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ABSTRACT
In this paper, an investigation of evolvable probabilistic clas-
sifiers is conducted, along with a thorough comparison be-
tween a classical Gaussian distance model, and the induc-
tion of Gaussian-to-circle projection model. The newly in-
troduced model refers to a distance fitness measure, based
on the projection of Gaussian distributions with geomet-
ric circles. The projection architecture aims to model and
classify physical aggressive behaviours, by using biomechan-
ical primitives. The primitives are being used to model the
dynamics of the aggressive activities, by evolving biome-
chanical classifiers, which can discriminate between three
behaviours and six actions. Both evolutionary models have
shown strong discrimination performances on recognising
the individual actions of each behaviour. From the com-
parison, the proposed model outperformed the classical one
with three ensemble programs.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms, Performance, Experimentation

Keywords
Action Recognition, Gaussian Fitness Model, Biomechanical
Primitives, Time Series Classification

1. INTRODUCTION
For the multiclass problem, the goal is to evolve expres-

sion programs that suggest single numeric values denoting
the class pattern being recognised. The patterns we investi-
gate regard aggressive physical activities described by the
following behaviours: Upper (armStrikes) = {punching1,
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slapping2}, Inertial (bodyStrikes) = {pushing3, pulling4},
and Lower (legStrikes) = {front-kicking5, side-kicking6} (see
Fig. 1). Using a set of biomechanical primitives, depicted
in Table 1, GP is designated to construct a solution capable
of discriminating among these patterns.

Our approach presents a novel methodology, extension of
the work of [1, 2, 3] (who have used the GM model), where
patterns of Gaussian distribution are treated as geometric
circles over a ground-plan view. The methodology exploits
the geometric properties of a circle, which virtually repre-
sents a distribution. The process estimates the overlap of
the intersected areas for every two classes. Such distribu-
tions are being used to model the behaviour of each program,
based on the training examples for each class. A program
output distribution can be modeled as a mixture of normal
distributions [1]. Clearly, a good program will produce dis-
tant output distributions for examples of different classes.
A model of each program output distribution, for a partic-
ular class, can be acquired by evaluating the program on
the example training set. This is accomplished by taking
the mean and the standard deviation of the program out-
puts for those training examples. The ultimate goal of the
system’s architecture is to translate the numerical output of
the GP classifier into a class label.

Previously, in [2] the binary problem is decomposed in
two binary subproblems, thus letting GP to evolve a solu-
tion based on the class being tested. Two dynamic bound-
ary determination approaches based on centre and slotted
boundaries, suggested by [4], utilise single numeric output,
and a class label is given after some transformation. More-
over, [5] suggested how evolutionary fusion methods using
GP can perform well when combining classifiers of different
nature. They suggest that their methodology differs signif-
icantly from any other ensemble method [6]. The Gaussian
model (GM), coined by [1], uses a probability based ap-
proach of Gaussian distributions. The method constructs
fitness evaluations that assess the classification performance
with the distribution distance, and the overlapping area.
This twofold behaviour models each class with a Gaussian
distribution, using a number of training cases. The dis-
tance/area fitness model generates Gaussian probabilities,
which provide recognition estimations for each class.

Paper outline: Section 2 presents analytically the Gaus-
sian ground-plan projection area model. In section 3, the
evolutionary algorithm, variation operators, run parameters,
and the fitness function are given. Experimental results are
demonstrated in section 4, and conclusions in section 5.
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Figure 1: Free body diagrams of the three biomechanical aggressive behaviours. (a) Upper: arm-strikes
(punching, slapping), (b) Inertial: body-strikes (pushing, pulling), (c) Lower: leg-strikes (front-kicking, side-
kicking), (d) Sensor placement and standing bag.

2. GGPA FITNESS MODEL
The Gaussian Groundplan Projection Area model (GGPA),

accounts Gaussian distributions as circles on a ground plan
(imaginary) view. The distributions are being evaluated
from the top as depicted in Fig. 2(a). Such representa-
tion makes use of geometric circles, by associating the di-
mensional properties of a Gaussian as the mean μ and the
standard deviation σ, with the centre c and the radius r of
a circle respectively.

Based on this concept, during the evolutionary process
each individual is evaluated through a number of training
cases for each class. Hence, every pattern forms a normal
distribution of evaluations, acquired by the distance met-
ric of Eq. 6, with samples equal to the number of training
cases. From such Gaussian distributions, only the first σ,
which corresponds to μ ± 1σ ≡ 68%, is exploited as it is
the area with the most essential samples that includes the
most significant evaluations. The model, for each distribu-
tion, surrogates a geometric circle to represent its 68% of
samples, in a ground plan projection (see Fig. 2(a)). A
congruence relation is established between the centre of the
circle c and its radius r, equaling with the distribution’s
μ and σ respectively. The relation is described as follows:
μ ≡ c, σ ≡ r.

A repulsive weight w = 1/d is employed to equally push
the two Gaussians away from each other; thus, the closer
the distribution means are, the more repulsive the weight
becomes. This is analogous to the distance d (see Eq. 1),
pushing the distributions to opposite directions as depicted
by Fig. 2(b).

d = |μ1 − μ2| (1)

x1 =
d2 + r21 − r22

2d
(2)

x2 =
d2 + r22 − r21

2d
(3)

a(x, r) =
1

2
πr2 − x

√
|r2 − x2| − r2 · arcsin

(x
r

)
(4)

Eqs. 2 and 3, represent the circle’s geometry of the distance
between the centre c and the edge of the half plane. The
area of intersection is given by Eq. 4, which computes the
overlap covered by the two circles. The overlap or intersec-
tion area is also defined by the shared chord o, presented by

Fig. 2(b), with the two edge points coming from the two
circles denoting the intersection instances [7].

Apart from the circle intersection, which can occur when
two pattern Gaussians are relatively close, there is a number
of extreme contingencies (see Fig. 2(c)). In the first case,
the Gaussians have almost equal means so their circles are
under complete overlap. In the second, worst case scenario,
the two Gaussians ideally do not overlap at all so there is
no intersection between the circles. This means that there is
a significant separation of the two compared patterns. Fig.
2(c) illustrates this notion with three different Gaussians dif-
fering in σ, with Gaussian μ1 being the pattern distribution
to be compared with μ2 and μ3. Thence, the Gaussians μ1,2

present absolute overlap as observed by circle c1 embedded
in c2; this contingency is described by Eq. 5(b), where in
this case the inner circle area is returned. On the other ex-
treme, Gaussians μ1,3 appear no overlap, and according to
Eq. 5(a), the area of intersection returns zero. In the case
of normal overlap, the sum of the two intersected areas is
returned (see Eq. 5(c)).

area(d) =

⎧⎪⎪⎨
⎪⎪⎩

0 if d ≥ r1 + r2 (a){
πr21 if r1 < r2
πr22 otherwise

if d ≤ |r1 − r2| (b)

a(x1, r1) + a(x2, r2) otherwise (c)
(5)

A(d) =
1

1
d
+ area(d)

(6)

For the sake of convenience, the area derived by Eq. 5 is
normalised by the fraction of Eq. 6. This is a distance-based
metric, as well as the raw fitness function of the evolution-
ary algorithm. According to this normalisation, overlapping
distributions are evaluated with even close to zero distance.
In practice, the further their means are, the more the dis-
tance increases exponentially1, as long as there is overlap.
For distributions that do not overlap at all, the normalised
distance increases linearly as portrayed by Fig. 2(d). From
this figure, the distribution in black (range {0, 10}), repre-
sents the pattern to be compared with the inner distribu-
tion in gray (range {2, 8}). The light gray distributions de-

1The exponential growth of the separated means is a be-
haviour that emerged from the model’s design. We declare
that we did not fit an exponential curve to the rate of growth
to produce this behaviour. It was a purely random effect.
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Figure 2: (a) Ground plan projection, (b) Gaussian intersection, (c) Extremes, (d) Overlapping areas.

note a displacement of the inner one towards the right side,
which ultimately ends with zero overlap. To test this sliding
behaviour, 10 steps have been performed with fraction 0.1
equaling to 100 stepwise displacements to the right side. The
exponential growth of the distance (steps 1 to 54), shown in
the figure, appears when overlap occurs. Further, the dis-
tance of the overlapping area increases linearly (steps 55 to
100), when there is no intersection. Such twofold behaviour
of the normalised area A(d) is particularly useful since it
can perform a detailed separation when overlap is involved
between two distributions. Eventually, the distributions are
crafted analytically until separation occurs, entailing with
minimal circle overlap.

· Binomial Fitness Function of Gaussians
Assuming a binary problem case, the fitness function is used
to determine the overlapping/intersection area as a distance
metric between classes i and j, similar to [1, 2], by corre-
lating the μ with c and the σ with r. In multiclass pattern
classification, the fitness function is determined by consider-
ing the distribution distance between every two classes. For
the N-class problem, there are C2

N = N !/2!(N − 2)! class
combinations, and the fitness function takes the form:

fitness =
1

T

T∑
i=1

C2
N∑

j=1

1

1 +A(d)ij
(7)

where T defines the training examples, N is the number of
classes, A(d)ij is the distance of the intersection area for the
index of the training examples i, and class combinations j2.

2The indexes i and j correspond to identifiers 1 and 2 re-
spectively as shown in Eqs. 1 through 5.

· Model Implementation
Training Phase: At the initial stage, the GGPA fitness
measure is applied on the GP system as follows: the indi-
vidual to be evaluated uses its evolved inputs (≤ 27), where
the training time series data are fetched into. Each input
represents a biomechanical primitive from the set shown in
Table 1. Thereafter, the individual is evaluated for T train-
ing cases, and from these evaluations a Gaussian normal
distribution is formed for each class. Consequently, the μ
and σ are estimated. The GGPA model then is applied on
these distributions through Eq. 6. As mentioned earlier,
the distributions properties are being regarded as geometric
properties of circles (μ ≡ c, σ ≡ r). If two class distributions
overlap, then similarly the represented circles should inter-
sect. The overall distance (error) is estimated by applying
binomial search for every 2 Gaussians (see Eq. 7), and the
average distance is returned. This distance constitutes the
individual’s fitness. -
Testing Phase: At the final stage, the testing process of
the individual’s classification accuracy is conducted as fol-
lows: the probability density function of Eq. 10 is employed,
to generate the class probabilities from the class distribu-
tions acquired from training earlier. The μ and σ are being
applied on the Pdf, with the parameter x representing the
individual’s evaluation to a newly presented test instance.
Thence, a number of evaluation probabilities will be pro-
duced, equal to the number of test cases for each class. The
highest class probability determines the class being tested.

3. EVOLUTIONARY PARAMETERS

3.1 Program Representation Language
Table 1 presents the strongly-typed programming language,

used for the construction of probabilistic classifiers. The
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List argument type of the six biomechanical features, re-
ceives the whole time series signal from a parameter input.
For each primitive, a slope sign change method based on the
directional changes of a vector (ex: up-to-down, or left-to-
right movement traversals), undertakes to break the signal in
n fragments that is equal to the number of extracted slopes.
Thereafter, a biomechanical evaluation of a primitive is es-
timated for every chunk, and the maximum value among all
is returned in double. The arithmetics are being used to
induce a variety of alterations of the primitive estimates, by
using 50 constants from the set {0, 1} (step 0.02). Lastly,
the conditional structures are employed to induce compar-
isons of the primitive values, that lie into representative in-
tervals for each class.

Table 1: Primitive language for evolving probabilis-
tic classifier programs.
Feature Equation Argument(s) type Returns

(α) acceleration [u(t) − u0(t)]/Δt (m/s2) List double

(d) displacement u(t)Δt (m) List double

(F ) force mα(t) (N) List double

(J) impulse FΔt (Ns) List double

(P ) power Fu(t) (W ) List double

(T ) energy 1/2mu2(t) (J) List double

Arithmetic Argument(s) type Returns

+, −, ∗, / double, double double

Conditional Argument(s) type Returns

If-Then-Else boolean, double, double double

and, or boolean, boolean boolean

>, < double, double boolean

Terminal Value Type

Constants
50 reals in range

{0, 1} step 0.02 double

Parameters 27 time series double

3.2 Evolutionary Algorithm
Our evolutionary algorithm (EA) is an elitist, generational

model genetic algorithm, employed in accordance with a
panmictic population mating scheme. The evolutionary run
proceeds for 100 generations, and the population size is set
to 1, 000 individuals. Evolution halts when all of 100 gen-
erations have elapsed. Random sampling of full expression-
program trees has been set for the population initialisation,
whereas for the evolutionary process grow trees are sam-
pled. The use of only grow trees aims to the creation of less
bushy expressions, which engage large amounts of memory
and consequently delay the evolutionary runs. With initial
depth of 5, the trees are allowed to grow up to the depth of
17. During fitness assignment, each program is being evalu-
ated with 27 parameters3 representing the input time series.

The EA employs a mutation-based variation scheme to
explore the space with probability 0.9, whereas the rest 0.1
is set to perform Koza’s sub-tree crossover [8]. A heuristic
search scheme is defined by a probabilistically governed ap-
plication, based on a mixture of standard mutation variation
operators as initially presented by Chellapilla [9]. The λ4

factor of the multi-mutation architecture has been set equal
to 6. Unlike [9], the multi-mutation operators introduced by

3The set of axis coordinates {x, y, z} times 9 marker sensors
coming from the head, elbows, wrists, knees, and ankles,
equal to 27 input parameters.
4The λ factor denotes the number of random mutation op-
erations being applied to an individual.

Eq. 8, contain three groups of operators which (a) enhance
diversity: grow and fair, (b) control bloating: hoist, per-
mut, and fair, and (c) perform smooth variability: point

and term. Eventually, a tiny probability of 0.0001 has been
set for reproduction, and when it is false the above search
methods are executed.

Offspring = hoist(permut(point(term(fair(grow

(Parent)))))) (8)

For the selection mechanism, tournament selection has
been used with a dynamically adaptive selection pressure to
promote exploration for the early generations, and exploita-
tion for later ones. Consequently, Eq. 9 uses the factor 0.1
to adjust the range of the individuals being engaged from
the first to the last generation. With the parameters given
above, the adaptive selection pressure sp(g) ranges in the in-
terval {2, 100} individuals, incrementing up to 1% per gen-
eration. In addition, negative tournament is also employed
by replacing the worst individual with the elitist.

sp(g) =

{
2 if �(0.1 g

G
) · P � < 2

�(0.1 g
G
) · P � otherwise

(9)

where g is the current generation, G is the total generation
number, and P is the population size.

Similar to [10], who proposed an alternative sampling be-
haviour based on tournament selection to perform significant
computational savings, our EA utilises a boosting-resource-
saving method to enhance the speed of the generations.
This method targets on the fitness evaluations, by neglect-
ing the individuals being evaluated more than once within
the breeding loop of a generation. For the implementation
of this notion, we assign a boolean flag to true to the indi-
viduals who have already been evaluated, so they cannot be
re-evaluated if picked again by the selection mechanism.

3.3 Ensemble Pattern Classification
In [1, 2], they have used the Joint Probability (JP, Eq. 11)

to create ensembles of multiple best programs, based on the
probability density function (Eq. 10) that measures which
class belongs to a given pattern. JP has been used to en-
hance the classification accuracy of a Gaussian model. Sim-
ilarly, we have used a number of formal ensemble methods,
along with JP, such as the Distribution Summation (DS, Eq.
12), and the Majority Voting (MV, Eq. 13). In addition,
we introduce a new weighting method, the Statistical Voting
(SV, Eq. 14), to be used as well with the GGPA model.

Pdf(μ, σ, x) =
1

σ
√
2π

exp

(−(x− μ)2

2σ2

)
(10)

EJP (x) = argmax
ci ∈ CN

MN∏
m=1

Pm(Pdf = ci|x) (11)

EDS(x) = argmax
ci ∈ C

MN∑
m=1

Pm(Pfd = ci|x) (12)

EMV (x) = argmax
ci ∈ C

[
MN∑
m=1

g(Pm(Pfd = ci|x), ci)
]

(13)

ESV (x) =

argmax
ci ∈ CN

[ 1
CN

CN∑
i=1

(
MN∑
m=1

g(Pm(Pdf = ci|x), ci)
)p

] 1/p (14)
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Figure 3: Fitness and entropy training plots for the GGPA and GM models.

where m is the classifier model, tested withMN max number
of models, x is the model’s output, and Pm is the probability
Pdf of class ci (CN =max number of classes), given a testing
instance x [6]. Function g = 1 if Pm = c, and 0 otherwise.

The statistical voting uses the generalised mean for as-
sessing distributions of votes, which have similar values. We
set the generalised exponent relatively high (p = 10), so dis-
tributions with more votes to be rewarded. Eventually, the
class with the highest probability, derived from the ensem-
ble assessments, is designated as the class of the pattern.
All the above ensemble methods induce 2, 3, and 4 combi-
nations using binomial search with expansion depth of ten
best programs.

4. EXPERIMENTAL RESULTS
· Protocol

Three male and two female subjects (age 25 to 30), who
have experienced aggression in scenarios such as physical
fighting, took part in the experiment. Throughout six in-
dividual experiments, each subject had to perform the six
aggressive activities mentioned in Section 1. Regarding the
rights of the subjects involved, ethical regulations and safety
precaution have been followed based on the code of ethics
of the British psychological society [11]. The regulations ex-
plain the ethical legislations to be applied when experiments
with human subjects are conducted. According to the ex-
perimental setup and the precautions taken, the ultimate
risk of injuries was minimal. Following similar experimental
procedures as in [12], the subjects were aware that their in-
volvement in this series of experiments was voluntary, and
it was made clear that they could withdraw at any time.

· Instrumentation
The Essex robotic arena was the main experimental hall
where the data collection took place. With area 4 × 5.5m,
the subjects expressed aggressive physical activities at ran-
dom locations. A professional kick-boxing standing bag has
been used, 1.75m tall, with a human figure drawn on its
body (see Fig. 1(d)). The subjects’ performance has been
recorded by the Vicon’s nine ubiquitous cameras, interfac-
ing human activity with spatial coordinate points. Based on
this context, the data acquisition process involved nine re-
flectable markers placed on the forearms (elbows and wrists),
four on the forelegs (knees and ankles), and one on the top
of the head. Each group of markers constitutes a kinematic
model.

· Data Setup
From the overall number of markers, there are 27 input time
series for all the three x, y, and z coordinates (9 mark-
ers × 3 coordinates). Each marker-coordinate time series
contains ∼ 3, 000 samples (∼ 15 actions per experimental
session for each subject), which has been normalised in the
interval {0, 1}. For training we used the 60%, first 1800
samples of the recorded time series, and for testing we re-
served the remaining 40% (1200 samples). The training of
each classifier was based on the physical performance of all
the ten subjects, including a sample of about 90 physical
actions, and for the testing, 60 actions were employed for
each class in overall. To test the generalisation performance
of the evolutionary classifiers, a 5-fold cross validation has
been used. Thereupon, the training percentages from each
fold-subject has been given to the GP system to evolve a
classifier program, whereas the testing percentages assessed
its generalisation performance.
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Figure 5: Average error bars of the six evolvable biomechanical
primitives, extracted from each probabilistic model via 50 simu-
lations. (a) GGPA model, (b) GM model.

4.1 Training Performance
Comparing the training fitness graphs between the GGPA

and the GM models from Fig. 3, we observe that the av-
erage training error is diminished up to 0.2, for both cases,
with signs of stagnation after generation 40. However, de-
spite the similar average training errors, the variation of the
fitness graphs for all the 50 runs for the GM model, seems
to converge to a more smooth direction. On the other hand,
the phenotypic diversity measure depicted by the entropy
graphs, demonstrates that the fitness entropy (Eq. 15) over
the generations, showed a diminishing trend for both cases.
This is an indication of decreasing diversity in the popula-
tion of programs. Both models stabilise the production of
diverse individuals with unique phenotypic-based solutions
after generation 80.

−
∑
k

pk · log pk (15)

where pk is the proportion of the population P , and k is the
occupied partition [13].

Another worth looking measure of the training perfor-
mance between the two models is to compare the three fun-
damental parameters that have been promoted by the evolu-
tionary process. These are the size, depth, and fitness from
which we can study whether the two models suffered from
bloat. We caption the plot of the three parameters in a 3D
graph as the bloating paths, shown by Fig. 4.

In the figure, the bloating paths show the average val-
ues estimated throughout 50 independent runs. Comparing
the two paths, we see a very close resemblance of the lin-
ear direction they have followed. Remarkably, both mod-
els did not evolve trees with depth more than 12, and size
around 300 primitives. For all the runs, the average fit-
ness kept a decreasing behaviour, which complements to the
models overall performance that they did not suffer from
bloat. Owing to the considerable resemblance, we have
performed a t-test between all the paired parameters to
elicit which parameter differs significantly. The t-tests re-
sults pointed out that the sizes of both models are signif-
icantly different with p = 1.04 × 10−5 (p < 0.05 	= H0

5,
df = 198, sd = 104.27). The depths also differ significantly

5 	= H0 denotes that the null hypothesis is rejected.

with p = 0.017 (p < 0.05 	= H0, df = 198, sd = 2.53), as
well as the fitnesses with p = 2.70 × 10−8 (p < 0.05 	= H0,
df = 198, sd = 0.013).

From these results, we see that despite the linearity that
prevented the generations to bloat, the models followed sligh-
tly different strategy to preserve the size and depth analo-
gous to the fitness. In average, the training performance of
the probabilistic classifier models pursued a very similar and
smooth evolutionary progress, which does not always reflect
though to analogous testing performances. The following
section demonstrates the discriminant performance of the
models, tested by unseen activity data.

The average biomechanical primitives that have been used
over the 50 evolutionary runs, evolved from each classifier
model, are demonstrated in Fig. 5. Each model has used
a different number of primitives, by preserving a relatively
equal amount of features for each category. Fig. 5(a) indi-
cates that the power and impulse have dominated for the
GGPA model, with average amount of primitives reaching
the 12. Conversely, in Fig. 5(b) the average number of
primitives for the GM model was 9, with the power ener-
getic feature being distinguished as well. The commonality
of this primitive appearing in both models, does not however
differ significantly from the rest primitives. It is intriguing
though that from this series of experiments, the evolutionary
models used more this primitive. Evidently, this tells us that
the subject’s performances was characterised as physically
intensive, and consequently violent. A final remark to the
reason why the GGPA model engages more primitives than
the GM is due to another random behaviour, that emerged
stochastically.

4.2 Testing Performance
For the testing performance, we picked the elitist best-

of-run individuals from each model (GGPA, GM). The eli-
tist models have been evaluated with five performance mea-
sures that assessed the classification ability of the classi-
fiers. Tables 2(a) and 2(b) depict the analytical and over-
all performance of the GGPA and GM models. Starting
with Table 2(a), the overall performance indicates that the
GGPA model made use of the SV ensemble method (Eq.
14) to evolve highly discriminant classifier programs. The
ensemble combinations promoted 3 programs with indexes
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Table 2: Analytical and overall classification statistics. The parentheses in the Program No. denote the
indexes of the best-of-run elitist individual(s), selected from a binomial search method from 50 independent
runs. (a) GGPA model, (b) GM model.

(a)

Analytical Performance Overall Performance

Behaviour Action sub1 sub2 sub3 sub4 sub5 AVG % AVG Behaviour % Measure Value

U
p
p
er Punch 11 11 12 × 11 800.33 � 800.33 Precision 1.000

Slap × 21 22 21 21 800.33 � Recall 0.733

In
er
ti
a
l

Push 32 × 32 32 32 800.53 � 800.39 Accuracy 0.733

Pull 41 41 41 × 41 800.26 � F-Measure 0.846

L
ow

er F-Kick 51 53 52 51 × 800.46 � 900.49 G-Mean 0.856

S-Kick 63 61 61 61 62 1000.53 � Ensemble Method SV

AVG % 83.30.44 83.30.38 100.00.55 66.60.27 83.30.38 Program No. 3 (9,2,0)

(b)

Analytical Performance Overall Performance

Behaviour Action sub1 sub2 sub3 sub4 sub5 AVG % AVG Behaviour % Measure Value

U
p
p
er Punch × 1 1 × 1 50.0 � 25.0 Precision 1.000

Slap × × × × × 0.0 � Recall 0.567

In
er
ti
a
l

Push × × × 3 3 33.3 � 66.5 Accuracy 0.567

Pull 4 4 4 4 4 100.0 � F-Measure 0.708

L
ow

er F-Kick × × × 5 5 33.3 � 66.5 G-Mean 0.744

S-Kick 6 6 6 6 6 100.0 � Ensemble Method None

AVG % 33.3 50.0 50.0 66.6 83.3 Program No. 1 (14)

9, 2, and 0, out of 50 elitists (0-49). From Table 2(a), the
combination of three programs appears to produce better
classification accuracy, as also verified by [1]. The recogni-
tion Accuracy of the correctly classified instances reached
the 73.3%, whereas the exactness of the classified instances
(Precision) got 100%, for the reason that no out-of-scope
misclassified instances were identified (scope of the action
set: {1, 2, . . . , 6}). Moreover, the completeness of the
classification (Recall) got analogous score. Finally, the high
proportionality estimations of F-Measure and G-Mean, pro-
fess an overally balanced classification performance.

The analytical performance shows that the GGPA model
managed to identify at least one or more actions from each
subject, as indicated by the ClassNox, where x ∈ {1, 4} en-
semble programs. Conversely, the “×” symbol denotes that
none of the models managed to correctly identify an action.
The averages for each column are descriptive indications of
the ensemble performance; what really the ensemble method
derived is given by the overall performance. The average de-
scriptive results have been estimated by Eq. 16.

yz : y =
100×∑

CNrecognised

CN
, z =

∑
CNrecognised

MN
(16)

where y is the recognition accuracy (locally for each subject
or action), estimated by at least one ensemble program, and
z is the confidence probability assessing the recognition va-
lidity. The recognition validity assesses the overall number
of votes acquired from all the ensemble programs. Further,
the behaviour recognition has been estimated by averaging
the recognition of two actions that belong to the same be-
haviour. In all, from the average values of Table 2(a), the
best performed subject was sub3, and the worst sub4. Also,
the action with the highest recognition was the side-kicking

one, which spotlighted the Lower behaviour to be the most
prominent among the rest.

On the contrary, from the GM model’s testing perfor-
mance shown in Table 2(b), the best-of-run elitist classifier
has achieved 56.6% of recognition accuracy, utilising a sin-
gle model. Recall that the classical architecture of the GM
model uses the joint probability weighting to enhance the
recognition performance. However, the best accuracy was
not given by an ensemble of programs; actually, the ensem-
ble programs induced lower accuracies than the single model.
Corollarily, there is a 17% difference in accuracy between
the GGPA and the GM. Significant difference is also ob-
served on the average accuracies, as well as on the behaviour
recognition. Thereupon, the training similarities observed in
Section 4.1 have been proven correct by the testing perfor-
mance as well. In other words, both methodologies tackled
the action recognition problem with very similar training
error, and testing accuracy, with respect to the evaluation
of a single model. The GGPA model has achieved better
recognition accuracy when only the SV ensemble method
was introduced.

A final issue is to see the evolved complexity that has
been adopted by either of the two models. Figs. 6(a), 6(b),
and 6(c) picturise the structural complexity of the GGPA
models. The tree expressions, as seen in the bloating paths
of Fig. 4, have kept small depths (average ∼ 5), and sizes
(average ∼ 75 primitives). In addition, it is observed a sym-
metry on the way the expressions have evolved and spread
their branched. Overall, the GGPA models have remained
small and simple, which is a crucial factor to be further
interpreted. The GM model, shown by the expression of
Fig. 6(d), has evolved a grown (asymmetric) individual that
has reached the maximum depth of 17, along with a couple
of hundreds of primitives. In a closer look of both groups
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Figure 6: Structural complexity of the classifier expressions. (a, b, c) The GGPA ensemble programs (program
indices: 0, 2, and 9 respectively), (d) The GM program.

of expressions, it is seen that the GGPA model harnesses
simple genotypic structures to induce recognition. This is
distinctive only when appropriate ensemble methods are in-
troduced such as the SV.

5. CONCLUSIONS
In this paper, an innovative GP fitness measure was in-

troduced, designated for the recognition of six aggressive
physical activities. For the first time in the literature of
evolutionary feature selection, a set of biomechanical primi-
tives has been employed to model physical activities for ac-
tion and behaviour recognition purposes. The proposed evo-
lutionary architecture harnesses a biomechanical primitive
language that comprises features from kinematics, dynam-
ics, and energetics categories (Table 1). The primitives have
been employed to evolve solutions for the N -class problem
of three aggressive behaviours and six actions. The guid-
ance of the evolutionary process was accomplished by the
induction of an novel probabilistic fitness measure, which
represents Gaussians of program evaluations with geometric
circles (Section 2). The circle representation is manifested
in a ground-plan projection, by associating the probabilis-
tic properties of a Gaussian distribution with the geometric
properties of a circle.

The proposed method (GGPA), was experimentally com-
pared with the classical method (GM). From the compari-
son, the models training and the testing performances were
examined. Satisfactory results have been obtained by the
testing recognition performance of the GGPA model, with
maximum classification accuracy reaching the 73.3%, whilst
the GMmodel derived with poorer recognition, 56.6%. How-
ever, it has been found that both models are equally pow-
erful, with the difference in the weighting methods used to
ensemble optimal solutions. In fact, the recognition accu-
racy of the GGPA model induced with the use of the Sta-
tistical Voting method, and the ensemble of three programs.
Instead, the GM model did not make use of an ensemble of
programs to achieve high recognition.
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