
A Comparison of GE and TAGE in Dynamic Environments

Eoin Murphy
eoin.murphy@ucd.ie

Michael O’Neill
m.oneill@ucd.ie

Anthony Brabazon
anthony.brabazon@ucd.ie

Natural Computing Research and Applications Group
University College Dublin

Ireland

ABSTRACT
The lack of study of genetic programming in dynamic envi-
ronments is recognised as a known issue in the field of genetic
programming. This study compares the performance of two
forms of genetic programming, grammatical evolution and a
variation of grammatical evolution which uses tree-adjunct
grammars, on a series of dynamic problems. Mean best fit-
ness plots for the two representations are analysed and com-
pared.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; I.2.2 [Automatic Program-
ming]; F4.2 [Grammars and Other Rewriting Sys-
tems]

General Terms
Algorithms, Experimentation, Performance

Keywords
genetic programming, dynamical optimization, representa-
tion, grammatical evolution, tree-adjunct grammar

1. INTRODUCTION
Genetic Programming (GP) research has most commonly

been applied to static or toy problems, since the properties of
these problems are well understood. This helps researchers
identify the effects of their research when attempting to solve
problems. Applying GP to real world problems in dynamic
and varying environments is much harder since the problem
domain is not as well understood. This can make it more
difficult to comprehend the effects of the research. It is not
clear if improvements discovered while searching static en-
vironments cross over when applied to dynamic problems.
Indeed, dynamic environments has been recognised as an
open issue for investigation in GP [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Grammatical Evolution (GE), a grammar-based form of
GP[3, 12, 16], which traditionally uses context-free gram-
mars (CFG), was extended to use tree-adjunct grammars
(TAG) [6, 5] in the form of Tree-Adjunct Grammatical Evo-
lution (TAGE) [15]. TAGE showed promising improvements
in performance when applied to a series of static problems.
Improvements such as finding better solutions in fewer gen-
erations and finding more perfect solutions than traditional
GE on those problems [15].

Subsequently, it has been shown by Murphy et al. [14] that
the TAGE mutation landscapes have much greater connec-
tivity than those of GE when a subset of the above problems
were examined. It was noted that this could be partially re-
sponsible for TAGE’s improved performance in search [14].

In this study we investigate if TAGE provides an advan-
tage over GE on a series of dynamic problems of varying
dynamism.

The remainder of this study is laid out as follows: descrip-
tions of GE, TAGE and DEs in section 2; the experimental
work is outlined in section 3, with the results and discussion
presented in sections 4 and 5; finally, conclusions and future
work are outlined in section 6.

2. BACKGROUND INFORMATION
This section provides a brief introduction into GE and

TAGE, as well as a definition the types of DEs that are
used for this study.

2.1 Grammatical Evolution
GE is a grammar-based approach to GP, combining as-

pects of Darwinian natural selection, genetics and molecu-
lar biology with the representational power of grammar for-
malisms [3, 12, 16]. The grammar, written in Backus-Naur
form, enables GE to define and modify the legal expressions
of an arbitrary computer language. Moreover, the grammar
also enables GE to modify the structure of the expressions
generated, something that is not trivial for other forms of
GP. In addition, the separation of the genotype from the
phenotype in GE allows genetic operations to be applied not
only to the phenotype, as in GP, but also to the genotype,
extending the search capabilities of GP. GE is considered to
be one of the most widely applied GP methods today [12].

2.1.1 GE Derivation Example
Representation in GE consists of a grammar and a chro-

mosome, see Fig. 1. A genotype-phenotype mapping uses
values of codons in the chromosome to select production
rules from the grammar, building up a derivation tree. The

1387

Grammar:

<e>:= <e><o><e> | <v>

<o>:= + | -

<v>:= x | y

Chromosome:

12, 3, 7, 15, 9, 36, 14

Figure 1: Example GE grammar, chromosome and
resulting derivation tree.

phenotype string can be extracted from this leaf nodes of
this derivation tree.
The mapping begins with the start symbol, <e>. The

value of the first codon, 12, is read from the chromosome.
The number of production rules for the start symbol are
counted, 2, <e><o><e> and <v>. The rule to be chosen is de-
cided according to the mapping function i mod c, where i is
the current codon value and c is the number of choices avail-
able, e.g, 12 mod 2 = 0, therefore the zero-th rule is chosen.
<e> is expanded to <e><o><e>. This expansion forms a par-
tial derivation tree with the start symbol as the root, attach-
ing each of the new symbols as children. The next symbol to
expand is the first non-terminal leaf node discovered while
traversing the tree in a depth first manner. In this case the
left-most <e> is chosen. The next codon, 3, is read, expand-
ing this <e> to <v> and growing the tree further. The next
symbol, <v> is expanded using the next codon, 7. 7 mod 2

= 1, so the rule at index 1, Y, is chosen.
Derivation continues until there are no more non-terminal

leaf nodes to expand, or until the end of the chromosome has
been reached. If there are non-terminal leaf nodes left when
the end of the chromosome has been reached, derivation can
proceed in one of a few different manners. For example, a
bad fitness can be assigned to the individual, so it is highly
unlikely that this individual will survive the selection pro-
cess. Alternatively the chromosome can be wrapped, reusing
it a predefined number of times. If after the wrapping limit
has been reached and the individual is still invalid, it could
then be assigned a bad fitness. The complete derivation tree
for this example is shown in Fig. 1.

2.2 Tree-Adjunct Grammatical Evolution
TAGE, like GE, uses a representation consisting of a gram-

mar and a chromosome. The type of grammar used in this
case is a TAG rather than a CFG. A TAG is defined by a
quintuple (T,N, S, I, A) where a) T is a finite set of termi-
nal symbols; b) N is a finite set of non-terminal symbols:
T ∩N = ∅; c) S is the start symbol: S ∈ N ; d) I is a finite
set of finite trees called initial trees (or α trees); e) A is
a finite set of finite trees called auxiliary trees (or β trees).
Initial trees have the following properties: their root nodes
are labeled with S and the interior nodes are labeled with
non-terminal symbols. An initial tree’s leaf nodes are la-

(a) α0 (b) α1 (c) β0 (d) β1 (e) β2

(f) β3 (g) β4 (h) β5 (i) β6 (j) β7

Figure 2: Initial and auxiliary tree sets of the TAG
produced from the CFG in Fig. 1.

beled with terminal symbols. The interior nodes of auxiliary
trees are also labeled with non-terminal symbols, as well as
their leaf nodes being labeled with terminal symbols. How-
ever, one special leaf node, the foot node, is labeled with
the same non-terminal symbol as the root. Foot nodes are
marked with * [6].

An initial tree represents a minimal non-recursive struc-
ture produced by the grammar, i.e., it contains no recursive
non-terminal symbols. Inversely, an auxiliary tree of type
X represents a minimal recursive structure, which allows re-
cursion upon the non-terminal X [9]. The union of initial
trees and auxiliary trees forms the set of elementary trees,
E; where I ∩A = ∅ and I ∪A = E.

During derivation, composition operations join elemen-
tary trees together. The adjunction operation takes an ini-
tial or derived tree a, creating a new derived tree d, by com-
bining a with an auxiliary tree, b. A sub-tree, c is selected
from a. The type of the sub-tree (the symbol at its root)
is used to select an auxiliary tree, b, of the same type. c is
removed temporarily from a. b is then attached to a as a
sub-tree in place of c and c is attached to b by replacing c’s
root node with b’s foot node. An example of TAG derivation
is provided in Section 2.2.1.

2.2.1 TAGE Derivation Example
TAGE generates TAGs from the CFGs used by GE. Joshi

and Schabes [6] state that for a “finitely ambiguous CFG1

which does not generate the empty string, there is a lexi-
calised tree-adjunct grammar generating the same language
and tree set as that CFG”. An algorithm was provided by
Joshi and Schabes [6] for generating such a TAG. The TAG
produced from Fig. 1 is shown in Fig. 2.

Derivation in TAGE is different to GE. A TAGE deriva-
tion tree is a tree of trees. That is to say, a node in a TAGE
derivation tree contains an elementary tree. The edges be-
tween those nodes are labeled with a node address of the tree
in the parent derivation node. It is at this address that the
auxiliary tree in the child node is to be adjuncted. A derived
tree in TAGE is a tree of symbols, similar to GE’s deriva-

1A grammar is said to be finitely ambiguous if all finite
length sentences produced by that grammar cannot be anal-
ysed in an infinite number of ways.

1388

tion tree, resulting from the application of the adjunction
operations defined in the TAGE derivation tree.
Given the TAG G, where T = {x, y,+,−}, N = {< e >

,< o >,< v >}, S =< e > and I and A are shown Fig. 2,
derivation, using the chromosome from Fig. 1, operates as
follows. An initial tree is chosen to start derivation. The
first codon value, 12, is read and is used to choose an initial
tree based on the number of trees in I. Using the same
mapping function as GE, 12 mod 2 = 0, the zero-th tree,
α0, is chosen from I. This tree is set as the root node of, t,
the derivation tree, see Fig. 3(a).
Next we enter the main stage of the algorithm. A lo-

cation to perform adjunction must be chosen. The set N

is created of the adjunct-able addresses available within all
nodes(trees) contained within t. An adjunct-able address in
a tree is the breadth first traversal index of a node labeled
with a non-terminal symbol of which there is an auxiliary
tree of that type, and there is currently no auxiliary tree
already adjoined to the tree at that index. In this case N =

{α00}, so a codon is read and an address is selected from N,
3 mod 1 = 0 indicating which address to choose, N[0]. Ad-
junction will be performed at α00, or index 0 of tree α0, <e>.
An auxiliary tree is now chosen from A that is of the type
l, i.e., the label of it’s root node is l, where l is the label of
the node adjunction is being performed at. In this case l =

<e>. Since there are 8 such trees in A, 7 mod 8 = 7, β7 is
chosen. This is added to t as a child of the tree being adjoin-
ing to, labeling the edge with the address 0, see Fig. 3(b).
The adjunct-able addresses in β7 will be added to N on the
next pass of the algorithm. This process is repeated until all
remaining codons have been read. The resulting derivation
and derived trees at each stage of this process can be seen
in Fig. 3.

2.3 Dynamic Environments
It has been shown that dynamic environments can help

speed up synthetic evolution in certain cases [7]. Addition-
aly, it has been theorised that the dynamism of the natural
world has helped natural organisms evolve into the complex
systems that they are today [7, 18, 19]. As such it is im-
portant to study dynamic environments in an attempt to
understand their properties on natural evolution and how
these properties can be exploited when evolving in silico.
In order to study dynamic environments it is important to

define what exactly is meant by dynamic. There are many
ways in which evolutionary algorithms can be classed as dy-
namic [3, 13, 2]. In the context of genetic programming, the
constraints of a problem, the inputs, or even the objective
function itself could be changed with respect to time. Defin-
ing exactly which of these types of change is dynamic is dif-
ficult as it can be problem specific. This paper addresses the
definition of dynamism where there is a functional change
over time, i.e. the objective function, and thus the fitness
landscape, change with respect to time. By that definition
the objective of evolution depends on time t:

f (x) := f (x, t)

where f is the fitness function, x is an individual and t is the
current generation. The majority of problems in this study
follow this definition but one problem examined changes the
problem constraints with respect to time and is described in
section 3.1.

Two important properties of dynamic environments are
a) the frequency of change, how many generations between
changing environments and b) the magnitude of change, how
much the environment/fitness landscape changes [20]. This
study examines a number of problems each with different
magnitudes of change, across a range of different frequen-
cies. The goal of this study is to discover the advantages
and disadvantages of using the TAGE representation over
the standard GE representation when evolving in such en-
vironments.

3. EXPERIMENTAL WORK
This section outlines the different experiments conducted

by this study in order to compare TAGE with GE when
searching in dynamic environments. A series of different
problems from the static domain were taken and extended
to operate as dynamic problems, each with a varying range
of dynamism. These problems are outlined in section 3.1
below.

In order to achieve dynamism the GE algorithm was ex-
tended to allow the fitness function to change with respect to
time. The population is allowed to evolve normally for a cer-
tain number of generations before the environment changes.
This number of generations is know as T , the period, and it is
inversely proportional to the frequency of change, F = 1/T .
Once the end of a period is reached, the entire population,
including the elites, are re-evaluated on the new environ-
ment. Evolution then contines for T more generations before
the environment changes once more.

3.1 Dynamic Problems
A number of well understood problems from the static do-

main have been extended into the dynamic domain, enabling
the form of the problem to change over time. In terms of GP,
this is implemented by extending the fitness function to al-
low the target solution to be modified after a certain number
of generations has past. Each of the problems are described
below with fitness is being minimised for all problems.

Symbolic Regression The static version of this problem
tries to find the expression f(x) = 1+x+x2+x3+x4.
The fitness is calculated as the sum of the error be-
tween the evolved expression and the target expression
when tested on a range of inputs (20 samples between
-1 and 1). The dynamic version used for this study al-
lows each operator to vary between + and −. Starting
from all + operators as seen above, the operators are
changed to − from left to right, interpolating between
the original and final expression, −1−x−x2−x3−x4.
This was chosen due to the small magnitude of geno-
typic change between each neighbouring expression in
the series. For both representations, with the ideal
chromosome each expression is only one mutation dis-
tant from it’s neighbouring expressions in the series.

N-Multiplexer The classic GP input/output line boolean
function. Fitness is measured by how many of the
test cases generate correct outputs. The problem was
extended so that different values forN could be chosen,
N ∈ {3, 6, 11} at each period.

Even N Parity TheN input even-parity boolean function,
in which the best fitness is obtained when the correct
output is returned for each of the 2N test cases. A

1389

(a) The initial
tree α0.

(b) β7 adjoined to α0 at ad-
dress 0.

(c) β1 adjoined to β7 at address 1.

(d) β6 adjoined to β7 at address 0.

Figure 3: The derivation tree and corresponding derived tree at each stage of derivation in TAGE. The
shaded areas indicate the new content added to the tree at each step.

value for N ∈ {3, 4, 5} is chosen at each period and
the population is evaluated against that form of the
problem for T generations.

Dynamic Ant This is a newly formed problem [4]. It is
a variation on the classic ant trail problems such as
Santa Fe [8, 11]. The problem builds upon work by
Langdon and Poli [10]. The aim is to evolve an ant
controller that successfully eats the maximum number
of food pellets possible. However, the ant’s energy
constraint changes with respect to time and the trail is
engineered so that the ant must behave differently at
each of the different energy levels in order to maximise
the food eaten. The trail used, which is different from
the classic Santa Fe ant trail, can be seen in Fig. 4.

Five different energy levels are used in the problem
20, 42, 60, 100, and 140. At the start of each period
a new energy level is chosen. Each successive energy
level allows the ant to progress further along the trail,
changing the maximum number of food pellets that can
be eaten. Each section of the trail presents a different
challenge for the ant, so in order to eat the maximum
number of pellets the ant’s behaviour must change.
However, the optimal behaviour for one energy level
will not allow the ant to eat the max number of pellets
at other energy levels.

The first energy level encourages the ant to ignore
turning, since the energy wasted turning to move around
the small outcrop in the trail would result in not gath-
ering as much food as continuing straight and crossing
the gap. The second energy level causes the ant to

Figure 4: The dynamic ant trail - The ant starts
from the top left cell in the trail.

learn how to handle corners, and as such can no longer
just move straight. The third introduces gaps with no
food to guide the ant, the fourth is to navigate the cor-
ners with gaps and the final energy level is to enable
the ant to collect all the food pellets in the trail.

For the problems described above, if different instances
of the problem use different numbers of input variables, the
grammar for the largest number of input variables is used.
For the instances of the problem which don’t make use of
all input variables, unused inputs are set to 0 or false, i.e.,
the 11-multiplexer grammar is used for all three instances

1390

Even-N parity grammar:
<prog> ::= <expr>
<expr> ::= <expr> <op> <expr>

| (<expr> <op> <expr>)
| <var>
| <pre-op> (<var>)

<pre-op> ::= not
<op> ::= "|" | &
<var> ::= d0 | d1 | d2 | d3 | d4

Dynamic Ant grammar:
<code> ::= <code> <line> | <line>
<line> ::= if(food_ahead() == 1) {

<code>
} else {

<code>
}

| <op>
<op> ::= left(); | right(); | move();

Symbolic Regression grammar:
<expr> ::= (<op><expr><expr>)

| <var>
<op> ::= + | - | *
<var> ::= x0 | 1.0

N Multiplexer grammar:
 ::= ()&&()

| ()"||"()
| !()
| () ? () : ()
| a0 | a1 | a2 | d0| d1 | d2 | d3 | d4| d5 | d6 | d7

Figure 5: CFG grammars in Backus-Naur form used for all the dynamic problems.

of the multiplexer problem, with unused inputs set to 0 for
the lower values of N . The grammars used for each of the
problems can be seen in Fig. 5.

3.2 Experimental Settings
The evolutionary parameters used on each of the problems

can be seen in Table 1. 100 independent runs were performed
for the symbolic regression and dynamic ant problems, with
15 independent runs being performed for the remaining two
problems. The random number generator was seeded the
same for the GE runs as the corresponding TAGE runs.
In order to have a more complete view of the spectrum of

dynamic environments two different setups were used:

1. Incremental cyclic where the problem begins from
its simplest least complex form, and increments in com-
plexity at each period before cycling back to it’s ini-
tial form and repeating the process until the maximum
number of generations has been reached;

2. Random cyclic where each independent run performed
generates a random permutation of the above cycle of
problem states. The same permutation is generated
for both GE and TAGE. This permutation is iterated
through at each period, cycling until the generations
run out.

Each of the above setups were used with 4 different pe-
riod lengths, T ∈ {5, 10, 20, 40}, i.e. different frequencies
of change. In this study we wish to determine if TAGE or
GE has a performance advantage on dynamic problems.

4. RESULTS
The results of the experiments are listed in this section.

The mean (across the runs) best fitness plots were generated
and a sample of them can be seen in Fig. 6 and Fig. 7. Three
properties of these graphs are examined (see Table 4):

Area under the curve (AUC) is calculated for each line
in the mean best fitness plot. The TAGE AUC is taken
as a ratio of the GE AUC. Since fitness is being min-
imised, a lower ratio means the TAGE is performing
better on average across the run.

Fall Off (FO) is the immediate difference in mean best fit-
ness when a change in the environment occurs, i.e., the
fitness differential between the final generation of a pe-
riod and the first generation of the next period. The
mean FO across the entire plot is calculated and the

Table 1: GE parameters adopted for each of the
problems.

Parameter Value
Generations 200
Population Size 500
Initialisation Random
Initial Chromosome Size 15
Max Chromosome Wraps 0
Replacement Strategy Generational
Elitism 10%
Selection Operation Tournament
Tournament Size 1%
One Point Crossover Probability 0.9
Integer Mutation Probability 0.02

distance between TAGE’s mean FO and GE’s mean
FO is taken as a ratio against GE’s mean FO. The
sign of this value determines which representation re-
covers better, on average, when a change in the envi-
ronment occurs. As fitness is being minimised a neg-
ative value indicates TAGE performs better, whereas
positive means GE did. The magnitude is the ratio of
the difference in mean FO’s against GE’s mean FO.

Drawdown (DD) describes the fitness differential from the
start of a period to the end of it. This value is averaged
across all of the periods and a ratio of TAGE’s DD is
taken against GE’s DD. If the value is > 1.0 GE’s
fitness has improved more than TAGE’s. Whereas if
the value is < 1.0, then TAGE has a greater fitness
differential across the period than GE.

5. DISCUSSION
Interpreting the plots seen in Fig. 6 and Fig. 7 visually is

difficult. In particular when the there are large magnitudes
of change happening in the environment as can be seen in
Fig. 6 when the value for N changes from 6 to 11. As a
result, values on the plot were compiled in to the statistics
seen in Table 4.

From the values for AUC in Table 4 it can be seen that on
average TAGE’s mean best fitness plot tends to be slightly
lower than that of GE (values < 1.0). Since these plots are
minimising fitness, this corresponds to TAGE populations
being slightly fitter across the dynamic runs. Interestingly

1391

(a) T = 5 (b) T = 10

(c) T = 20 (d) T = 40

Figure 6: N Multiplexer Incremental Cyclic - Best fitness plots. T is the period length in generations.

(a) T = 20 (b) T = 40

(c) T = 20 (d) T = 40

Figure 7: Symbolic Regression Incremental Cyclic a) and b) and Random Cyclic c) and d) - Best fitness plots.
T is the period length in generations.

1392

Table 2: The AUC (and the t-test p-value of GE against TAGE), FO and DD for each of the problems across
the two setups for a variety of frequencies of change. Values for AUC < 1.0 indicate TAGE’s best fitness is on
average, better than that of GE. The value is a ratio against GE. Positive FO values indicate TAGE’s best
fitness increases more than GE’s does on average, a negative value indicates the opposite. The magnitude
of the value is the ratio of the differential between TAGE and GE’s FO values with respect to GE’s value.
DD is the ratio of TAGE’s average fitness differential across a period against the same for GE. Values < 1.0
indicate on average a greater fitness differential across a period for GE.

Inc. 5 Inc. 10 Inc.20 Inc. 40 Rnd. 5 Rnd. 10 Rnd. 20 Rnd. 40
Sym. Reg.
AUC 1.22 0.88 0.81 0.84 0.83 0.76 0.76 0.52
AUC p-value 0.034 0.084 0.004 0.035 0.026 0.001 0.003 0.00
FO 0.07 0.06 -0.12 -0.04 -0.12 -0.08 -0.08 -0.32
DD 0.96 0.89 0.70 0.60 0.82 0.82 0.79 0.52
Dynamic Ant
AUC 0.89 0.93 0.95 0.97 0.88 0.91 0.94 0.94
AUC p-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FO -0.65 -0.65 -0.56 -0.50 -0.48 -0.44 -0.52 -0.44
DD 0.35 0.35 0.43 0.50 0.62 0.66 0.63 0.71
Even N Parity
AUC 0.98 0.99 0.98 0.99 0.97 0.97 0.94 0.95
AUC p-value 0.109 0.811 0.333 0.474 0.004 0.268 0.007 0.168
FO -0.19 -0.14 -0.26 -0.15 -2.80 -1.41 -0.50 -0.71
DD 0.51 0.48 0.50 0.45 0.52 0.45 0.70 0.66
N Multiplexer
AUC 0.93 0.93 1.00 1.00 1.00 0.94 0.98 0.95
AUC p-value 0.234 0.353 0.732 0.978 0.491 0.872 0.567 0.619
FO -0.11 -0.14 -0.22 -0.07 0.37 0.03 -0.24 -0.13
DD 0.88 0.81 0.78 0.91 1.15 0.99 0.74 0.87

this trend is more evident in the random cyclic set up, this
could be an indicator that GE is better able to exploit the
incremental nature of the first setup than TAGE. This effect
is seen to a lesser extent in the even n parity and n multi-
plexer problems and can most likely be attributed to the
difficulty of some of the more complex forms of those prob-
lems, and the percentage of the AUC attributed to those
forms, e.g. 11 bit multiplexer.
In addition to this, the large number of negative FO values

in the table may indicate that TAGE populations don’t con-
verge as much as GE populations. This might help maintain
more solutions with better future fitness within the popula-
tion than GE does for when the environment changes. This
shows that TAGE may help maintain population memory
better than GE.
Table 4 also shows that on average over a period, GE pop-

ulations have a larger fitness differential than TAGE popu-
lations (DD values < 1.0). This in a fact is not surprising,
since according to the AUC and FO values GE populations
are slightly less fit than TAGE populations as well as being
less fit after the environment has changed, so while TAGE
may be stuck in a local optima GE has not even reached this
level of fitness and can try to catch up before the environ-
ment changes again.

6. CONCLUSIONS
The aim of this study was to investigate the effectiveness

of two different forms of GP in dynamic environments, a
topic which is recognised as an open issue in the field of
GP [17]. In particular this study compares the use of CFGs

against the use of TAGs with GE on a series of dynamic
problems.

For the problems and grammars examined across the dif-
ferent setups, it was shown that TAGE on average performs
slightly better than GE. However, that on problems of high
difficulty, or dynamic environments with high magnitude of
change, there seems to be no advantage. It was also shown
that the TAGE representation may help maintain a greater
population memory than GE.

One clear result of this study is the indication that there is
a need for the development of benchmark dynamic problems
for the field of GP, similar to the moving peaks problem in
other evolutionary algorithm fields [1].

Future work emerging from this study is to investigate
creating better benchmark dynamic problems for the field
of GP/GE, as well as to further study the advantages and
disadvantages of using the GE and TAGE representations
in dynamic environments

Acknowledgments
This research is based upon works supported by the Science
Foundation Ireland under Grant No. 08/IN.1/I1868.

7. REFERENCES
[1] J. Branke. Memory enhanced evolutionary algorithms

for changing optimization problems. In Evolutionary
Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 3, pages 3 vol. (xxxvii+2348),
1999.

1393

[2] J. Branke. Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, Norwell,
MA, USA, 2001.

[3] I. Dempsey, M. O’Neill, and A. Brabazon. Foundations
in Grammatical Evolution for Dynamic Environments.
Studies in Computational Intelligence. Springer, 2009.

[4] D. Fagan, M. Nicolau, E. Hemberg, M. O’Neill, and
A. Brabazon. Dynamic ant: Introducing a new
benchmark for genetic programming in dynamic
environments. In Proceedings of the 13th Annual
conference on Genetic and evolutionary computation,
GECCO ’11, New York, NY, USA, 2011. ACM.

[5] A. Joshi, L. Levy, and M. Takahashi. Tree adjunct
grammars. Journal of Computer and System Sciences,
10(1):136–163, 1975.

[6] A. Joshi and Y. Schabes. Tree-Adjoining Grammars.
Handbook of Formal Languages, Beyond Words,
3:69–123, 1997.

[7] N. Kashtan, E. Noor, and U. Alon. Varying
environments can speed up evolution. Proceedings of
the National Academy of Sciences,
104(34):13711–13716, 2007.

[8] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[9] A. Kroch and A. Joshi. The Linguistic Relevance of
Tree Adjoining Grammar, Technical Report,
University Of Pennsylvania, 1985.

[10] W. B. Langdon and R. Poli. Genetic programming
bloat with dynamic fitness. In W. Banzhaf, R. Poli,
M. Schoenauer, and T. Fogarty, editors, Genetic
Programming, volume 1391 of Lecture Notes in
Computer Science, pages 97–. Springer Berlin /
Heidelberg, 1998.

[11] W. B. Langdon and R. Poli. Why ants are hard. In
J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo, editors, Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pages 193–201, University of Wisconsin,
Madison, Wisconsin, USA, 22-25 July 1998. Morgan
Kaufmann.

[12] R. McKay, N. Hoai, P. Whigham, Y. Shan, and
M. O’Neill. Grammar-based genetic programming: a
survey. Genetic Programming and Evolvable Machines,
11:365–396, 2010.

[13] R. W. Morrison. Designing Evolutionary Algorithms
for Dynamic Environments. SpringerVerlag, 2004.

[14] E. Murphy, M. O’Neill, and A. Brabazon. Examining
mutation landscapes in grammar based genetic
programming. In Proc. of the 14th European
Conference on Genetic Programming, EuroGP 2011,
volume 6621 of LNCS, pages 131–142, Turin, Italy,
27-29 Apr. 2011. Springer Verlag.

[15] E. Murphy, M. O’Neill, E. Galvan-Lopez, and
A. Brabazon. Tree-adjunct grammatical evolution. In
2010 IEEE World Congress on Computational
Intelligence, pages 4449–4456, Barcelona, Spain, 18-23
July 2010. IEEE Computational Intelligence Society,
IEEE Press.

[16] M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in a Arbitrary
Language, volume 4 of Genetic programming. Kluwer
Academic Publishers, 2003.

[17] M. O’Neill, L. Vanneschi, S. Gustafson, and
W. Banzhaf. Open issues in genetic programming.
Genetic Programming and Evolvable Machines,
11(3/4):339–363, Sept. 2010. Tenth Anniversary Issue:
Progress in Genetic Programming and Evolvable
Machines.

[18] M. Parter, N. Kashtan, and U. Alon. Environmental
variability and modularity of bacterial metabolic
networks. BMC Evolutionary Biology, 7(1):169, 2007.

[19] M. Parter, N. Kashtan, and U. Alon. Facilitated
variation: How evolution learns from past
environments to generalize to new environments. PLoS
Comput Biol, 4(11):e1000206, 11 2008.

[20] P. Rohlfshagen, P. K. Lehre, and X. Yao. Dynamic
evolutionary optimisation: an analysis of frequency
and magnitude of change. In Proceedings of the 11th
Annual conference on Genetic and evolutionary
computation, GECCO ’09, pages 1713–1720, New
York, NY, USA, 2009. ACM.

1394

