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ABSTRACT
This paper describes a technique which can be used with
Genetic Programming (GP) to reduce implicit bias in bi-
nary classification tasks. Arbitrarily chosen class boundaries
can introduce bias, but if individuals can choose their own
boundaries, tailored to their function set, then their out-
puts are automatically scaled into a suitable range. These
boundaries evolve over time as the individuals adapt to the
data

Our system calculates the Evolved Class Boundary (ECB)
for each individual in every generation, with the twin aims
of reducing training times and improving test fitness. The
method is tested on three benchmark binary classification
data sets from the medical domain.

The results obtained suggest that the strategy can im-
prove training, validation and test fitness, and can also re-
sult in smaller individuals as well as reduced training times.
Our approach is compared with a standard benchmark GP
system, as well as with over twenty other systems from the
literature, many of which use highly tuned, non-EC meth-
ods, and is shown to yield superior results in many cases.

Categories and Subject Descriptors
1.2.2 [Artificial Intelligence]: Automatic Programming -
Program Modification

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic Programming, Binary Classification, Medical

1. INTRODUCTION
Classification problems arise in many application domains,
including Internet search engines, document classification,
credit scoring, image analysis, biometrical identification, and
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computer vision[26]. Accurate automated classification of-
fers potential for significant benefits, and has long been an
important area of study in Computer Science. Classification
involves systematically assigning each of a given number of
data items to a particular category. In machine learning
terms, the data item is an instance represented by a feature
vector describing attributes of that instance, the category to
which the instance is assigned is referred to as a class, and
the attribute that identifies to which class the instance is
assigned is referred to as the class label. A class boundary
is a decision point that determines the class label.

GP is suitable for classification tasks: it is domain inde-
pendent, very flexible and expressive, and supports auto-
matic feature detection and selection. The ability to au-
tomatically detect and select features offers potential for
the development of fully automated classifiers. However,
there are some drawbacks when applying GP to classifica-
tion problems. The most notable of these are the long train-
ing times, difficulty in determining effective class boundaries
for multi-class problems, and the lack of comprehensibility
of the evolved solutions.[2, 14, 28].

To mitigate some of these problems, this paper proposes
a simple technique, Evolved Class Boundaries (ECB), which
makes it easier for the GP individuals to determine an ap-
propriate class boundary. This is similar in operation to the
Linear Scaling operation proposed by Keijzer [9] in that indi-
viduals are not penalized for not having access to ideal con-
stants (either Ephemeral Random Constants or synthesized
ones). It operates by automatically scaling the class bound-
ary into the numerical range of the individual being tested,
which permits the system to concentrate simply on distin-
guishing among the classes rather than having to evolve con-
stants at the same time.

Our experiments suggest that this process can result in
shorter training times and smaller programs. Since it is ac-
cepted [14, 19] that any multi-class problem of size n can be
reduced to n binary classification tasks using a “one versus
all” approach, it follows that the application of tools that fa-
cilitate the development of more effective binary classifiers
can offer benefits in the multi-class situation.

The remainder of this paper is laid out as follows: Sec-
tion 2 provides some background to this work with a partic-
ular focus on the application of class boundaries; Section 3
explains the proposed technique; Section 4 details the ex-
perimental set-up, results and comparison with other work,
and Section 5 outlines conclusions and future work.
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2. BACKGROUND
GP has enjoyed much success with a wide variety of classifi-
cation tasks [2, 13]. In a recent survey of work in which GP
was applied to classification problems, Espejo et al [4] re-
viewed 66 papers where GP was compared with other meth-
ods with regard to classification accuracy. In 54.72% of cases
GP was the best performing method.

A key step in the classification process is the determina-
tion of a class boundary. For binary classification tasks in
GP this has traditionally been achieved in one of three ways:

Usually[21, 22], the boundary is set at zero, in which case
the sign of an individual’s output on a given training in-
stance is used to determine the class label. Alternatively,
the output of the program is itself a binary value which
translates to a class label. For example, Bojarczuk et al [2]
used logic operators to generate an if-then-else classification
rule for chest pain diagnosis.

Another approach is to pass the output of individuals to
a separate component whose function is the determination
of the class label. Estebanez et al.[5] used a Linear Percep-
tron. Lam and Ciesielski [10] applied K-Means clustering to
the program outputs, Smart and Zhang [19] proposed Gaus-
sian distribution and probability models applied to program
outputs. These last two approaches were applicable to both
binary and multi-class classification tasks.

Several approaches have been recommended for multi-
class problems using GP, such as Static Range Selection [27]
and Dynamic Range Selection (DRS) [14]. The DRS algo-
rithm used a subset of the training data set to devise pop-
ulation based class boundaries. Zhang and Smart [28] pro-
posed two dynamic methods: Slotted Dynamic Range Selec-
tion(SDRS) and Centred Dynamic Range Selection(CDRS).
The SDRS method employed “slots” in the range -25 to +25
and assigned the output of each program weighted by fitness
to a particular slot, and each slot was assigned to a class.
With CDRS, a centre for each class was calculated and the
midpoints between centres formed the class boundary for
the population as a whole. A similar approach using a de-
creasing weighted function was proposed by Li et al [11].
Each of the above methods were applied to image classi-
fication problems. Overall, it was found that Static Range
Selection was effective with “easier” images but did not scale
successfully. The dynamic methods performed well on more
complex images but suffered from long training times and
tended to produce large programs. Li et al.[11] applied par-
simony pressure to mitigate the latter problem.

Several researchers have tackled the problem of multi-class
classification in GP by decomposing the problem into mul-
tiple binary classification problems [21] [29]. The develop-
ment of more effective binary classification algorithms could
contribute towards achieving better solutions to multi class
classification tasks.

3. DETAILS OF PROPOSED TECHNIQUE
There are some problems with the existing techniques used
to determine class boundaries: the determination of good
static boundaries may require hand crafted input by hu-
man experts [14], and the use of dynamic population based
boundaries can result in long training times as the popula-
tion strains to learn appropriate boundary values [20, 11].

With binary tasks, given feature vectors of positive real
valued attributes, and a static class boundary of zero, indi-

viduals will take some time to move in the direction of the
zero boundary. Similarly, given a population of very diverse
individuals, a dynamic boundary that is designed for the
population as a whole is likely to be challenging for indi-
viduals who differ from some mean population value. This
is particularly likely to occur in the initial generations, and
thus potentially useful genetic material may be discarded.

Rather than attempting to calculate boundaries that suit
the entire population, our approach instead allows each in-
dividual to learn a class boundary that is natural for its
genotype. We suggest that if the individual is permitted
to chose a boundary that arises naturally out of the range
of its outputs, then promising candidates may achieve good
initial fitness and are less likely to be lost. In the proposed
method, at each generation during training, the individual
Evolved Class Boundary(ECB) is simply determined by cal-
culating the mean of the individuals output for each class
on the training data, and getting the midpoint of these two
means.

boundaryP =

P
i POi(C1)

mC1
+

P
j POj(C2)

mC2

2
(1)

Where P represents an individual program, POi(C1) and
POj(C2) are the outputs of the program for instances of
Class 1 and Class 2, and mC1 and mC1 are the number
of instances of Class 1 and Class 2 respectively. The final
Evolved Class Boundary for each individual is the boundary
that is applied to validation and test instances.

4. EXPERIMENTS

4.1 Data Sets
Three benchmark data sets from the medical domain have
been used for experiments: The Wisconsin Breast Cancer
data set, the Pima Indians Diabetes data set and the BUPA
Liver Disorders data set.

4.1.1 Wisconsin Breast Cancer data set
The Wisconsin Breast Cancer (WBC) data set contains 699
instances of breast cancer diagnosis data from Wisconsin
University Hospitals. Each consists of 10 integer valued at-
tributes, including the instance identifier and class label, al-
though sixteen of the instances have one or more attributes
missing/unavailable. Those instances were discarded. Of
the remaining, there are 458 instances of the “benign” class
and 241 instances of the “malignant” class, and each of the
training, validation and test sets were made up 224 instances
of which 147 are benign instances and 77 malignant. Sub-
stantially more of the records with missing/unavailable at-
tributes were of the benign class so it was necessary to also
remove several of the others in order to preserve the ratio of
positive to negative cases.

4.1.2 Pima Indians Diabetes data set
The Pima Indians have been the subject of intensive dia-
betes research due to the high incidence of the disease in
the population, and the Pima Indians Diabetes (PID) data
set consists of 768 instances taken from a larger database
originally owned by the American National Institute of dia-
betes. The data in the PID data set refers to female patients
at least twenty-one years old of Pima Indian heritage living
in Phoenix, Arizona.
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There are 500 negative cases and 268 positive cases in this
dataset, each consisting of eight numerical attributes plus a
class label. As with the WBC data, this data was evenly
divided into training, validation and testing sets with 166
negative cases and 89 positive cases in each set.

4.1.3 BUPA Liver Disorders data set
The BUPA Liver Disorders(BUPA) data set, which contains
345 instances, refers to male patients and consists of infor-
mation thought to be indicative of liver disorders. Each
instance consists of seven numerical attributes including a
class label, five attributes which are the results of blood tests
that are thought to be sensitive to liver disorders and a final
attribute which is the number of units of alcohol consumed
daily. There are 200 positive instances and 145 negative in-
stances and for our experiments we used 114 instances each
for training, validation and test purposes, of which 66 are
positive instances and 48 negative.

In partitioning the data between training, validation and
test sets, we discarded several records from each master set
where the values did not divide evenly, in order to ensure
equal sized sets with the correct proportions, preserving the
ratio of negative to positive instances. Copies of the data for
these tasks were obtained from the UCI Machine Learning
Database[6].

4.2 Function Sets
We have used a function set consisting of addition, sub-
traction, multiplication and protected division. It could be
argued that the use of boolean operators would eliminate
boundary bias and avoid the problem of developing dynamic
boundaries. However, this approach may not scale well
to multi-class tasks, and the application of strongly typed
GP with mixed types may result in unnecessary complex-
ity. More importantly, many classification problems have
numeric rather than logical data, so it would seem more ap-
propriate to use arithmetic operators in those cases. We
have chosen not to use constants for our experiments, as the
system should be capable of synthesising any values required
using the function set and the range of values in the existing
terminal sets.

Table 1: Common Parameters

Parameter Value
Strategy Generational
Initialisation Ramped

half-and-half
Selection Tournament
Tournament Size 4
Crossover 70
Mutation 10
Elitism% 20
Initial Min Depth 1
Max Depth 12
Function Set + - * /
Population 500
Max Gen 50

Table 2: Specific Parameters

Parameter WBC PID BUPA
# Terminals 9 8 5

4.3 Experimental Set-up and GP Parameters
Genetic Programming(GP) parameters used for the exper-
iments are detailed in Tables 1 and 2. Each binary clas-
sification task was undertaken first using a baseline con-
figuration, where the class boundary was set at zero, and
the sign of the program output was used as the class la-
bel. Next, the experiments were repeated using the ECB
configuration. Finally, experiments were run for the multi-
class, population based “Centered Dynamic Class Boundary
Determination”(CDCBD) method proposed by Smart and
Zhang [28]. For each experiment, the data was divided into
three sets: a training set, a validation set and a test set.
The training set was used to train the GP Individuals on
the particular experiment (PID,WBC or BUPA), while the
validation set was employed to detect over fitting, and to
select suitable candidates for testing; during training, each
individual was evaluated against the validation set and a
separate validation score was maintained (with no influence
on training fitness). The individual with the highest vali-
dation score on each run was selected for evaluation on the
corresponding test set. A useful application of a validation
set is to curtail the training phase once some pre-defined
validation criteria has been met, such as a deterioration or
lack of improvement in validation fitness. On this occasion,
we allowed the experiments to run to completion in order to
obtain boundary behaviour data.

Fifty runs were undertaken for each configuration. For
the static and ECB experiments, the runs were indepen-
dent, whereas the CDCBD experiments were configured us-
ing the same random seeds as for the corresponding ECB
runs. Overall, a total of 450 runs were completed. The
fitness measure used for evolution was the number of clas-
sification errors of each program. Final fitness values are
converted to error rate and % classification accuracy for re-
porting and comparison purposes. The GP framework used
was the Open Beagle Evolutionary Framework[7]. For the
remainder of this document the following naming conven-
tions apply:

Static = Static Class Boundary (always set to zero)
CDCBD = Centered Dynamic Class Boundary[28]
ECB = Evolved Class Boundary

4.4 Results and Discussion
Results obtained using the baseline Static configuration are
compared with those achieved using the CDCBD and ECB
configurations and, outcomes for each of training, validation
and test fitness, program size, and nodes processed are com-
pared. In the case of training, the results displayed are the
averages and standard deviation of the final generation of
each run, whereas the values for validation and test results
represent the average and standard deviation of the fifty se-
lected validation individuals for each task when applied to
the validation and test data respectively. We calculated the
average number of nodes processed per run using the num-
ber of individuals processed and the average tree size for
each generation, totalled over each run and then averaged
over the fifty runs of each experiment. For each set of exper-
iments, the best result in each category is displayed using
bold text.
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Table 3: WBC, PID & BUPA Training Validation & Test Fitness

Training Validation Test
Dataset Method Average

Fitness
StdDev Best

Fitness
StdDev Average

Fitness
StdDev Best

Indiv.
Average
Fitness

StdDev Best Indiv

WBC
Static 94.95 0.74 98.44 0.41 96.97 0.73 98.28 95.58 1.10 97.41

CDCBD 91.6 8.75 97.52 0.36 97.50 0.66 98.66 97.42 1.41 99.55

ECB 98.33 0.51 98.89 0.2 96.75 0.28 97.41 96.42 0.54 97.41

PID
Static 72.27 2.27 77.03 1.73 70.91 1.23 74.5 67.52 3.07 74.9

CDCBD 67.28 6.58 75.55 2.10 71.40 1.80 74.90 69.35 3.95 78.43

ECB 78.43 1.34 80.55 0.68 76.26 0.61 78.04 77.33 1.33 80.78

BUPA
Static 76.04 3.03 81.39 2.84 72.60 2.49 77.19 71.95 4.15 78.94

CDCBD 74.68 4.41 81.82 1.70 74.79 1.70 79.70 69.53 4.29 77.19

ECB 77.84 2.08 82.14 1.8 77.19 2.04 79.82 73.31 2.32 79.82

4.4.1 Training, Validation and Test Fitness Scores
The results for the WBC experiments seen in Table 3 show
that the ECB method produced better training results for
both best and average fitness whereas the CDCBD method
scored highest on validation and test fitness. Overall, both
dynamic methods outperformed the static method. For the
PID experiments, the ECB method consistently outscored
the Static and CDCBD methods on each of the training,
validation and test categories, and for average test fitness the
result for the ECB configuration was almost 10% better than
that of the Static configuration. Similarly, looking at the
BUPA experiments, we see that the ECB approach produced
better scores on each of training, validation and test fitnesses
and the static method outperformed the CDCBD approach
on test fitness.

The results in Table 3 demonstrate that the ECB tech-
nique delivered better results overall on the chosen tasks and
both dynamic methods demonstrated superior performance
over the static method, with the CDCBD approach doing
best on the WBC problem and worst on the BUPA task. As
the main objective when attempting to evolve classifiers is
to generate ones that generalise well, one could argue that
the most important statistic is average test fitness. In this
respect, the ECB method has proven superior on two of the
three experiments undertaken.

4.4.2 Average Tree Size
Results for average tree size shown in Table 4 represent the
average tree size at generation 50 averaged over all runs for
each task in the case of training. The tree sizes reported for
validation/test are averages of the tree sizes of the fifty val-
idation individuals which were selected for testing for each
experiment. The results indicate that both the ECB and
CDCBD methods produce significantly smaller trees over-
all, and between the two of these approaches, ECB produced
smaller trees for two of the three tasks. Also, in each case,
the average tree size of the validation/test individuals was
smaller than the average of the population from which they
were selected. This suggests that for this type of problem,
smaller tress may generalise better. This is consistent with
previous work of Nordin and Banzhaf[17] and the general
principle of Occam’s razor.

A small tree size is a desirable outcome, particularly when
an uncomplicated function set is used, as the evolved results

may be easier to interpret. Comprehensibility of the evolved
solutions is important in certain problem domains, notably
the medical domain, where the reasons for a particular clas-
sification may be as important as the classification itself.
Similarly, in areas such as texture classification, it is useful
to learn if the system has discovered discriminating features
not previously understood.

Table 4: Average Tree Size

Data
Set

Method Train SdDev Test SdDev

WBC
Static 136.3 81.44 112.92 87.70
CDCBD 89.04 31.36 49.72 24.74
ECB 88.2 32.88 29.96 19.3

PID
Static 241.25 190.67 176.06 213.8
CDCBD 77.64 25.28 46.00 29.72
ECB 77.62 30.7 37.44 28.28

BUPA
Static 480.76 666.34 346.08 625.4
CDCBD 113.04 25.80 94.24 31.29
ECB 163.98 146.37 106.2 147

Table 5: Average Nodes Processed

Data Set Method Nodes (1000s)

WBC
Static 2533

CDCBD 1034
ECB 925

PID
Static 2555

CDCBD 1264
ECB 1170

BUPA
Static 8569

CDCBD 1168
ECB 3412

4.4.3 Average Nodes Processed per GP Run
Table 5 shows the average number of nodes processed per
GP run for each method. The results indicate that for
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the current experiments, significantly fewer nodes were pro-
cessed during runs where the ECB and CDCBD methods
were used. Comparing the ECB approach with the Static
method, there were 63%, 55% and 60% fewer nodes pro-
cessed for the WBC PID and BUPA tasks respectively when
the technique was employed. The CDCBD technique used
significantly fewer nodes for the BUPA task and generated
results similar to the ECB approach for the other tasks. In
GP, the most significant proportion of the computational
cost is incurred in evaluating individual fitness. It follows
that smaller individuals with fewer nodes to process should
deliver shorter run times and use less memory overall.

As noted earlier, one of the perceived drawbacks to the ap-
plication of GP to classification problems is the belief that
it has a requirement for long training times when compared
with other classification methods [14]. We suggest that the
results for the current experiments demonstrate that use of
the ECB technique can deliver dramatically reduced run
times for this type of classification problem with virtually
no trade off, as the boundary calculation is integrated with
the normal evaluation process and does not involve any ad-
ditional evaluations, which may be required when applying
population based boundaries.

4.4.4 Statistical Tests
In order to ascertain whether the superior test results offered
by the ECB method are significant, we carried out some sim-
ple statistical tests. Firstly, in order to check that the sam-
ples were normally distributed, we computed the z-score for
the minimum and maximum values of each sample for each
experimental task. Then, using a standard statistical hy-
pothesis test [23] for large(> 30) independent samples, and
choosing a significance level of 0.05, we calculated sample
statistics for the differences in means of test fitness obtained
for both the Static and ECB methods for each data set. The
rationale in doing this is to establish whether it is likely that
both samples are from the same or different populations, i.e
if the ECB method has no significant effect then the means
of both populations are equal (null hypothesis).

Test statistics of 4.86, 20.73 and 2.02 were obtained. The
corresponding P-Values were 0.002, 0.002 and 0.0434. The
P-Value represents the probability of getting a value of the
sample test statistic that is at least as extreme as the one
obtained from the sample data assuming the null hypothe-
sis to be true. Using the significance level of 0.05, the ECB
results can conventionally be described as statistically sig-
nificant for the WBC, PID and BUPA experiments.

In comparing the performance of the CDCBD method
against the ECB approach we used the Student t test for
dependant samples. Test statistics of 11.71, 1.61 and -1 were
obtained from the PID, BUPA and WBC data sets respec-
tively. Using a significance level of 0.05 the critical values of
t are -1.960 and 1.960. Thus, the difference in performance
can be described as significant for the PID data, and not
significant for the WBC and BUPA data.

4.4.5 ECB Behaviour
ECB works because individuals dictate their own boundary
values. This section examines how the boundaries change
over time. Due to the extremely wide range of the ECB val-
ues and the presence of significant numbers of valid outliers,
we have chosen to report the median and median absolute
deviation(MAD) for each generation rather than the aver-

age and standard deviation. The median is a robust measure
of central tendency and the median absolute deviation is a
robust measure of statistical dispersion. We consider that
these robust measures present a more meaningful represen-
tation of the ECB data [8]. ECB values have been rounded
to zero decimal places for reporting purposes only. Figures 1
and 2 show the behaviour of the ECB medians and median
absolute deviation for a typical run of each problem. Me-
dian and Median absolute deviation values are scaled on the
left axis in figures 1 and 2 respectively.

Observing the behaviour of the ECB across the three prob-
lems, we see that while the behaviour was noticeably differ-
ent between the PID, BUPA and WBC problems, it was
consistent across runs for each task. This would suggest
that the system has used the boundaries in a problem spe-
cific way.

For the PID experiments, the boundaries typically ranged
from very large (up to ±1038) negative values to very large
positive values early in the evolutionary process, and evolved
towards large and very large positive values by the final gen-
eration.

Early evolution of the BUPA boundaries was similar to the
PID boundary data where the individual boundaries ranged
between very large negative and positive values. However
as the process progressed, they moved closer to zero and
at generation 50, generally ranged from small negative to
positive values with a median close to zero.

The WBC experiments showed a different behaviour. In
the first few generations, the underlying boundary data typ-
ically ranged from small negative to positive values with a
small number of large positive outliers. At the final genera-
tion, these had generally evolved to being almost exclusively
positive, in the range 0-500.

When comparing the Evolved Class Boundaries of the top
and bottom 20% of the population at the final generation, it
was clear that the boundary values of the fitter individuals
ranged much closer together than those of their less fit coun-
terparts. In the case of the PID experiments, the boundaries
of the fitter individuals tended to be several degrees of mag-
nitude smaller on average than those of the unfit portion of
the population.

4.5 Comparison with other work
In this section, results obtained using the ECB approach are
compared with other work using the same datasets, includ-
ing non-EC approaches such as neural networks and SVMs.
Results are expressed as either % classification accuracy or
error rate as appropriate, to aid comparison with other work.

Lim et al. [12] compared the performance of over thirty
classification algorithms including decision tree algorithms,
statistical algorithms and neural networks. The best per-
forming of these on the WBC, PID and BUPA datasets re-
ported error rates of 0.03, 0.22 and 0.28 respectively. The
corresponding best results (rounded) for ECB of 0.03, 0.23
and 0.27 on those problems are extremely competitive. How-
ever, in some cases, superior results to those of Lim et al
have been reported elsewhere in the literature as detailed in
Tables 6 to 8.

Looking firstly at comparative data for the Wisconsin
Breast Cancer classification problem, we compare with Polat
et al.[18] who detailed the performance of various algorithms
on the task as shown in table 6. At 96.42% the ECB scores
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slightly below average when compared with the other results
reported by Polat et al.

Table 6: WBC Comparative Data from Polat et al.[18]

Author (Year) Method %Acc.
Quinlan (1996) C4.5 94.74
Hamilton et al. (1996) RIAC 94.99
Nauck and Kruse (1999) NEFCLASS 95.06
Current Work Static 95.58
Abonyi and Szeifert (2003) FuzzyClustering 95.57
Current Work ECB 96.42
Ster and Dobnikar (1996) LDA 96.80
Goodman et al. (2002) Big-LVQ 96.80
Bennet and Blue (1997) SVM 97.20
Goodman et al. (2002) AIRS 97.20
Pena-Reyes andSipper (1999) Fuzzy-GA1 97.36
Current Work CDCBD 97.42
Setiono (2000) Neuro-Rule 2a 98.10
Polat et al. (2005) Fuzzy-AIRS 98.51

Table 7: Statlog[15] Data for PID Domain

Algorithm Train Test
Logdisc 0.219 0.223
Discrim 0.220 0.225
DIPOL92 0.220 0.224
ECB 0.216 0.227
SMART 0.177 0.232
RBF 0.218 0.243
ITrule 0.223 0.245
Backprop 0.198 0.248
Cal5 0.232 0.250
CART 0.227 0.255
CASTLE 0.260 0.258
NaiveBay 0.239 0.262
Quadisc 0.237 0.262
C4.5 0.131 0.270
IndCART 0.079 0.271
Baytree 0.008 0.271
LVQ 0.101 0.272
Kohonen 0.134 0.273
Kohonen 0.134 0.273
AC 0.00 0.276
CN2 0.010 0.289
NewID 0.00 0.289
ALLOC80 0.288 0.301
CDCBD 0.327 0.306
k-NN 0.000 0.324
Static 0.277 0.325
Default 0.350 0.350

For the PID classification task we compare results with those
reported in Statlog as shown in Table 7[15]. Here, the rank
associated with each algorithm is based on test classifica-
tion error. Using this criteria, the ECB configuration ranks
fourth on the StatLog scale with an error rate of 0.227. In

more recent work by Eggermont et al. [3] several GP variants
were tested. The best of these had an error rate of 0.242.
Tsakonas [24] tested four GP algorithms and reported an
error rate of 0.2198 for GP with Fuzzy Rule Based Systems.
Considering these results, the performance offered by the
ECB technique could be described as very competitive.

Referring once again to the work of Polat et al.[18] in Ta-
ble 8 we make a comparison for the BUPA Liver Disorders
task. Here, the ECB configuration resulted in a classification
accuracy of 73.31% which scores fourth highest of the meth-
ods listed and is only outscored by RSVM, AIRS and Fuzzy-
AIRS. The Static method also performs respectably with
accuracy of 71.95%. In other work. Loveard and Ciesiel-
ski [14] experimented with GP using static and population
based dynamic boundaries. They recorded a best test score
of 69.2%. Muni et al. [16] reported a similar result. Recent
research by Badhran and Rockett(2010) [1] applied GP with
varying parameters and reported a test result of 74.86%.

Table 8: BUPA Comparative Data from Polat et al.[18]

Author (year) Method %Acc.
Polat et al. (2005) Fuzzy-AIRS 83.38
Polat et al. (2005) AIRS 81.00
Lee and Mangasarian (2001b) RSVM 74.86
Current work ECB 73.31
Yalçın and Yıldırım (2003) MLP 73.05
Current work Static 71.95
Lee and Mangasarian (2001a) SSVM 70.33
Van Gestel et al. (2002) SVM with GP 69.70
Current work CDCBD 69.53
Cheung (2001) C4.5 65.59
Yalçın and Yıldırım (2003) GRNN 65.55
Cheung (2001) Naive Bayes 63.39
Cheung (2001) BNND 61.83

In summary, we believe that the results and comparisons
show that the Evolved Class Boundary method has delivered
a competitive performance for the Wisconsin Breast Cancer
data, with competitive and often superior performances for
both the Pima Indians Diabetes and BUPA Liver Disorders
classification tasks.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a technique that can be used
with GP for to improve performance on binary classification
tasks. We believe that we have shown that the proposed
method, ECB, can improve training, validation and test re-
sults, reduce run times and produce smaller trees. Although
the method is extremely simple, it has proven to be sur-
prisingly effective. Most importantly, the technique offered
good results on test data, and we have established that these
results are likely to be statistically significant. In compar-
ison with other work on the same problems, the proposed
method has delivered competitive and sometimes superior
results.

The data sets used in our experiments do not exhibit a
high degree of class imbalance, having an approximate ratio
of 2:1 of positive to negative instances or vice versa. Should
future work involve the use of data sets with higher degrees
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Figure 1: Evolution of ECB Median values for typical PID, BUPA and WBC runs, Median on left axis

Figure 2: Evolution of ECB Median Absolute Deviation values for typical BUPA, PID and WBC runs, MAD on left axis

of class imbalance, this would need to be taken into account.
Similarly, we have used a very simple function set, and can
reasonably conclude that this, combined with the relatively
small trees generated by the ECB method implies a low level
of functional complexity. Should more complex functions
be used in future work, it would be necessary to undertake
more detailed analysis of the chosen individuals by employ-
ing for example some of the ideas suggested by Vladislavleva
et al.[25].

Revisiting the current work, it would be interesting to
examine the way in which the system seems to be able to
utilise the boundaries in a problem specific way. Also, we
would like to learn if the ECB technique can be successfully
applied to more general classification problems. By taking
the current work as an initial step we plan to investigate the
potential of the technique to solve multi-class problems by
binary decomposition.

6. REFERENCES
[1] K. Badran and P. I. Rockett. The influence of

mutation on population dynamics in multiobjective
genetic programming. Genetic Programming and
Evolvable Machines, 11(1):5–33, Mar. 2010.

[2] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas.
Discovering comprehensible classification rules by
using genetic programming: a case study in a medical
domain. In W. Banzhaf, J. Daida, A. E. Eiben, M. H.
Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference, volume 2, pages 953–958,
Orlando, Florida, USA, 13-17 July 1999. Morgan
Kaufmann.

[3] J. Eggermont, J. N. Kok, and W. A. Kosters. Genetic

programming for data classification: Partitioning the
search space. In Proceedings of the 2004 Symposium
on Applied Computing (ACM SAC’04), pages
1001–1005, Nicosia, Cyprus, 14-17 Mar. 2004.

[4] P. G. Espejo, S. Ventura, and F. Herrera. A Survey on
the Application of Genetic Programming to
Classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
40(2):121–144, March 2010.

[5] C. Estebanez, R. Aler, and J. M. Valls. A method
based on genetic programming for improving the
quality of datasets in classification problems.
International Journal of Computer Science and
Applications, 4(1):69–80, 2007.

[6] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.
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