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ABSTRACT 
Direct search (DS) and evolutionary algorithms (EAs) are two of the 
most representative branches of derivative-free optimization 
methods. However, traditional DS becomes deficient in multimodal 
problems, while EAs suffer from long computational time due to the 
blind search caused by randomness in evolutionary operators. This 
paper proposes a new derivative-free optimization algorithm that 
addresses both the above issues, avoiding prematurity while 
maintaining fast convergence speed. The new algorithm first 
estimates basins of attractions in the search space by analyzing 
samples of the objective function. An adaptive exploitation method 
with the ability to predict promising search directions is then applied 
to search the estimated basins in parallel. The new algorithm is 
evaluated on both unimodal and multimodal benchmark functions. 
Experimental results show that the algorithm is a promising global 
optimizer with fast convergence speed.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods, scheduling. 

General Terms 
Algorithms, Management, Experimentation 

Keywords 
Derivative-free optimization; direct search (DS); evolutionary 
algorithms (EAs); global optimization  

1. INTRODUCTION 
Global optimization of numerical problems is a fundamental issue in 
computational science and engineering. With the growing 
sophistication of science and technology, problems to be optimized 
become more and more complex. Situations that traditional 
derivative-based algorithms cannot be applied frequently occur, for 
calculating derivatives of the objective functions in such complex 
problems is difficult or even impossible. In this case, derivative-free 
algorithms are preferred. However, one loses plenty of information 

about the problem by not having derivatives. Designing effective 
and efficient derivative-free algorithms for global optimization is 
therefore an important and challenging task. 

Direct search (DS) and evolutionary algorithms (EAs) form two of 
the most representative branches of modern derivative-free 
algorithms. In general, DS is an iterative optimization procedure 
without any explicit or implicit derivative approximation or modal 
building [1]. In each iteration, DS samples the objective function at 
a finite number of points. The next action of DS is determined 
solely based on the function values of the trial points. 
Representative DS includes the Nelder-Mead simplex algorithm [2] 
and the mesh-adaptive direct search method [3], etc. Despite the fast 
convergence speed of DS, they experience difficulty in solving 
multimodal problems [4]. Although some specially-design DS may 
address certain type of multimodal problems, they still suffer from 
prematurity in the others. 

Different from DS, EAs imitate the biological evolution procedure 
to approximate the global optimum. With certain encoding scheme, 
EAs encode a solution in the search space into a chromosome. A 
number of chromosomes compose a population, which evolves 
towards the global optimum through a series of evolutionary 
operators iteratively performed in EAs. EAs such as genetic 
algorithms (GAs) [5][6] estimation of distribution algorithms (EDAs) 
[7][8], and particle swarm optimization (PSO) [9][10], etc., are well-
known for their easy implementation and flexibility to adapt 
different problems. However, most EAs cannot avoid blind search 
during the optimization process due to the randomness in 
evolutionary operators. Long computational time is required in 
order to find a solution with satisfying accuracy. 

This paper proposes a new derivative-free optimization algorithm, 
aiming to integrate the fast convergence feature of DS and the 
flexibility of EAs. The new algorithm comprises a sampling step, a 
step to estimate basins of attractions based on the obtained samples, 
and a step to exploit the estimated basins in parallel. The proposed 
algorithm can avoid prematurity through the parallel search 
mechanism in possible basins of attraction. Although it is also a 
stochastic iterative search procedure like EAs, the proposed 
algorithm reduces the chance of blind search by employing an 
exploitation method with the ability to predict promising search 
directions. Experimental results on a number of benchmark 
functions with unimodal and multimodal characteristics show that 
the proposed algorithm, termed parallel exploitation in estimated 
basins of attraction (PE-EBA), is a promising global optimizer with 
fast convergence speed. 
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The rest of this paper is organized as follow. Section 2 introduces 
the general framework and implementation details of PE-EBA. 
Section 3 applies the PE-EBA with a projection method to solve 
high-dimensional problems. Experimental results and algorithm 
comparisons are displayed in Section 4. Conclusion and guidelines 
for future work are summarized in Section V. 

2. PE-EBA 
Given a numerical optimization problem, it can be presented in the 
form of a minimization problem with an n-dimensional search 
domain  and an objective function f. The goal of the problem is to 
find a global optimum x* such that 

 *( ) min ( )f f



x

x x  

In this section, the general framework of PE-EBA is first introduced 
in the context of the minimization problem in (1). The 
implementation details will be clarified afterwards. 

2.1 General Framework of PE-EBA 
The fundamental idea behind PE-EBA is to estimate basins of 
attraction in the search domain by analyzing samples of the 
objective function and then to locate the global optimum by 
exploiting the estimated basins with a powerful exploitation method. 

In order to implement the above idea, the PE-EBA maintains a set 
R={R1,R2,…,RN}, where Rk is a record of area k in the search 
domain, k=1,2,…,N, and N is the number of areas. Each record Rk is 
composed of five members, i.e., Rk=(l(k), u(k), p(k), k). l(k) and u(k) are 
n-dimensional vectors, whose i-th elements, denoted by li

(k) and ui
(k), 

are the lower and upper bounds of area k on the i-th dimension, 
i=1,2,..,n. p(k)[l(k),u(k)] is the best solution found in area k. (k)(0,1) 
is termed the exploitation rate, which measures the desirability of 
exploiting area k based on the quality of p(k). 

At the beginning of PE-EBA, the set R is initialized as {R1} with R1 
as a record of . l(1) and u(1) are set according to the bounds of , 
while p(1) and  (1) are set as undefined. The PE-EBA then 
manipulates R through the following steps to find the global 
optimum x*. 

1) Sampling. In this step, a non-empty subset of areas is selected 
from R. A sample of solutions is generated in each selected areas for 
providing data to estimate the basins of attraction. 

2) Area division. For each area that has been sampled, basins of 
attraction are estimated through area division. Each estimated basin 
is considered as a new area in the following search. The remaining 
sub-areas appear to be not so promising, but they should not be 
ignored as the sample only contains a finite number of discrete 
points. Therefore, the remaining sub-areas are also merged 
according to some criteria to form new areas. With the above 
operations, each sampled area is further divided into several new 
areas. The new areas generated by the area division step must not 
overlap and their union should cover the whole sampled area. 

3) Exploitation. After area division, the exploitation rate is 
calculated for each area in R. Areas with better solutions have 
higher exploitation rates because they are more likely to contain the 
global optimum. The PE-EBA randomly selects several areas to 
exploit based on the exploitation rates. Records of areas involved in 
the exploitation are updated accordingly. 

The above three steps are performed iteratively until the termination 
criterion is met, e.g., the evaluation number of the objective function 
reaches a predefined upper bound. Then the PE-EBA terminates and 
returns the best solution among the records in R as the result. Figure 
1 depicts the above framework of PE-EBA. The implementation 
details of the sampling step, the area division step, and the 
exploitation step are introduced in the following parts. 

 

Figure 1. The general framework of the proposed PE-EBA. 

2.2 The Sampling Step 
Sampling is a preparation step for estimating basins of attraction. 
Areas with better best solutions are given priority to be sampled 
first. 

In this paper, we adopt a common sample strategy such that 
solutions in the resulting sample are evenly distributed in the 
sampled area. Suppose the sampling granularity is m and the 
sampling interval is w(k)=(u(k)l(k))/m. Then the sample of area k can 
be written as 

 S(k)={x|xiVi
(k), i=1,2,…,n},  (2) 

where Vi
(k) is a set of m values calculated by vij

(k)=li
(k)+wi

(k)(2j1)/2, 
j=1,2,…,m. Each sampled solution can define a neighborhood as a 
region centered at itself with radius as w(k)/2. As shown in Figure 2, 
the neighborhoods of different sampled solutions do not overlap and 
their union covers area k. 

Area k

neighborhood of x

sampled solution x
w1

(k)

u2
(k)

l2
(k)

w1
(k)

w2
(k)

w2
(k)

u1
(k)l1

(k)  
Figure 2. An example of sampling in a 2-dimensional area. 

The above sample strategy offers uniform information about the 
sampled area. However, it suffers from the curse of dimensionality 
as the sample size grows exponentially with the area dimension 
(|S(k)|=mn). When the problem dimension is high, the search domain 
must be projected onto a lower dimensional space before sampling. 
We will introduce a projection method in Section 3. 
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2.3 Implementation: The Area Division Step 
Area division is a critical step in the PE-EBA. A proper division can 
enable the algorithm to discover basins of attraction effectively and 
efficiently. 

Figure 3 gives an example of identifying basins of attraction based 
on the sample in Figure 2. As shown by the numbers in Figure 3, all 
the solutions in the sample are sorted from the best to the worst. 
Considering the sampled solutions as representatives of their 
neighborhoods, the ranks of the solutions can also describe the 
quality of solutions in their neighborhoods. Given an identification 
threshold ξI(0,1), a basin of attraction can be estimated by joining 
the adjacent neighborhoods of the best ξIm

n sampled solutions. In 
this paper, we consider the neighborhoods of two sampled solutions 
x(a) and x(b) to be adjacent if 

 | xi
(a)  xi

(b) | wi
(k )

i1

n 1  

Suppose ξI is set as 0.2. In the example of Figure 3, two basins of 
attractions can be formed by the neighborhoods of the best 
0.2×52=5 solutions (denoted by the shaded box in Figure 3). The 
lower/upper bounds of a basin (denoted by bold lines in Figure 3) 
are set as the minimum/maximum values of the lower/upper bounds 
of the included neighborhoods. 

Besides the best ξIm
n solutions in the sample, the other mnξIm

n 
solutions also have their neighborhoods merged based on the 
position and solution quality. In this paper, a new sub-area is formed 
with the following constraints satisfied: 1) the sub-area is 
continuous; 2) the largest difference between the ranks of any two 
included solutions is no more than ξI′·m

n; 3) the new sub-area does 
not overlap with other existing sub-areas. In Figure 3, with ξI′=0.4, 
solutions No. 6 to No. 25 in the sample form 6 new sub-areas. 
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Figure 3. An example of area division in a 2-dimensional area. 

It should be noticed that any two sub-areas generated by the above 
division process must not overlap. The union of the sub-areas in one 
area is identical with the original one. All the sub-areas are 
considered as new areas in the following search. 

2.4 The Exploitation Step 
Performing exploitation on each of the existing areas is too costly. It 
is more efficient to exploit the estimated basins of attraction. 
However, exploitation should not be restricted in the basins. The 
not-so-promising areas should also be given certain opportunities. In 
the following subsections, the principle for selecting areas to be 
exploited is first introduced. The exploitation method is illustrated 
afterwards. 

2.4.1 The Principle of Area Selection 
����������������������������������
����������������������������������
������������������� �� 
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where [1,+) is a predefined constant and fL is a lower bound of 
the objective value. Apparently, (k)(exp(),1]. The parameter , 
termed the constrained factor, controls the lower bound of the 
exploitation rate. 

After calculating the exploitation rates for all existing areas, the PE-
EBA generates a random uniform number r and compares it with 
the predefined exploitation proportion . If r≤, the area with the 
largest exploitation rate will be chosen. Otherwise, a roulette wheel 
selection will be performed for selecting an area at random based on 
the exploitation rates. Areas with larger exploitation rates are more 
likely to be exploited. 

2.4.2 A Flexible Multi-step Exploitation Procedure 
This paper introduces a flexible multi-step exploitation (FME) 
procedure. The basic idea of FME is to predict a promising search 
direction by analyzing samples around the best solution in the 
selected area. The exploitation progresses along the predicted 
direction one step each time, with the step size adapted to the 
quality of the obtained solution. Such one-step search continues 
until the obtained solution is no better than the previous one. Then 
the search direction is recomputed at the previous solution. The 
above “sample-predict-search” procedure repeats until the 
termination criterion of the exploitation is met. In this paper, the 
termination criterion is set as the maximum number of failures in 
direction prediction.  

Figure 4 gives an example of using the FME procedure to probe a 2-
dimensional area k. The maximum number of failures in predicting 
directions is set as ξF=2. In Figure 4, the spots on a square represent 
the solutions that are sampled on eight possible directions one-step 
away from the original solution. The number beside each square is 
the serial number of the sample. The annotation “i-j” on each black 
arrow indicates that it is the j-th step on the search direction 
predicted by sample i. Since no promising direction can be predicted 
based on the samples IV and V, the exploitation ends at the solution 
obtained by the step III-1. 
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I-3
II-1

II-2 II-3
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III-2
I

II
III
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V

p(k)

I-4
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predicted direction

search path

evaluated solution

improved solution

Area k

 

Figure 4. An example of the FME procedure. 

There are three possible search directions at a point on a 1-
dimensional line: forward, backward, and stay. Each direction can 
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be mapped to an operation on a variable value. Suppose the size of a 
search step on the i-th dimension of area k is i

(k). The three 
directions can be mapped to the operations of changing the variable 
value xi to xi+i

(k), xii
(k), and keeping xi unchanged. Therefore, the 

search direction at a point in area k can be formulated as an n-
dimensional vector d(k) with each element di

(k){i
(k), 0, i

(k)}, 
i=1,2,…,n. If we check all the search directions to find a promising 
direction at one point, the sample size will be 3n. The cost of 
sampling will quickly become too expansive when the number of 
dimensions grows. In order to reduce computational cost for 
predicting promising search directions, the FME procedure employs 
the orthogonal design method. Please refer to [11] for details of the 
orthogonal design method. 

3. PE-EBA in High Dimensional Problems 
The PE-EBA introduced in Section 2 can be directly used to solve 
low-dimensional numerical problems. However, as the sample size 
grows exponentially with the dimension of the search domain, the 
current sampling strategy makes it difficult to apply the PE-EBA in 
high-dimensional space. There are two ways to conquer this 
disadvantage. The first way is to derive a sampling strategy that can 
relieve the curse of dimensionality. The second way is to project the 
search domain onto a low-dimensional space. In this paper, a simple 
but effective projection method is introduced for projecting an n-
dimensional (n≥3) search domain to a 2-dimensional plane. 

Take a minimization problem with a 3-dimensional search domain 
as an example. The projection method coverts the 3-dimensional 
objective function f into a combination of two 2-dimensional 
functions Φ1 and Φ2 as Φ1(x1, Φ2(x2, x3)). The PE-EBA is first 
applied to find a solution (x1

*, y*) that minimizes the function value 
of Φ1. Then the PE-EBA searches for a solution (x2

*, x3
*) so that 

Φ2(x2
*, x3

*) approximate y*. (x1
*, x2

*, x3
*) becomes the global 

optimum of f if Φ1 and Φ2 satisfy the following conditions: 

 The range of Φ1 is identical with the range of the objective 
value; 

 The search domain of Φ1 is 1×Y, where 1 is the domain of x1 
in f and Y is the range of Φ2; 

 Every value in Y can be obtained by Φ2 with x22 and x33. 

Similar to the above example, the PE-EBA can also solve n-
dimensional problems by converting the objective function into a 
combination of (n1) 2-dimensinal functions. The flowchart is 
shown in Figure 5. 

Note that the above projection method may not be applied in all 
cases. There are situations that the objective function cannot be 
converted in such a projection method. Depending on the 
characteristics of the objective function, different types of numerical 
problems may require different projection methods. 

4. Experiments and Discussions 
In this section, we first study the effectiveness of the PE-EBA in 
estimating basins of attractions in 2-dimensional benchmark 
functions. Then the PE-EBA and the PE-EBA with the projection 
method (termed p-PE-EBA) are applied to low-dimensional (n=2) 
and high-dimensional (n=30) benchmark functions, respectively. In 
order to validate the effectiveness and efficiency of the PE-EBA, the 

results of PE-EBA are compared with the EDA [7] and the global 
PSO (GPSO) [9]. 

Table 1 tabulates the benchmark functions employed in experiments 
[12]. f1~f4 are unimodal functions, while f5~f10 are multi-modal 
functions with a number of local optima. The minimum function 
values of all the benchmark functions are zero. Random vectors are 
used to shift the benchmark functions for avoiding obtaining good 
results due to the positions of the global optima. 

4.1 Effectiveness of the Area Division Step 
Using the unimodal function f1 and the multimodal function f5 as 
examples, Figure 6 shows how the area division step helps to 
estimate the basins of attraction in the search domain. 

Start

i←1

i<n

Set the search 
domain of Φi

Apply PADSM to 
minimize  Φi

i=1

Apply PADSM to find a 
solution such that Φi=y*

Record the value of the second 
variable as y*

End

i←i+1

Y

Y N

N

 

Figure 5. Flowchart of PE-EBA in high-dimensional problems 
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Figure 6. Examples of the area division 

Each rectangle in Figure 6 denotes an area obtained after performing 
the area division step on the search domain of f1 and f5. With m=20, 
the neighborhoods of the 400 sampled solutions are colored 
according to the solutions’ ranks. The neighborhood of a better 
solution is in darker grey. With ξI=0.05, the best 20 sampled 
solutions are selected for estimating basins of attraction. In Figure 6 
(a), the neighborhoods of the 20 best solutions (colored by the 
darkest gray) form one continuous area. Thus we estimate that only 
one basin of attraction exists in the search domain of f1, which is 
consistent with the fact that f1 is a unimodal functions. Moreover, 
the extent of the estimated basin well approximates the region 
circled by the contour (denoted by light grey line) with the 
minimum contour value. 
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Table 1. List of Benchmark Functions 
(n=problem dimension, =predefined search domain, x*(x1

*, x2
*,…, xn

*)=global optimum, o(o1,o2,…,on)=random shift vector) 

Functions n  xi
* 

2

11
( ) ( )

n

i i i
f x o


 x  2, 30 [100,100]n oi 

2 1 1
( ) | | | |

nn

i i i ii i
f x o x o

 
    x  2 [10,10]n oi 

2

3 1 1
( ) ( )

n i

j ji j
f x o

 
    x  2 [100,100]n oi 

f
4
(x )  100(x

i 1
x

i

2 )2(x
i
1)2 

i 1

n1

  2 [-30,30]n 1 

 2, 30 [500,500]n 420.97 

 2, 30 [-5.12,5.12]n oi 

 2 [32,32]n oi 

f8(x) 1 4000 xi
2

i1

n  cos(xi i )
i1

n 1 2 [600,600]n oi 

f
9
(x )   30 10sin2 ( y1 )  ( yi 1)2 1 sin2 ( yi 1 ) i 1

n1 ( yn 1)2 u (xi  oi ,10,100,4)
i 1

n  2 [50,50]n oi1 

 2 [50,50]n oi+1 

 

Thus, it can be told that the area division step can effectively 
discover the area where the global optimum (denoted by a black 
cross) exists in unimodal functions. In Figure 6 (b), the 
neighborhoods of the 20 best solutions scatter over the search 
domain. Thus there are multiple basins of attraction in the search 
domain of f5, which is consistent with the fact that f5 is a multimodal 
function. By comparing the estimated basins (containing one or 
more darkest squares) with the actual contours, it can be observed 
that the area division step can capture the locations of the global 
optimum as well as some local optima. The effectiveness of the area 
division step in estimating basins of attraction in multimodal 
problems is therefore revealed. 

4.2 Low-dimensional Problems 
In this part, the PE-EBA are compared with the EDA and GPSO on 
the nine benchmark functions with n=2. The termination criterion of 
all the algorithms is set the same, i.e., the maximum number of 
function evaluations is 10000n. Table 2 tabulates the parameter 
settings of the three algorithms. To make the results more general, 
each algorithm is run for 30 times independently. Average results 
are used for comparison. 

Table 3 compares the average results of the four algorithms. The 
best results are marked in bold. From Table 3, it can be observed 
that PE-EBA can find the global optima for three of the four 
unimodal functions. Although GPSO performs better than the PE-
EBA on f4, it suffers from early convergence on multimodal 
functions f5 and f8. The PE-EBA, in contrast, can obtain the global 
optima for all the six multimodal functions. In conclusions, the PE-
EBA outperforms the other three algorithms in terms of solution 
accuracy. 

Table 2. Parameter Settings (PS=population size) 
Algorithms Parameters 

EDA PS=1000, no. of fittest individuals=200 

GPSO 
PS=10, inertia weight=0.794, c1=c2=1.49445,  
constrained factor=0.2 

PE-EBA 
m=50, I=0.05, I′=0.2, A=3, F=3, =0.9, 0=0.2, e=0.9, 
s=0.2, α=3 

Table 3. Comparison on 2-dimensional Benchmark Functions 
 Unimodal Functions Multimodal Functions 
 Func Average Std. Dev. Func Average Std. Dev.
EDA 7.25×10-19 7.05×10-19 0.000511 0.00192 
GPSO  0  0 0 0 
PE-EBA

f1 
 0  0 

f6 
0 0 

EDA 1.81×10-10 9.08×10-11 8.71×10-10 5.13×10-10

GPSO 0 0 4.44×10-16 0 
PE-EBA

f2 
0 0 

f7 
4.44×10-16 0 

EDA 2.74×10-16 7.03×10-16 0.00214 0.00193 
GPSO 0 0 0.00205 0.00349 
PE-EBA

f3 
0 0 

f8 
0 0 

EDA f4 0.00018 0.000156 8.44×10-20 9.56×10-20

GPSO  3.28×10-29 9.88×10-29 1.57×10-32 8.35×10-48

PE-EBA  2.55×10-5 0 
f9 

1.35×10-31 6.68×10-47

Figure 7 depicts the convergence curves of EDA, GPSO, and PE-
EBA with f1, f3, f5, f6, f9, and f10 as examples. The convergence 
curves of PE-EBA are the steepest among the three algorithms, 
indicating that the PE-EBA only needs a small computational cost 
for evolving to a high accuracy level. This is because once the basin 
containing the global optimum is found, the exploitation step in the 
PE-EBA can quickly locate the global optimum by adaptively 
adjusting the search direction and the search step size. Compared to 
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the other algorithms, the PE-EBA uses the smallest number of 
function evaluations to find solutions with the same precision. The 
PE-EBA converges faster than the other algorithms. 

Based on the above results, it can be concluded that the PE-EBA 
can outperform the other algorithms in both terms of solution 
accuracy and convergence speed. It is an effective and efficient for 
solving both unimodal and multimodal problems. 

 
Figure 7. Comparison of convergence speed 

4.3 High-dimensional Problems 
The projection method introduced in Section 4 cannot solve all the 
benchmark functions in Table 2. The p-PE-EBA is tested on 
functions f1, f5, and f6 with n=30. The parameter settings remain 
unchanged. 

Table 4 tabulates the average results of the three algorithms over 30 
independent runs. The best results are shown in bold. From the 
table, it can be observed that the p-PE-EBA outperforms the other 
algorithms on all the test functions. The advantage of p-PE-EBA 
becomes more obvious on multimodal functions. Both GPSO and 
EDA suffer prematurity, while p-PE-EBA avoids such a problem 
and locates the global optimum precisely. The experimental results 
on 30-dimensional benchmark functions show that the PE-EBA is 
also promising for high-dimensional problems. 

Table 4. Comparison on 30-dimensional Problems 
 Func Average Std. Dev. Func Average Std. Dev. 

EDA 3.57×10-25 3.81×10-26 152 9.3 

GPSO 4.46×10-18 2.44×10-17 46.6 16.9 

p-PE-EBA 

f1 

7.72×10-25 2.72×10-25 

f6 

0 0 

EDA 8340.00  280 

GPSO 3940.00  443 

p-PE-EBA 

f5 

0.000382 0 

 

5. Conclusion 
This paper proposes a new derivative-free optimization algorithm 
for global optimization. The basic idea is to estimate basins of 
attraction that are likely to contain the global optimum by analyzing 

the samples of the objective function. An exploitation method with 
the ability to predict promising search direction is also introduced 
for probing the basins efficiently. Experiments on benchmark 
functions show that the proposed algorithm is able to discover the 
basins of attraction in both cases of unimodal and multimodal 
problems. Once the basins are identified, the proposed algorithm 
can locate the global optimum quickly and accurately.  

The study of the PE-EBA is still in the early stage. For future work, 
a more general strategy is needed for further extending the proposed 
algorithm to high-dimensional space. The influence of the control 
parameters on the proposed method needs to be studied. We also 
look forwards to test the performance of the proposed method on 
practical problems. 
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