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ABSTRACT
We propose an alternative program representation that re-
lies on automatic semantic-based embedding of programs
into discrete multidimensional spaces. An embedding im-
poses a well-structured hypercube topology on the search
space, endows it with a semantic-aware neighborhood, and
enables convenient search using Cartesian coordinates. The
embedding algorithm consists in locality-driven optimiza-
tion and operates in abstraction from a specific fitness func-
tion, improving locality of all possible fitness landscapes si-
multaneously. We experimentally validate the approach on
a large sample of symbolic regression tasks and show that
it provides better search performance than the original pro-
gram space. We demonstrate also that semantic embedding
of small programs can be exploited in a compositional man-
ner to effectively search the space of compound programs.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Design, Experimentation

Keywords
genetic programming, genotype-phenotype mapping, local-
ity, program representation, program semantics

1. INTRODUCTION
In Genetic Programming (GP), the relationship between a
program (code, syntax) and its effect (semantics, behavior)
is much more complex than in conventional tasks consid-
ered in evolutionary computation, where the phenotype typ-
ically depends on genotype in a more direct way. Even
a minute change of program code can radically alter its
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semantics and fitness, which makes GP fitness landscapes
very ragged. This has serious implications for the evolution-
ary search process, both in local perspective (exploitation)
as well as in the global one (exploration). Low locality of
genotype-phenotype mapping makes it particularly hard to
design mutation operators that have small effect on fitness
[1]. On the other hand, the lack of fitness-distance corre-
lation causes only a small fraction of crossovers to increase
fitness [14, 2]. This hampers scalability of GP search, and
limit its applicability to difficult real-world problems.

Agreeing with this state of matter would mean no prospects
for automated programming, so significant effort has been
put into search for countermeasures. As the primary de-
terminant of locality is the adopted neighborhood defini-
tion, most work focused on designing new search operators
that implicitly redefine the notion of neighborhood in pro-
gram space. In the case of mutation, operators could op-
timize the values of constants, either at random [13] or in
a directed way [7]. For crossover, one can preserve the lo-
cations of code fragments being exchanged, e.g., context-
preserving crossover or homologous crossover (see [10] for
review). Thus, most of past research approaches the prob-
lem from the symbolic perspective, by redesigning the way
in which the search operators manipulate the program code,
and usually doing so in abstraction from the actual mean-
ing (semantics) of those symbols. Only recently, semantic-
oriented approaches gained more attention [8, 11, 4, 5].

While there are many reasons to believe that representing
programs by structures of symbols is convenient for human
programmers, it is not necessarily the best choice for an
automated search process. Symbolic representations lack a
natural and semantically coherent similarity relation. They
are redundant in a way that is difficult to capture – for
instance, reversals of instruction order can be neutral for
program outcome. At the same time, they can be also highly
epistatic – distant code fragments often strongly interact
with each other, with complex effects on program semantics.

In this study, we redefine the task of automated program-
ming by embedding programs into an abstract multidimen-
sional space in such a way that semantically similar pro-
grams are likely to have near locations. This concept leads
to a new program representation, where the original pro-
gram code is replaced by its coordinates in the new space.
We show the embedding be effectively optimized with re-
spect to locality, so that the process of automated program-
ming in the new space can be more effective. Finally, we
also demonstrate how these concepts can be exploited in a
compositional way, improving the scalability of GP.
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2. SEMANTIC MAPPING AND LOCALITY
Let P be a program space, and let s(p) define the semantics
of program p ∈ P , where s : P → S is the semantic mapping
(a.k.a. genotype-phenotype mapping) and S is a metric se-
mantic space. For the rest of this paper, we assume that
s is surjective (i.e., S ≡ image(s)). Typically, s is also not
invertible and |P | � |S|, where |S| can be termed as seman-
tic diversity of the program space P . By assuming that s
is endowed with the entire knowledge required for program
execution, we abstract here from program syntax and the
specifics of its interpretation.

We define problem instance as a program space augmented
by a fitness function f : P → R. Multiple problem instances
can be defined for a given program space P .

Let N(p) be the neighborhood of p (N : P → 2P \{∅}, p /∈
N(p)). Typically, N(p) is the set of all programs that can
be obtained by introducing small changes in p, or, in EC
terms, by mutating p (e.g., substituting one instruction with
another). In practice, N(p) should be cheap to compute.
The pair (P,N) is also referred to as configuration space,
and the triple (P,N, f) as fitness landscape (see, e.g., [9]).

We propose to measure the locality in the neighborhood
of program p in the following way:

l(N, p, s) = 1
|N(p)|

∑
p′∈N(p)

1
1 + ‖s(p′)− s(p)‖ (1)

where ‖‖ denotes a metric in S. The rationale for this def-
inition is at least twofold. First, whatever range of values
‖‖ assumes, the formula maps them to the interval (0, 1].
Second, a single neighbor cannot dominate the value of l, as
its maximal contribution is 1/|N(p)|. l reaches 1 when all
neighbors of p have the same semantics as p. l close to zero
implies that all neighbors of p are semantically very different
from it.

The value of l for a particular program is of little im-
portance from the viewpoint of search algorithm, given that
|P | is typically large. Being interested in locality of semantic
mappings, we generalize this concept to the entire program
space P , defining semantic locality (or locality for short):

L(N, P, s) = 1
|P |
∑
p∈P
l(N, p, s) (2)

Semantic locality is is a joint property of the configuration
space (P,N) and semantic mapping s. Obviously, L ∈ (0, 1],
but L = 1 holds only if all programs in P have the same
semantics, so it should not be expected in practice.

High locality is desirable, as it indicates smooth fitness
landscape that is easier to explore for search algorithms.
This is particularly evident when the fitness of p is based on a
distance between s(p) and some target t ∈ S, like a vector of
desired program outputs in symbolic regression and logical
function synthesis. In such cases, which we focus on here,
one can define a (minimized) fitness as f(p) = ‖s(p)− t‖,
and the link between locality and smoothness is a direct
consequence of triangle inequality. For any two programs p1
and p2, s(p1), s(p2), and t form a triangle in the semantic
space and thus

‖s(p1)− s(p2)‖ ≥ |f(p1)− f(p2)|
In other words, the difference in fitness between any two

solutions cannot be greater than their mutual semantic dis-
tance. This applies to any pair of programs (p1, p2), includ-

Figure 1: Conceptual sketch of semantic embedding.

ing such that p1 ∈ N(p2) or vice versa (N does not have to be
symmetric). Therefore, by improving locality, we decrease
the semantic discrepancy between neighboring programs and
increase smoothness of the fitness landscape. This holds si-
multaneously for all fitness landscapes, and does not depend
on whether t is explicitly known.

Smooth fitness landscapes tend to have fewer local op-
tima that are the main nuisance for many optimization al-
gorithms. Though this is particularly true for local search
algorithms that rely exclusively on neighborhoods, exploita-
tion ability of global search algorithms, including evolution-
ary algorithms, can be also sensitive to this aspect, as the
experimental part of this paper shows. On the other hand,
it is worth emphasizing that high locality does not guaran-
tee good search performance – easy problems typically have
high locality, but the reverse is in general not true.

The notion of locality can be alternatively based directly
on fitness function instead of semantics (see, e.g., [12]). In
that perspective, locality is high if the neighboring programs
have similar fitness values. Such formulation is not con-
cerned with how fitness is derived from program code and, in
particular, does not assume the existence of semantic space.
However, by the same token it is very problem-specific: con-
clusions concerning locality of one problem instance cannot
be generalized to other problem instances.

3. SEMANTIC EMBEDDING
Design of search operators reviewed in Introduction is a
‘program-centric’ methodology of locality improvement, which
focuses on building a new candidate solution from one or
more given solutions. In this study, we propose a different,
‘space-centric’ direction (Fig. 1). Rather than designing
new operators for the existing space of programs P (central
part of Fig. 1), we switch to another space (left part of Fig.
1) and try to build a mapping from that space onto P , such
that its composition with the semantic mapping provides
high locality in the semantic space (right part of Fig. 1).

More formally, our objective is to design three formal ob-
jects: (i) a space X, which we name prespace by analogy to
‘pre-image’, (ii) a neighborhood relation NX in that space,
and (iii) a mapping u from X to P , such that together they
maximize L(NX ,X, s ◦ u). To clearly tell apart P from X,
we rename P as the original program space.

Before we proceed, let us first note that because local-
ity cannot distinguish semantically equivalent programs, it
does not matter which of them is returned by u for a given
x ∈ X. More formally, let [p] = {p′ ∈ P : s(p′) = s(p)} be
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the semantic equivalence class of program p. If u(x) = p,
then as long as we redefine u in such a way that u(x) ∈ [p],
the superposition s(u(x)) points to the same semantics and
locality remains unchanged. Thus, it is enough to consider
as codomain of u the space [P ] of semantically unique rep-
resentatives of programs in P , defined as

[P ] ⊆ P : ∀p∈P∃p′∈[P ]s(p′) = s(p) ∧ ∀p1,p2∈[P ]s(p1) �= s(p2)

This property is important from practical perspective, be-
cause |[P ]| = |S|, while typically |P | � |S|, so considering
only the representatives is computationally less demanding.
Thus, in following u : X → [P ].

As there are many ways in which X, NX , and u can be
defined, our task is clearly underconstrained. To narrow the
spectrum of possible designs, we limit our considerations to
bijective mappings u, which implies that |X| = |[P ]|. In
such case u is a permutation of X and can be considered as
a form of embedding of [P ] in X.

Concerning the topology of X, it seems convenient to en-
dow it with a natural neighborhood definition. For that pur-
pose, we assume X to be a discrete d-dimensional hypercube
of size n ≥ 2, i.e., X ≡ [1, n]d ∩ N

d, so that any x ∈ X is a
vector of coordinates determining a particular location inX.
The assumption n ≥ 2 guarantees that each coordinate of
the hypercube differentiates some elements. Of course, for a
given d, there does not have to exist an integer n such that
nd = |[P ]|, but we will handle this technicality in the exper-
imental part. We define the neighborhood NX(x) as the set
of locations in X such that their city-block distance from x
is less than r, where we assume that the distance is calcu-
lated modulo n on each dimension, so that the hypercube is
effectively toroidal.

The above choices fix X and NX , so design of the triple
(X,Nx, u) boils down to finding a permutation u that max-
imizes L(NX ,X, s ◦ u). In other words, we want to opti-
mize the embedding of [P ] in X, finding such an optimal
embedding u∗ such that s◦u∗ is the best locality-preserving
mapping from X to S via P :

u∗ = arg max
u

L(NX ,X, s ◦ u) (3)

It is easy to notice that for d = 1 the above problem
becomes equivalent to the traveling salesperson problem,
where u defines a particular order of ‘visiting’ the elements
of [P ]. It is then NP-hard for d = 1, and it is quite easy to
demonstrate that this holds also for d > 1. Finding u∗ via
exhaustive search is futile even for relatively small |[P ]|, as
the sheer number of possible permutations renders consid-
ering all embeddings infeasible. This is however not criti-
cal: we demonstrate in the following that even a suboptimal
embedding found by a heuristic algorithm (Section 4) can
improve locality and benefit the search performance.

Finally, it is worth pointing out that X and NX implicitly
define a new program representation, where each semantic
equivalence class of programs is identified by a d-tuple of co-
ordinates in the hypercube. This is the space we ultimately
delegate the search process to (Section 5). In general, this
representation is detached from program code, or more pre-
cisely, from the symbols (instructions) that the considered
programs are composed of. Neighbors in X can correspond
to syntactically very different programs in P . Program space
P becomes transparent from the viewpoint of X, and serves
as a proxy for reaching into the semantic space S (Fig. 1).

Nevertheless, despite that abstraction, this approach pre-
serves the, characteristic for GP, explicability, as a solution
expressed as a point in the abstract space X can be always
traced back to the corresponding concrete program in P
(more precisely, the semantic equivalence class of programs).

4. IMPROVING LOCALITY
OF EMBEDDING

In [3] we proposed two algorithms to find an approximate
solution to problem (3). Here, we rely on a different iterative
local search method that turns out to be much better. We
propose a greedy search heuristic for optimizing locality of
embedding that finds an approximate solution for problem
(3). For clarity, rather than referring to mappings, we ex-
plain it in terms of embeddings, i.e., different permutations
of program representatives in X.

The algorithm starts with the hypercube X filled up with
randomly ordered elements of [P ], and then iterates over
the consecutive locations in X, column by column, row by
row, etc. For each location x, it considers every x′ ∈ N(x),
temporarily swaps the programs located in x and x′, records
the change of locality L, and then retracts the move. After
looking up the entire neighborhood, if any move increased L,
then the move that led to the greatest increment is executed.
As a single pass of this procedure over the entire hypercube
cannot be expected to substantially improve L, we repeat it
multiple times, recording in each step the total improvement
of L, and terminate if it drops below an assumed floating-
point precision level (here: 10−8). Typically, less than 20
iterations are sufficient for the algorithm to converge.

The complexity of the algorithm depends on three param-
eters: the neighborhood size |N |, the semantic diversity |S|,
and the number of iterations k. Because L is defined ad-
ditively (Eq. (2)), each move requires updating l only for
the direct neighbors of the swapped programs, and there
is no need to globally recalculate L. This makes the al-
gorithm fast for reasonably sized neighborhoods. Full scan
of one neighborhood requires then |N |2 calculations of se-
mantic distance between pairs of solutions, and the overall
complexity is k|S||N |2 . The major factor that impacts algo-
rithm’s runtime is therefore d, as it directly determines |N |,
in a way depending on the assumed neighborhood definition.
Note also that, if |S|2 is reasonably small and computation
of semantic distance is costly, it can pay off to cache dis-
tances between all pairs from S prior to optimization.

Figure 2 visualizes an example of a two-dimensional em-
bedding of arithmetic programs composed of symbols {+,−,
∗, /, v, 1}, where v is the independent variable. We use the
same setup as in the forthcoming experiment, however con-
sider only 1024 programs represented by trees of depth up to
three (3 nonterminals and 4 terminals). Given 20 values of
v drawn randomly from the interval [−1, 1], this set of pro-
grams produces 132 unique semantics depicted by the plots
(clamped at top and bottom). The figure presents the em-
bedding optimized using the proposed algorithm, with the
shadings between the plots reflecting the semantic distance:
the darker the grade, the greater the distance between the
neighbors (the embedding is toroidal). Locality of this em-
bedding amounts to 0.848, compared to 0.742 for a random
embedding. The effect of optimization is clearly visible: sim-
ilar plots group in close proximity.
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Figure 2: An exemplary optimized two-dimensional
toroidal embedding of all 132 unique semantics ob-
tained from 1024 programs of depth 3 composed of
instructions +,−, ∗, /, v, 1. Each tile plots the func-
tion calculated by the corresponding representa-
tive program (its semantics) for v ∈ [−1, 1]. The
darker the shading between the neighboring tiles,
the greater the semantic distance. The locality of
this embedding is higher than that of random em-
bedding, which could be obtained by reshuffling the
tiles randomly (see text for more details).

5. THE EXPERIMENT
In the experiment we want to verify the usefulness of se-
mantic embedding for evolutionary search. In [3] we showed
that optimized embeddings provide better performance of a
local search algorithm. Here, we use semantic embedding
for global evolutionary search and apply it in compositional
manner to evolve larger programs.

Program space. We consider univariate symbolic regres-
sion with two terminal symbols (the constant 1.0 and the
independent variable v) and four arithmetic operators {+,
−, ∗, /} as internal tree nodes (non-terminals). The seman-
tics is a vector of outputs produced by a program for 20
values of the independent variable (fitness cases), drawn at
random from the interval [−10, 10]. We use the Euclidean
distance as a metric in S and round it off to 0 whenever it
drops below 10−15.

We anticipated the expected runtime in a series of pre-
liminary experiments and decided to constrain our program
space to binary GP trees with depth up to 4. With the
assumed set of instructions, any tree smaller than a full
binary tree of depth 4 can be expanded to a semantically
equivalent full tree by replacing some occurrences of the
terminal v with a subtree (* 1 v), and occurrences of 1
with (* 1 1). This feature, though not essential for our
approach, allows constraining the original program space to
|P | = 47 × 28 = 4, 194, 304 syntactically unique full-tree
programs (7 nodes + 8 leaves).

Table 1: The cardinality of the neighborhood |N |,
mean hypercube size n, locality L of random em-
bedding, and locality of optimized embedding with
0.05 confidence intervals, for different prespace di-
mension d.

d |N | n Random L Optimized L
2 8 121.8 0.799 0.910±0.008
3 18 25.0 0.781 0.888±0.009
4 32 11.8 0.783 0.881±0.005
5 50 7.0 0.790 0.871±0.002
6 72 5.0 0.793 0.862±0.009
7 98 4.0 0.795 0.857±0.010
9 162 3.0 0.795 0.854±0.010

Semantic space. The number of unique semantics (se-
mantic variability) |S| that this set of programs produces is
much lower and varies from around 14, 670 to 14, 681, with
the average of 14, 673, depending on the particular set of
20 randomly generated fitness cases. This is also the num-
ber of program representatives [P ], which we embed in a
d-dimensional toroidal hypercube X for d = 2, 3, 4, 5, 6, 7, 9.
As n ≥ 2 has to hold, the largest valid d is here �lg2 14, 673� =
14. However, for large d the neighborhood effectively ceases
to be local (see Table 1) and the optimization process starts
to be computationally quite demanding, so d ≥ 10 has not
been considered here.

Because the cardinality of the semantic space is quite ac-
cidental, it typically cannot be expressed as nd for integral
d and n, so that |X| = |[P ]| = |S| holds. To solve this
difficulty, we use the smallest n such that nd ≥ |[P ]|. For
instance, given d = 3 and |[P ]| = 41, we would set n to 3,
as 33 < 41 < 43. Then, we would fill the hypercube with
programs column by column, row by row, etc., allowing the
final 64 − 41 = 23 locations to remain vacant. As a result,
the two first two-dimensional layers would be completely
filled-up (2× 42 = 32), the third one would be occupied by
41− 32 = 9 programs, and the last one would be empty. Fi-
nally, we toroidally connect the last occupied locations with
the first layer. This procedure preserves the d-dimensional
topology of the space, except for the degenerate case when
all representatives turn out to fit into the first d− 1 dimen-
sional layer of the hypercube, i.e., when (n−1)d < |[P ]| ≤ nd
and |[P ]| < nd−1. In our experiment, this happens for d = 8,
which explains its absence.

We use the city-block distance sphere of radius r = 2 as
the neighborhood NX . This radius is a compromise between
the expected gains in locality elaborated by the optimization
algorithm (the greater r, the more thorough the search),
and the computational cost of optimization – neighborhood
size grows exponentially with r, and even for the modest
r = 2, the size of the neighborhood depends quadratically
on d (|N | = 2d + 2d(d− 1) = 2d2), so for large d it may be
quite numerous, as Table 1 proves.

5.1 Optimization of embeddings
We optimize embedding for d = 2, . . . , 7, 9 using the local
search algorithm described in Section 4. The fourth and fifth
columns of Table 1 present the locality L respectively before
the optimization (i.e., for a random assignment of programs
to locations), and after the embedding has been optimized.
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The results are averaged over 20 starting points of the algo-
rithm. The algorithm turned out to be quite insensitive to
initial conditions, typically converging to embeddings that
have very similar L. Its runtime on an up-to-date PC varied
from about 20 seconds for d = 2 to 15 minutes for d = 9.

The first observation is that locality prior to optimization
varies only slightly with d, which is obvious knowing that
the initial embedding of programs is random. But more im-
portantly, our algorithm clearly improves locality for each
considered dimensionality. Given that L ∈ (0, 1] by defi-
nition, the increases do not look very impressive, but such
judgments are pointless without knowing what is the local-
ity of an optimal embedding for a given d. Also, the local-
ity of optimized embedding decreases slightly with d, which
is probably an effect of interplay between two factors. On
one hand, larger neighborhood makes the algorithm consider
more program swaps, so finding a good embedding becomes
more likely. On the other, it also leads to more interactions
between neighbors, all of which contribute to L (cf. For-
mula (1)), so in this sense the optimization process faces
more constraints. It is then tempting to hypothesize that in
our experiment the latter factor prevails, but this phenom-
ena involves also the distribution of semantics in S and is in
general more complex, so we leave this issue open.

5.2 Search in an optimized embedding
We assume now a more practical perspective and try to find
out what is the impact of embedding optimization for the
actual performance of a search algorithm. To this aim, we
empirically compare the performance of evolutionary runs
that use the non-optimized and optimized embeddings on a
sample of different problem instances.

Methodology. In both cases, we launch a series of indepen-
dent evolutionary runs driven by different fitness functions.
In a single run, a random target t ∈ S (problem instance,
fitness function) is first selected, a random population is
created, and then an evolutionary algorithm driven by that
fitness function runs until an ideal solution is found or 100
generation elapse, whatever comes first. The former case is
recorded as success, the latter as failure. An ideal found in
the initial generation is not counted as a success and the run
is relaunched. This process is repeated 300 times for 10 dif-
ferent embeddings (random or optimized, depending on the
setup), and the overall success rate for the 3, 000 problem
instances becomes our performance indicator.

The process of generating targets deserves comments. As
we assumed that S is an image of s, drawing targets from S
means considering only problem instances that are solvable
with the assumed instruction set and program length limit.
Secondly, targets are drawn from S generated for the set of
fitness cases specific for particular evolutionary run, which
is in general different than the set used by the embedding
optimization algorithm. Thirdly, we use only non-trivial
problem instances, i.e., such that the output of the program
that produced t depends on the value of the input variable
v (which we verify by checking if there is any variance in
program output over fitness cases). Finally, we care for the
distribution of targets, which is essential, as the distribu-
tion of semantics over programs in P is highly skewed. For
instance, 50.7% of programs in our program space generate
the top 100 most frequent semantics (of the total of over
14, 600), and 84.4% generate the top 1000. In this light,
generating problem instances uniformly in P would bias the

results by strongly favoring the ‘easy’ problems. To avoid
that, we draw targets uniformly from S, assuming that this
reflects better the unknown distribution of real-world prob-
lem instances.

Evolutionary setup. We employ generational evolution-
ary algorithm with a population of 100 individuals, each be-
ing a vector x of d integers that encodes a program represen-
tative by pointing to a specific location in the d-dimensional
hypercube. The elements of x (genes) are clamped to inter-
val [1, n], where n is the hypercube size (cf. Table 1). A new
individual is bred from parents selected from the the previ-
ous population using tournament of size 7. Breeding takes
place in one of two alternative ways: via mutation with prob-
ability pm, or via crossover with probability 1 − pm, where
we consider pm ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Mutation oper-
ates in a twofold way: with probability 0.9 it increments
or decrements by one (modulo hypercube size) a single, ran-
domly selected gene in an individual, or with probability 0.1
it resets the entire genome by drawing new random hyper-
cube coordinates. We introduce the latter mode because, in
absence of crossover (the case pm = 1), there would be no
way to escape the local optima. The crossover is geomet-
ric: given two parents representing locations (coordinates)
x1 and x2 in the hypercube, the offspring is a randomly
selected location on the Euclidean segment connecting x1
and x2, with coordinates rounded off to the discrete grid.
Because of the toroidal topology, there are 2d distinct seg-
ments that connect x1 with x2 (unless x1 = x2), of which
we choose the shortest one.

This design of search operators provides for fair com-
parison of evolutionary runs for different d. In particular,
we should emphasize that our ‘unitary’ mutation employs
neighborhood defined as a Hamming-distance sphere of ra-
dius 1, not the much bigger NX neighborhood that has been
used exclusively for optimization of embeddings. In this
sense, it performs a very conservative local search.

The results. Table 2 presents the mean success rate for
the random and optimized embeddings. The figures clearly
suggest that the latter ones provide better ‘searchability’
for all considered combinations of d and pm, which suggests
that locality is an appropriate and effective objective for op-
timization of embeddings. The superiority of the optimized
embeddings is statistically significant for all combinations of
d and pm, except for (2, 0.0). The increase of success rate
with d does not correlate with the final locality of the op-
timized embeddings (the last column of Table 1), but this
should not be expected given that the upper bound on lo-
cality depends on dimensionality.

The highest success rates are attained for the greatest
considered dimensionality, so it is tempting to use an even
higher d. There are however some counterarguments. The
expected city-block distance of two random locations in a
d-dimensional toroidal hypercube containing |S| elements is
l = d

4

⌈
d
√
|S|
⌉

. This is also the average number of uni-
tary mutations that an individual from the initial popula-
tion must undergo to reach the target. For |S| � 14, 600,
l happens to reach the global minimum of 6.75 for d = 9.
Therefore, using d > 9 increases the expected distance from
the target and could have negative impact on search perfor-
mance. This reasoning should be however taken with a grain
of salt, as it ignores the structure of the fitness landscape.
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Table 2: Success rate (%) of EA evolving programs
on a sample of 3, 000 problem instances for the ran-
dom and optimized embeddings.

pm 0.0 0.2 0.4 0.6 0.8 1.0
d Random embedding
2 5.7 7.1 9.4 9.2 10.5 11.0
3 3.9 5.4 7.1 10.6 12.3 12.2
4 2.6 4.0 7.6 9.1 12.0 13.9
5 2.1 4.5 7.3 11.1 12.6 19.2
6 2.1 5.0 7.9 10.5 16.4 28.1
7 1.3 4.9 6.5 11.7 18.2 32.1
9 1.6 4.1 6.9 12.1 21.5 32.9
d Optimized embedding
2 6.3 12.1 16.4 21.4 23.6 28.9
3 7.0 20.5 24.7 32.3 36.2 43.4
4 9.4 21.7 34.9 41.0 55.0 65.2
5 7.5 24.5 33.7 45.2 61.3 74.3
6 6.3 25.3 33.5 46.3 65.7 80.9
7 6.7 25.1 34.2 48.4 70.1 83.1
9 6.2 30.3 42.6 54.6 76.9 87.8

Considering the contributions of mutation and crossover,
the latter one seems to be more a hindrance than a help:
the success rate is the higher, the higher the mutation prob-
ability, and for pm = 1.0 and d = 9 the search becomes most
effective. This was expected, as the ability of the Euclidean
crossover to produce novel solutions in a discrete space is
quite limited, in particular for high d, when each gene can
take on only a few possible values (note that n drops to as
low as 3 for d = 9). Nevertheless, our motivation for using
this particular operator becomes clear when analyzing the
column pm = 0 in Table 2: when used as the only search op-
erator, crossover also improves the success rate (except for
d = 2). This suggests that high locality makes it more likely
for a fitness landscape to be not only smooth, but also con-
vex. This observation pertains to other potential variants of
semantic embeddings, which we discuss in Conclusions.

In a broader perspective, applying evolutionary algorithm
in this particular scenario is not the best choice from prac-
tical viewpoint, because the number of possible semantics
is here rather low. The 10, 000 evaluations that each of our
runs carried out could be alternatively used up for system-
atic search, which would then reach the optimal solution
with probability 10, 000/14, 600 � 0.68, so not much less
than the best numbers reported in Table 2 for the optimized
embeddings. Nevertheless, our point here was to demon-
strate the impact of optimization of embedding, which will
have also some consequences for the next section.

Comparison to standard GP. Finally, we compare these
results to the performance of standard tree-based GP. To
this aim, we run an analogous experiment to the above one,
i.e., we estimate GP’s success rate on a sample of 3, 000 tar-
gets drawn uniformly from the space of semantics. A pop-
ulation of 100 individuals, each being a GP tree of depth
exactly 4, evolves for 100 generations and undergoes only
subtree-replacement mutation. If the mutated individual
violates the tree depth limit, mutation is repeated up to 100
times, after which the parent individual is discarded and an-

other individual is selected for mutation. Other parameters
have the same values as in the main experiment.

With such setup, standard GP attains the success rate of
9.6%, almost an order of magnitude lower than the best fig-
ures reported in Table 2. Of course, to some extent this gap
is due to the difference in cardinality of the search space,
which is greater for GP by over three orders of magnitude
(4, 194, 304 programs vs. 14, 673 semantics), and due to the
fact that the distribution of semantics in the prespace is uni-
form. Nevertheless, Table 2 demonstrates that optimization
makes the probability of success much higher.

5.3 Embeddings for compound programs
Optimizing an embedding to solve a single problem instance
is usually pointless, as the proposed approach requires cal-
culation of semantics of all programs in P , so the overall
cost of optimization and search with the optimized embed-
ding is far greater than the computational effort of direct
search in the program space P . Nevertheless, there are at
least two other scenarios in which this can pay off. The pre-
vious section followed the scenario in which there are many
problem instances to be solved using the same instruction
set. Here, we treat embedding as a means to speed up the
search in the space of program fragments rather than en-
tire programs. The question we ask is: can an optimized
embedding be exploited to effectively solve larger problem
instances, i.e., instances for which an optimal solution is a
program that does not belong to P ? In other words, can the
increase of locality elaborated by optimization be extrapo-
lated in a compositional manner?

To answer this question we assume that our goal is to
evolve a compound program that can be expressed as a
composition of two arbitrary programs from P , by which
we mean feeding the output of the first program p1 into
the second program p2 as the value of the input variable
v. Another words, p2 ◦ p1 is a tree obtained by substitut-
ing all occurrences of terminals v with p1. This is of course
a very specific form of program composition: in particular,
if p2 contains multiple references to v, all of them will be
replaced by the same program p1, leading to a compound
program that standard GP is unlikely to produce. Never-
theless, this is the simplest non-trivial compositional setup
that can be implemented in the proposed framework, and
sufficient to validate our hypothesis.

Methodology. We employ an analogous experimental pro-
tocol as in Section 5.2, i.e., we estimate the success rate
on a sample of 3, 000 problem instances (targets). This
time, however, a single problem instance is defined by the
semantics of the compound program p2 ◦ p1. For the rea-
sons explained earlier, we assume a uniform distribution of
target semantics. Because enumerating all unique seman-
tics of 4, 194, 3042 compound programs is infeasible, we ran
5, 000, 000 compositions of random programs p1 and p2 and
so created a sample of almost a million of unique semantics.
This sample contains also semantics of simple programs (i.e.,
from P ), because it may happen that s(p2 ◦ p1) ∈ S, for in-
stance when p1 is a single-node program v. Because we do
not want this experiment to be contaminated by the per-
formance of methods on simple programs, we discard them
from the sample, so finally it contains 972, 369 unique se-
mantics. Then, the 3, 000 evolutionary runs optimize for
targets drawn uniformly from the sample. The task for the
evolution is to find a compound program (a pair of simple
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programs from P ) that has the same semantics as the target,
using non-optimized or optimized embedding.

An individual’s genome x is now an integer vector of
length 2d, with the first half of the genotype encoding the
coordinates in X that determine p1, and the other half en-
coding p2, where X is the embedding optimized for single
programs in Section 5.1. Thus, this time the search takes
place in the space X ×X of cardinality 14, 6002

� 2× 108.
Other settings remain the same as in Section 5.2.

The results. Table 3 presents performance of EA on this
task. The success rate drops by more than order of magni-
tude compared to Table 2. For the unoptimized embeddings,
it exceeds 1% only for a few combinations of d and pm. The
reason for this is not only the far greater cardinality of the
search space, but also the fact that deeper trees (longer pro-
grams) are by nature harder to evolve than the shallow ones,
as manipulations on deep tree fragments are unlikely to in-
fluence the semantics of a program. As shown by Langdon
[6], the distribution of semantics becomes very nonuniform
and approaches a limit with tree growth.

In this context, it is encouraging to observe that the op-
timized embeddings can help finding the solution several
times more frequently, particularly for larger values of d and
pm. This suggest that, at least to some extent, the locality
elaborated by the optimization algorithm for ‘subprograms’
(here p1 and p2) improves also the locality of the compound
program p2 ◦ p1. There are at least two reasons for which
this should be considered particularly interesting. Firstly,
because p1 can produce an arbitrary output, the values fed
into p2 are often outside the range [−10, 10] used for opti-
mization of embedding. This suggests that the optimized
embedding is capable to generalize beyond the training set.
Secondly, our embeddings are not optimized with respect to
the input variable v, but only with respect to the mutual
distance between the semantics of programs. It is proba-
ble then that we benefit here also from ‘natural’ smoothness
of programs with respect to v, which is quite common in
symbolic regression, as the plots in Fig. 2 suggest.

Comparison to standard GP. We confront these results
with the performance of standard GP in two ways. In the
first control experiment we evolve individuals being pairs of
GP trees, each constrained to depth 4, which, when eval-
uated, are being composed in a way described above. The
best success rate we were able to obtain by parameter tun-
ing for our semantically uniform sample of 3, 000 targets was
1.83% for both mutation and crossover probability equal to
0.5. The second control experiment was standard GP with
parameters quite close to Koza-I setup (single tree, depth
limit 17, crossover probability 0.9, mutation probability 0.1).
In this case, GP found solution in 1.97% of runs. An opti-
mized semantic embedding for d = 9 and pm = 1.0 is thrice
more likely to find an optimum.

6. SUMMARY AND CONCLUSIONS
The proposed approach of semantic embedding has three key
features. The first is the switching from the original program
space to the space of program representatives, which vastly
reduces cardinality and provides one-to-one correspondence
with the semantic space. The second is the concept of ge-
ometric embedding that imposes a well-structured, regular
topology on the search space, endows it with a natural neigh-
borhood, and enables convenient search using Cartesian co-

Table 3: Success rate (%) of EA evolving compound
programs on a sample of 3, 000 problem instances for
the random and optimized embeddings.

pm 0.0 0.2 0.4 0.6 0.8 1.0
d Random embedding
2 0.43 0.53 0.67 0.77 1.10 0.87
3 0.40 0.40 0.43 0.83 0.77 0.90
4 0.33 0.77 0.43 0.67 0.87 0.83
5 0.40 0.53 0.83 0.77 1.07 1.33
6 0.33 0.53 0.53 0.90 1.03 1.10
7 0.23 0.53 0.67 0.77 1.20 1.17
9 0.40 0.60 0.63 0.87 0.93 0.80
d Optimized embedding
2 0.20 0.90 1.50 0.80 1.07 0.73
3 0.23 0.63 0.60 0.87 1.20 0.90
4 0.67 0.73 0.60 1.00 1.50 2.60
5 0.53 0.67 0.77 0.77 1.70 3.50
6 0.30 0.50 1.37 1.13 1.77 5.43
7 0.40 0.50 1.17 1.07 1.93 3.83
9 0.63 0.80 1.27 1.67 3.10 5.80

ordinates. Finally, there is the locality-driven optimization
which, operating in abstraction from a specific fitness func-
tion, smoothes the embedding and, as demonstrated in the
experiments, improves the expected search performance on
all problem instances simultaneously.

The only prerequisite for applying semantic embeddings
to a given domain is the existence of a metric semantic space
S. Semantics is present in virtually every application do-
main of GP, and does not have to form a vector as in this
study. A path traversed by an agent (artificial ant, game
character, robot) in an environment, a sequence of buy/sell
transactions issued by a trading strategy, and an output
image produced by an evolved image processing program,
are other examples of semantics. Wherever the similarity of
such outcomes of programs can be measured, semantic em-
bedding is applicable. Moreover, it is reasonable to expect
that for problems where the target semantics t is not known
and thus fitness function is not explicitly based on metric
(e.g., artificial ant problem), this approach can also bring
some benefits by improving locality.

Of course, measuring semantic similarity can be a chal-
lenge in itself. Because the set of 20 fitness cases we used
here cannot in general reflect the semantic richness of con-
tinuous functions, the semantic distance we used here is es-
sentially only an estimate. However, it seems that this es-
timate was good enough, as the method works well despite
the fact different sets of fitness cases have been used here
for optimization of embedding and for evolutionary search.

We demonstrated that semantic embedding can bring sub-
stantial benefits in at least two scenarios: when there is a
need of solving multiple GP problems using the same in-
struction set and program length limit, and for problem de-
composition. For now, the most promising direction of fu-
ture research seems to be better exploitation of embedding
in the latter, compositional scenario. We considered here
a simple scheme of composition, but we expect that more
can be gained by bringing in more sophistication, in partic-
ular by explicitly taking into account the smoothness with
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respect to program input v, or simultaneous use of multiple
embeddings, e.g., optimized separately for p1 and p2.

In a broader perspective, the whole approach can be con-
sidered as an automatic induction of a new programming
language. An embedding can be seen as single-input (v),
single-output meta-instruction parameterized by a vector of
coordinates x that determines its semantics. Such meta-
instruction is functionally complete (i.e., it encapsulates all
possible input-output transformations that can be expressed
under the assumed program length limit) and can be opti-
mized in a reasonable time, avoiding combinatorial explo-
sion. Most importantly, the second experiment suggests that
evolution of programs composed of such meta-instructions
can be more effective than the search in the original pro-
gram space. Alternatively, this can be viewed as a form of
problem decomposition, with the goal of finding such de-
composition of the original program space into subspaces,
that the subspaces can be embedded at high locality.
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