
cost of the solution. For these we compute all the arcs that
can replace the current one while maintaining the feasibility
of the solution. We attempt to replace the original arc,
starting with the ones with a higher pheromone value. If one
of the replacements improves the cost of the solution S we
proceed to the next arc in the solution S without attempting
the remaining options. In the end if the solution found S′

improves the cost of the original one, S, the new solution S′

is the one used in the remaining of the algorithm.

4. COMPUTATIONAL EXPERIMENTS
In this section we present the computational results ob-

tained with the ACO and HACO heuristic described above.
We also present literature results for the same problems in
order to compare the performance end effectiveness of our
algorithms.

4.1 Test Problems
In order to test the algorithm that was developed to solve

SSU concave MCNFPs we downloaded the Euclidean test
set available from [4]. The set is divided in ten groups
{g1, g2, . . . , g10} with different ratios between variable and
fixed costs, V/F , since it has been proven in [18] that the val-
ues of such ratios are the main parameter in defining problem
difficulty for fixed-charge MCNFPs. Each of these subsets
has three problem instances for each problem size. Further-
more, the number of nodes considered is 10, 12, 15, 17, 19,
25, 30, 40, and 50. For the problems with 40 and 50 nodes,
there are only 5 groups defined. For further details on these
problems please refer to [14]. Therefore, there is a total of
240 problems to be solved for each cost function type. Each
of these 240 problem instances was solved five times and the
average results obtained are presented and discussed in the
next section.

4.2 Computational Results
The algorithm described in this paper was implemented

in Java and the computational experiments were carried out
in a PC with a Pentium D at 3.20GHz and 1 GB of RAM.

The performance of the heuristics is evaluated by using
two measures:

1. Time, in seconds, required to run the algorithm;

2. % Gap.

142

The Gap is calculated by comparing two solutions, and is
given by:

Gap(%) =
OptS −HS

OptS
× 100,

where OptS stands for the best known solution, which is
an optimum in some cases, and the HS stands for the best
solution found with the heuristic in question.

We compare our results with the ones obtained with a
Hybrid Genetic Algorithm (HGA) reported in [13], and with
the ones obtained by the Dynamic Programming Algorithm
(DP), reported in [15]. In the HGA approach the authors
used the following parameter settings: 10 times the number
of nodes as the population size; a crossover probability of
70%; the top 15% of chromosomes are copied to the next
generation; the bottom 15% of chromosomes of the next
generation are randomly generated; the fitness function is
given by the cost; and finally the number of generations
allowed is 100.

Table 3: Average computational results for cost

function Type 1 and small size instances.
HGA ACO HACO

Size Gap Time Gap Time Gap Time

10 0.005 0.82 0.05 0.07 0 0.15
12 0 1.23 0.18 0.10 0 0.23
15 0 2.11 0.51 0.17 0 0.38
17 0 3.15 0.59 0.24 0 0.55
19 0 4.00 0.78 0.31 0 0.70

For the cost function Type 1 problems with 10 to 19 nodes
the DP provides the optimal solution. We present results for
the ACO algorithm and the Hybrid ACO and compare them
with previous results in the literature. In Table 3 we have the
average times spent to run the algorithms and the gaps for
the HGA, the ACO and the HACO. The the gap is computed
using the optimal solution reported in [15]. As we can see,
although on average the ACO does not manage to reach
the optimal solution for all results, but average gap remain
below 1%. The computational time remains well below 1s.
The average gap increases with the number of nodes in the
problem never reaching 1%. Introducing the Local Search
procedure in the ACO (HACO) allows to find an optimal
solution in all results, an improvement over HGA that failed
to reach that value for some problems. Computational times
are doubled going from ACO to HACO but remain below 1s
and below HGA times.

Table 4: Average computational results for cost

function Type 1 and large instances.
HGA ACO HACO

Size Gap Time Gap Time Gap Time

25 0 9.51 1.43 0.66 0 1.36
30 0 14.61 1.60 1.16 0 2.31
40 0.005 31.67 2.54 2.83 0 5.46
50 0 59.22 2.53 5.95 0 10.75

In Table 4 we have the results obtained for large size prob-
lems with cost function of Type 1. Again the optimal solu-

tion is used for gap computation. ACO gaps and computa-
tional times increase significantly in relation to small sized
problems, but computation time remains reasonably low for
problem complexity. HACO manages again to find all opti-
mal solutions outperforming HGA. HACO time continues to
double ACO computational time but remains considerably
below HGA. Figures 1 and 2 illustrate the comparison be-
tween HGA, ACO, and HACO times for both sets of sizes,
and as it can be seen the HACO behaviour is close to a linear
function, and below ACO and HGA.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 11 12 13 14 15 16 17 18 19

T
im

e
 (

s
e
c
o
n
d
s
)

Problem size

HGA
ACO

HACO

Figure 1: Computational time results obtained for

small size instances and Type 1 cost functions.

 0

 10

 20

 30

 40

 50

 60

 25 30 35 40 45 50

T
im

e
 (

s
e
c
o
n
d
s
)

Problem size

HGA
ACO

HACO

Figure 2: Computational time results obtained for

large size instances and Type 1 cost functions.

In Table 5 we have the results obtained for small size in-
stances with cost functions of Type 2 for the same algo-
rithms. Optimal results reported in [15] are used to deter-
mine the gap. ACO performance improves in relation to
Type 1 cost functions but remains unable to achieve opti-
mum results in all instances. Both HGA and HACO find
an optimal solution in all problems but HACO is at least 7
times faster than HGA, as can be seen in Figure 3.

Large size instances with Type 2 cost functions results are
presented in Table 6. For these problems optimal solutions
are not available, thus the quality of the solutions is mea-
sured by a ratio computed as a percentage using the upper
bounds(UB) obtained in [14]. HGA and ACO are compared

143

Table 5: Average computational results for cost

function Type 2 and small size instances.
HGA ACO HACO

Size Gap Time Gap Time Gap Time

10 0 0.90 0.01 0.09 0 0.16
12 0 1.42 0.12 0.15 0 0.24
15 0 2.50 0.49 0.21 0 0.40
17 0 3.74 0.17 0.29 0 0.58
19 0 4.63 0.38 0.37 0 0.74

with UB and HACO is compared with UB, HGA and ACO.
HGA and HACO achieve the same results improving on UB
for three sets of sizes. Again the computational time, see
Figure 4, is considerably smaller for HACO in relation to
HGA.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 11 12 13 14 15 16 17 18 19

T
im

e
 (

s
e
c
o
n
d
s
)

Problem size

HGA
ACO

HACO

Figure 3: Computational time results obtained for

small size instances and Type 2 cost.

In the previous tables we did not provide the minimum,
maximum, and the standard deviation values for the HACO
approach gap because they were always zero, and for the
HGA approach because we did not have the necessary data.
Nonetheless, Table 7 gives these results for the ACO ap-
proach. Although the average gap for ACO was never zero,
the algorithm reached a zero minimum gap value for all but
one size problem.

Table 7: Minimum, maximum and standard devia-

tion values for the ACO gap and cost functions Type

1 and Type 2.
Type 1 Type 2

Size Min Max StDev Min Max StDev

10 0 0.87 0.17 0 0.89 0.10
12 0 2.74 0.48 0 2.04 0.32
15 0 4.64 0.93 0 6.88 1.16
17 0 5.04 0.98 0 1.67 0.35
19 0 5.03 1.15 0 3.59 0.67
25 0 10.28 1.72 0 3.81 0.97
30 0 9.33 1.85 0 7.47 1.65
40 0.20 5.18 1.05 0 5.80 1.20
50 0 9.33 2.36 0 11.48 2.63

 0

 10

 20

 30

 40

 50

 60

 70

 80

 25 30 35 40 45 50

T
im

e
 (

s
e
c
o
n
d
s
)

Problem size

HGA
ACO

HACO

Figure 4: Computational time results obtained for

large size instances and Type 2 cost.

5. CONCLUSIONS
In this work we develop a Hybrid algorithm based on

Ant Colony Optimization and on Local Search, to solve
the single-source uncapacitated minimum cost network flow
problem with concave cost functions. The cost functions
are of two types, fixed-charge costs and quadratic concave
costs. We have solved both small size and large size prob-
lems, ranging from 10 to 50 nodes. We compare our results
with the ones in literature and our algorithm proved to be
very efficient. The solutions obtained were always as good
or better than the ones obtained by HGA [13].

Furthermore, we have been able to find an optimal solu-
tion for every problem that was solved.

The quality of the results obtained has encouraged us to
extend the scope of application of our HACO to other net-
work flow problems in future work.

6. ACKNOWLEDGEMENTS
The financial support by FCT POCI and FEDER, through

FCT Projects PTDC/EEA-CRO/116014/2009 and PTDC/EGE-
GES/099741/2008 is gratefully acknowledged.

7. REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, and M. Reddy.
Applications of network optimization. In Network Models,
volume 7 of Handbooks in Operations Research and
Management Science, pages 1–83, 1995.

[2] F. Altiparmak and I. Karaoglan. A genetic ant colony
optimization approach for concave cost transportation
problems. In IEEE Congress on Evolutionary Computation,
2007. CEC 2007., pages 1685 –1692, 2007.

[3] A. Baykasoglu, T. Dereli, and I. Sabuncu. An ant colony
algorithm for solving budget constrained and unconstrained
dynamic facility layout problems. Omega, 34:385–396, 2006.

[4] J. Beasley. Or-library.
http://www.brunel.ac.uk/deps/ma/research/
jeb/orlib/netflowccinfo.html, 2010.

[5] E. M. Bernardino, A. M. Bernardino, J. M. Sánchez-Pérez,
J. A. Gómez-Pulido, and M. A. Vega-Rodŕıguez. A hybrid ant
colony optimization algorithm for solving the terminal
assignment problem. In IJCCI 2009 - International Joint
Conference on Computational Intelligence, 2009.

[6] L. Bouhafs, A. Hajjam, and A. Koukam. A combination of
simulated annealing and ant colony system for the capacitated
location-routing problem. In Knowledge-Based Intelligent
Information and Engineering Systems, pages 409–416, 2006.

144

Table 6: Average computational results for cost function Type 2 and large size instances.
HGA ACO HACO

Size HGA/UB Time ACO/UB Time HACO/UB HACO/HGA HACO/ACO Time

25 100.72 10.28 102.04 0.79 100.72 100.00 98.71 1.44
30 99.13 18.39 100.77 1.37 99.13 100.00 98.42 2.38
40 99.90 42.70 102.20 3.72 99.90 100.00 97.86 5.62
50 99.94 77.62 101.94 7.99 99.94 100.00 98.07 11.26

[7] R. E. Burkard, H. Dollani, and P. T. Thach. Linear
approximations in a dynamic programming approach for the
uncapacitated single-source minimum concave cost network
flow problem in acyclic networks. Journal of Global
Optimization, 19:121–139, February 2001.

[8] C.-H. Chen and C.-J. Ting. Combining lagrangian heuristic
and ant colony system to solve the single source capacitated
facility location problem. Transportation Research Part E:
Logistics and Transportation Review, 44(6):1099 – 1122, 2008.

[9] B. Crawford and C. Castro. Integrating lookahead and post
processing procedures with ACO for solving set partitioning
and covering problems. In ICAISC, pages 1082–1090, 2006.

[10] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system:
Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics - Part B,
26(1):29–41, 1996.

[11] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT
Press, Cambridge, MA, 2004.

[12] D. B. Fontes, E. Hadjiconstantinou, and N. Christofides. A
branch-and-bound algorithm for concave network flow
problems. Journal of Global Optimization, 34:127–155,
January 2006.

[13] D. B. M. M. Fontes and J. F. Gonçalves. Heuristic solutions for
general concave minimum cost network flow problems.
Networks, 50:67–76, 2007.

[14] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides.
Upper bounds for single-source uncapacitated concave
minimum-cost network flow problems. Networks,
41(4):221–228, 2003.

[15] D. B. M. M. Fontes, E. Hadjiconstantinou, and N. Christofides.
A new dynamic programming approach for single-source
uncapacitated concave minimum cost network flow problems.
European Journal of Operational Research, 174:1205–1219,
2006.

[16] J. Geunes and P. Pardalos. Supply Chain Optimization.
Springer, Berlin, 2005.

[17] G. Guisewite and P. Pardalos. Algorithms for the single-source
uncapacitated minimum concave-cost network flow problem.
Journal of Global Optimization, 3:245–265, 1991.

[18] D. Hochbaum and A. Segev. Analysis of a flow problem with
fixed charges. Networks, 19:291–312, 1989.

[19] R. Horst and N. V. Thoai. An integer concave minimization
approach for the minimum concave cost capacitated flow
problem on networks. OR Spectrum, 20:47–53, 1998.

[20] D. Kim and P. M. Pardalos. A solution approach to the fixed
charge network flow problem using a dynamic slope scaling
procedure. Networks, 35:216–222, 1999.

[21] R. Musa, J.-P. Arnaout, and H. Jung. Ant colony optimization
algorithm to solve for the transportation problem of
cross-docking network. Computers & Industrial Engineering,
59(1):85 – 92, 2010.

[22] A. Nahapetyan and P. Pardalos. Adaptive dynamic cost
updating procedure for solving fixed charge network flow
problems. Computational Optimization and Applications,
39:37–50, 2008.

[23] F. Ortega and L. A. Wolsey. A branch-and-cut algorithm for
the single-commodity, uncapacitated, fixed-charge network flow
problem. Networks, 41:143–158, May 2003.

[24] H. D. Pour and M. Nosraty. Solving the facility layout and
location problem by ant-colony optimization-meta heuristic.
International Journal of Production Research, 44:5187–5196,
2006.

[25] E. Rappos and E. Hadjiconstantinou. An ant colony heuristic
for the design of two-edge connected flow networks. In ANTS
Workshop, pages 270–277, 2004.

[26] S. Rebennack, A. Nahapetyan, and P. Pardalos. Bilinear
modeling solution approach for fixed charge network flow
problems. Optimization Letters, 3:347–355, 2009.

[27] L. Santos, J. Coutinho-Rodrigues, and J. R. Current. An
improved ant colony optimization based algorithm for the
capacitated arc routing problem. Transportation Research
Part B: Methodological, 44(2):246 – 266, 2010.

[28] S. J. Shyu, B. M. T. Lin, and T.-S. Hsiao. Ant colony
optimization for the cell assignment problem in PCS networks.
Computers and Operations Research, 33(6):1713–1740, 2006.

[29] D. K. Smith and G. A. Walters. An evolutionary approach for
finding optimal trees in undirected networks. European
Journal of Operational Research, 120(3):593 – 602, 2000.

[30] T. Stützle and H. Hoos. MAX-MIN ant system and local
search for the traveling salesman problem. In IEEE
International Conference On Evolutionary Computation
(ICEC’97), pages 309–314, Piscataway,NJ, 1997. IEEE Press.

[31] W. Zangwill. Minimum concave cost flows in certain networks.
Management Science, 14:429–450, 1968.

145

