
Variance based Selection to Improve Test Set Performance
in Genetic Programming

R. Muhammad Atif Azad
BDS Group

CSIS Department
University of Limerick, Ireland.

atif.azad@ul.ie

Conor Ryan
BDS Group

CSIS Department
University of Limerick, Ireland.

conor.ryan@ul.ie

ABSTRACT
This paper proposes to improve the performance of Ge-
netic Programming (GP) over unseen data by minimizing
the variance of the output values of evolving models along-
with reducing error on the training data. Variance is a well
understood, simple and inexpensive statistical measure; it
is easy to integrate into a GP implementation and can be
computed over arbitrary input values even when the target
output is not known.

Moreover, we propose a simple variance based selection
scheme to decide between two models (individuals). The
scheme is simple because, although it uses bi-objective cri-
teria to differentiate between two competing models, it does
not rely on a multi-objective optimisation algorithm. In
fact, standard multi-objective algorithms can also employ
this scheme to identify good trade-offs such as those located
around the knee of the Pareto Front.

The results indicate that, despite some limitations, these
proposals significantly improve the performance of GP over a
selection of high dimensional (multi-variate) problems from
the domain of symbolic regression. This improvement is
manifested by superior results over test sets in three out of
four problems, and by the fact that performance over the
test sets does not degrade as often witnessed with standard
GP; neither is this performance ever inferior to that on the
training set. As with some earlier studies, these results do
not find a link between expressions of small sizes and their
ability to generalise to unseen data.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program Synthesis, Program Modification; G.1.6 [Numerical
Analysis]: Unconstrained Optimization; D.1.2 [Programming
Techniques]: Automatic Programming; I.2.6 [Artificial
Intelligence]: Learning—Induction; I.5.1 [Pattern Recog-
nition]: Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic Programming, Variance, Over-fitting, Symbolic Re-
gression, Regularization

1. INTRODUCTION
Typically, the goal when using Machine Learning [4] is to

infer a phenomenon from a finite and short set of samples.
This set of samples is called the training set. However, these
training sets often have limitations: they are only a snap
shot of the overall phenomenon, so the true overall picture
can be somewhat different; moreover, due to lack of accuracy
in measuring the data samples, they may have some noise,
that is, they may contain errors.

The challenge, then, is to infer the general underlying pat-
tern from this finite training set. Thus, as we get closer
to explaining (modelling accurately) the training data, we
should also explain the out of sample (or test) data to an
acceptable degree of accuracy. However, typically as we re-
duce the error on the training data, the error on the test
data increases. This disparity in errors is often viewed as
over-fitting, although formal definitions of over-fitting exist
[15, pp-67].

The Minimum Description Length (MDL) [15, pp171-174]
principle dictates that we should look for simple and accu-
rate models of a phenomenon. The MDL also relates to the
popular yet debatable argument that since there are fewer
short hypotheses than long ones, it is less likely to find a
short one that fits the data only coincidentally; thus, an ac-
ceptably fit short hypothesis is likely to be a truer explana-
tion of the phenomenon under investigation than an equally
good longer one. A word of caution is needed though: the
representation used by the competing models should be con-
sistent; otherwise, the comparison of sizes becomes meaning-
less. For example, the size of an expression representing a
transcendental function increases manifold if the same func-
tion is represented by its Taylor Series. In other words,
compactness is not always the same as simplicity.

In Genetic Programming (GP), a large body of work looks
at reducing the size of the representations. Often termed as
bloat control [5, 11, 19, 20], this control is necessary to keep
the expressions small or compact for a variety of reasons, not
least of which is the limited availability of computer memory
[14]. However, the question is: can we equate small (pos-
sibly compact) models to simple models? Although, some

1315

evidence [25] exists, suggesting that controlling the size can
promote simplicity and reduce over-fitting, other studies dis-
agree with it [2, 22, 21, 12].

This paper looks at the smoothness of response surfaces
of evolving models in GP to improve performance over the
test sets. To estimate the smoothness, we note the variance
of the output of evolving expressions over the training data
set. Variance is a well known statistical measure; it is easy
to implement and integrate into a standard GP framework
and is computationally inexpensive. In this study, we use
GP to evolve models to minimize both error and variance
over the training set.

We also introduce a variance based selection scheme so
that we can work in a single-objective framework despite
having two objectives (namely, error minimization, as in
standard GP, but also now variance) . This scheme first de-
cides between two candidate solutions by establishing Pareto
Dominance. If that is not possible, then it looks for the
better trade-off between them. As with [6], we look for a
trade-off so that the gain in one objective more than com-
pensates for the loss in the other objective; however, our
approach is simpler as we do not have to rank the popula-
tion according to dominance scores, neither do we need to
establish the neighbourhood of the solutions in question to
make this trade-off.

To ascertain the efficacy of our scheme we compare its
performance with that of standard GP on a selection of real
world, multi-variate problems from the symbolic regression
domain. Results indicate that in three out of four problems
our scheme improves performance over the test sets while
maintaining significantly lower variance. Even in the fourth
problem, the test set performance continues to improve over
time. Moreover, when the performance of standard GP on
test sets begins to degrade, it remains stable for variance
based GP. The results also show that, despite the difference
in performance, the sizes of evolving expressions do not differ
significantly across the two GP setups.

The paper is organised as follows: section 2 gives the back-
ground on theoretical treatment of over-fitting and different
notions of variance used in the GP literature to improve test
set performance; section 3 introduces variance as a measure
of smoothness, describes its limitations and then details the
variance based selection scheme; section 4 discusses the ex-
perimental setup used in this study, describes the problem
suite, presents the results and discusses them; finally, section
5 concludes the paper.

2. VARIANCE AND OVER-FITTING
Perhaps the most popular characterisation of over-fitting

in machine learning is the so called bias-variance trade-off [4,
pp147-152]. Given a modelling method like GP that pro-
duces a model y(x) to approximate some target function
〈t|x〉, the estimate y(x) usually depends on the training data
D sampled from 〈t|x〉. Ideally, the models produced in dif-
ferent trials of the modelling method with different instances
of D would consistently produce an acceptably similar out-
put and low error when evaluated on the same x. Thus,
the overall evaluation of a modelling technique amounts to
averaging the error produced by differently evolved models

at point x:

ED[{y(x)− 〈t|x〉}2] =

{ED[y(x)]− 〈t|x〉}2| {z }
(bias)2

+ED[{y(x)− ED[y(x)]}2]| {z }
variance

where the bias measures the extent to which average pre-
diction over all the instances of D differs from the target
function; bias is usually approximated with the squared er-
ror function in GP literature. The variance of output values
determines how sensitive the modelling method is to a par-
ticular instance of D: the higher the variance, the lower the
consistency of output and vice versa. Generally, in GP lit-
erature, variance is estimated by evaluating error on a test
data set not used during model training. Typically, as train-
ing performance improves, testing performance deteriorates
to implicitly indicate increasing variance. However, some
studies mention variance explicitly. A brief review of such
studies now follows.

Keijzer and Babovic [10] eliminate variance over a set of
instances of D by using ensemble models. Ensemble mod-
elling combines multiple models into a single one. Keijzer
and Babovic combine several models, trained over disjoint
data sets, by averaging their output. Since this average
model is the resulting model, the variance term is effectively
eliminated over the instances of D considered during individ-
ual evolutionary runs. While this decreases sensitivity to a
particular data set, the authors concede that there is no free
lunch: variance is still non-zero over the entire distribution
of D.

Moore [16] reduced variance over the test set errors by
randomly initialising the training set before evaluating every
new generation of individuals. He showed that by periodi-
cally changing the training set, the variance across different
runs was significantly lower than with having a fixed train-
ing set for the entire evolutionary run. Other examples of
varying training set to achieve better generalisation include
[9] and [3].

2.1 Behavioural Complexity and Over-fitting
As mentioned earlier, simpler models can better explain

the underlying phenomenon; therefore, they are likely to
be of a more consistent quality across different data sets.
While a lot of work in GP deals with reducing the size of
evolving expressions, far fewer studies address behavioural
complexity. For example, sin(x) has fewer nodes than x +
x + x + x, but is behaviourally more complex [2]. In other
words, x + x + x + x has a smoother response surface [22].

To evolve smoother models with STROGANOFF (a sys-
tem for evolving tree-like polynomials) Nikolaev et al. [17]
use ridge regression, minimising the magnitude of coeffi-
cients alongside enhancing model accuracy. Since, large co-
efficients suggest more variability in the response surface,
ridge regression penalizes the corresponding individual through
a regularization parameter in the fitness function. Then, in
[18] they directly measure the curvature of evolving polyno-
mials with the variance functional V [f] such that

V [f] =

Z ˛̨̨
˛∂

2f(x)

∂x2

˛̨̨
˛
2

dx.

The polynomial f(x) should be twice differentiable; Nikolaev
et al. satisfied such a hard constraint with a specialised
functions set of basis polynomials.

1316

Vladislavleva et al. [22] estimate the smoothness by esti-
mating the non-linearity of evolving expressions. Instead of
computing derivatives, they approximate a GP evolved ex-
pression with a Chebyshev polynomial. The non-linearity of
a GP-function occupying a node in a GP tree is a function of
the degree of the Chebyshev polynomial that approximates
that GP-function given the range of input values feeding into
its node from the child nodes and the non-linearity of the
child nodes. The ranges of values input to the GP node in
question and the corresponding Chebyshev polynomial are
determined during fitness calculation. Vladislavleva et al.
used a multi-objective approach to minimise non-linearity
and approximation error; they switched non-linearity with
expression sizes in alternate generations to evolve compact
models with smooth surfaces.

Castelli et al. [7] use a multi-objective algorithm to min-
imise the training error and the variance of errors on the
training set. Reducing the variance of errors means that the
evolving models should consistently fit all the training points
regardless of the smoothness of associated response surface.
This improved performance on a particular test set; how-
ever, they also found that if they replaced the variance of
errors with the number of nodes as an objective, the multi-
objective set-up performed just as well. Moreover, counter-
ing bloat with a single objective algorithm did not improve
the performance over the test set.

3. OUR APPROACH: VARIANCE BASED SE-
LECTION

We aim for a simple measure of smoothness of a model:
the measure should be cheap to compute, easy to understand
and easy to plug into a GP implementation. Furthermore, to
use this measure we should not necessarily require a multi-
objective algorithm for optimisation. To fulfil these aspi-
rations, we estimate smoothness by simply measuring the
variance of output values of an expression over the train-
ing data. To use it within a single-objective optimisation
framework, we later describe a modified tournament selec-
tion scheme.

We must note that the variance of output of a function
is not the same as the variance of its errors with respect
to a target data distribution. The former is a measure of
smoothness independent of target output, whereas the latter
is a measure of consistent approximation. While the latter
can still improve generalisation by preferring the models that
fit the training data overall, it can not be used to ascertain
the smoothness of the model in question beyond the known
data. Instead, we can still measure the variance of output
over any arbitrary input values (without knowing the corre-
sponding target output) to estimate how the model behaves
beyond the training points. This can be particularly useful
because in real life problems data can be in short supply.
Also, reducing variance directly over the training data may
counteract minimisation of error. However, in this study we
measure the variance on just the training points.

Variance over training data should provide a good measure
of smoothness as a smoother response surface should have
less variance than that of an over-fitting and noise hugging
model. However, we do recognise that it is not a strictly
monotonic measure of smoothness. To illustrate this point,
consider y1 = x and y2 = sin(x) over a range [0 : 1], then
var(y2) < var(y1); var(yi) is the variance of yi. However,

with a data set representative of a linear function, the error
for a linear approximation should outweigh the lesser vari-
ance associated with the non-linear function; otherwise, a
linear function of such a high slope would seriously over-fit
if the target model is significantly non-linear. Moreover, we
are more concerned with close competitions such as, for ex-
ample, between y2 = sin(x) and y3 = sin(2πx) when GP at-
tempts to fine tune the evolving models: var(y2) < var(y3).

Another issue with variance is that, unlike derivatives, it
is oblivious to the change over the input axis: a high vari-
ance over a large Δx may still represent a smooth surface.
As this is a preliminary investigation we do not expect to
find a fool proof measure, neither do we know if the asso-
ciated complexity of such a measure would translate into
significantly better results. However, we highlight the pos-
sible limitations so future investigations can be mindful of
them and may even address them.

We set the variance of the output values of training data
as the maximum allowable variance for any model during
evolution: any model with higher variance is deemed over-
complex and is assigned the worst possible fitness value. For
example, a model that outputs values that oscillate about the
target values may have the same mean squared error as the
one that consistently outputs either higher or lower values.
In this case the first model is over-complex and highly likely
to over-fit, and is duly penalized.

3.1 Modified Tournament Selection
Initially, we linearly added variance and training error as a

fitness measure; however, the evolution almost ignored the
variance term and solely targeted error reduction. There-
fore, instead of working out an optimum weight for the vari-
ance term to suitably calibrate the fitness function, we opted
for a tournament selection scheme that considers both train-
ing error and variance to discriminate between two individ-
uals. Although, we could use a multi-objective GA, we kept
to a single-objective GA in this study.

In this scheme we compare two candidate models A and B
in a step wise fashion: if we can not decide in one step then
we move to the next step. First, we check if A dominates
B, i.e., if A is at least equal to B in one objective and su-
perior in the other objective then A wins. If neither model
dominates the other then we ascertain if A improves over B
in one objective without giving away as much in the other
objective 1; such an attempt can take us closer to the knee
of the Pareto Front [6]. To decide this we determine if the
rectilinear distance of A (|error+variance|) is smaller than
the euclidean distance (

√
error2 + variance2) of B. This sit-

uation is exemplified in Figure 1: if A falls in the shaded
regions then it is selected. However, if we are still undecided,
then we pick the model with smaller variance. If A is such
a model, it should fall in the Tie Breaking Region in Fig-
ure 1. Finally, if all options are exhausted then the model
with smaller number of nodes is preferred. Pseudocode for
this selection scheme is given in Algorithm 1.

As a housekeeping measure, we penalize the individuals

1It is easy to show that by selecting a point in the shaded
regions, gain in one dimension significantly outdoes the loss
in the other. Suppose point A lies in the upper shaded
region, then Δx/Δy = cot(θ), where θ is the angle between

AB and the normal drawn from B on the y−axis. Since
θ < π/4 (unless B lies on the x−axis), cot(θ) > 1. A similar
reasoning applies to the lower shaded region.

1317

0 0.25 0.5 0.75 1 1.25 1.5 1.75

0.25

0.5

0.75

1

1.25

Dominated Quadrant

Superior Quadrant

B (Sample Point)

= Error

= Variance

Non-Dominated Quadrant

Non-Dominated Quadrant

x^2+y^2=1
|x+y|=1

Tie Breaking
Region

Figure 1: The variance based selection scheme is de-
picted. A sample point (B) is selected from an arc
in the error-variance space such that the radius of
this arc = 1; it is not the Pareto Front. The straight
line shows the points with rectilinear distance = 1.
Shaded regions are the set of points from the non-
dominated regions such that their rectilinear dis-
tance distance is less than the euclidean distance
of point B. Tie breaking region has the points from
the non-dominated region that have a lower variance
than B and do not fall in the shaded region.

generating NaN values by assigning them the worst possible
values for training score and variance.

Algorithm 1 Variance based selection is outlined.

a← false
if A � B then {A � B ⇒ A dominates B}

a← true
else

if (B � A) ∧ (rect(A) < eucl(B)) then
a← true

else
if (rect(B) ≥ eucl(A)) ∧ (var(B) > var(A)) then

a← true
else

if (var(B) = var(A)) ∧ (nodes(A) < nodes(B))
then

a← true
end if

end if
end if

end if

4. EXPERIMENTS
To estimate the efficacy of the proposed method, we com-

pare its performance with standard GP on four multi-variate
problems from the domain of symbolic regression. Also, as
an additional benchmark, we replace variance with the num-
ber of nodes in the selection scheme. For each of these prob-
lems Table 1 lists the corresponding labels used henceforth
to refer to them, as well as the input dimensionality and
the number of data points available. As a policy uniform
across all the problems, 70% of the data points were used
for training during evolutionary runs; the remaining 30%

Table 1: Problem suite used in this study.
Problem Label |{Input Variables}| |{Data Points}|
Dow Chemical 57 1066
Toxicity 626 234
Bioavailability 241 359
Concrete Strength 8 1030

Table 2: Configuration parameters for the runs.
Population Size 500.

Run Terminates at exhausting 1.2× 106 tree nodes.
Operator Probabilities Xover: 0.9; Point mutation: 0.1.
Tournament Size 2
Lexicographic [13] Yes.
Parsimony Pressure
Replacement Steady state, inverse tournament
Functions set {+,−,×, /}
Terminal set {Input variables} ∪ ERC.
ERC ERC = {c|c ∈ � ∧ −5 ≤ c < 5}.

|ERC| = 50.
Normalised Fitness 1

1+MSE

Initialisation Ramped half & half
(max. initial depth = 4)

were reserved for testing. A brief description of each prob-
lem now follows.

The first problem, Dow Chemical, presents data from a
real industrial application at Dow Chemical2. The objective
is to map 57 process measurements such as temperature,
pressures and flows to a chemical composition.

The second problem, Toxicity, is another real life prob-
lem; it involves mapping 626 factors representing the molec-
ular structures of a set of candidate drug compounds to a
pharmacokinetic parameter. The parameter of choice in this
case is median lethal dose, also informally called toxicity.

As with Toxicity, in the third problem (Bioavailability),
we predict another parameter of drug compounds: 241 input
variables are used to predict the percentage of orally sub-
mitted dose of a drug that effectively reaches the systemic
blood circulation. Further details of these two problems can
be obtained from [1].

In the last problem, Concrete Strength, we predict a
quantitative value of compressive strength of concrete. This
output is a highly non-linear function of eight input vari-
ables; these variables characterise the composition of con-
crete. The data source is UCI Machine Learning repository
[24]; the problem itself is detailed in [23].

4.1 GP Parameters
Configuration of GP parameters for this study is shown

in Table 2. Since, we only want to ascertain improvement
in performance with variance based selection, we do not at-
tempt to tailor the experimental set-ups to each problem;
instead, we uniformly employ a standard set-up.

During population initialisation and mutation, we select
ephemeral random constants (ERCs) as often as the problem

2This problem was presented as a challenge organised
by Arthur Kordon at EvoStar 2010. For details see:
http://casnew.iti.upv.es/index.php/evocompetitions/105-
symregcompetition

1318

 0.865

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0.9

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
ra

in
in

g
S

co
re

Dow Chemical: Training Score v Nodes Processed

var-GP
GP

nodes-GP

 2e-07

 2.05e-07

 2.1e-07

 2.15e-07

 2.2e-07

 2.25e-07

 2.3e-07

 2.35e-07

 2.4e-07

 2.45e-07

 2.5e-07

 2.55e-07

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
ra

in
in

g
S

co
re

Toxicity: Training Score v Nodes Processed

var-GP
GP

nodes-GP

 0.0009

 0.00095

 0.001

 0.00105

 0.0011

 0.00115

 0.0012

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
ra

in
in

g
S

co
re

Bioavailability: Training Score v Nodes Processed

var-GP
GP

nodes-GP

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0.0065

 0.007

 0.0075

 0.008

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
ra

in
in

g
S

co
re

Concrete Strength: Training Score v Nodes Processed

var-GP
GP

nodes-GP

Figure 2: For the best fit individual, mean score on
the training data is plotted for each problem.

specific variables. To do this, first we randomly decide be-
tween a constant and a variable, before choosing uniformly
from within their sets.

4.2 Performance Measures
Our primary measure of performance difference is nor-

malised error on unseen data (Test Score); however, we also
note normalised error on training set (Training Score), vari-
ance on training set and size of the evolving expressions.
While we measure training and test set performances for ob-
vious reasons, we also look for a consistently lower variance
to correlate it with any performance differences. Similarly,
expression sizes are plotted to verify if any difference in test
set performance can be linked to reduction in sizes of evolv-
ing expressions: some qualitative [2, 22] and quantitative
arguments [21, 12] go against a strong or causal link.

We note all these statistics for the best fit individual. The

 0.87

 0.875

 0.88

 0.885

 0.89

 0.895

 0.9

 0.905

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
es

t S
co

re

Dow Chemical: Test Score v Nodes Processed

var-GP
GP

nodes-GP

 2.6e-07

 2.65e-07

 2.7e-07

 2.75e-07

 2.8e-07

 2.85e-07

 2.9e-07

 2.95e-07

 3e-07

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
es

t S
co

re

Toxicity: Test Score v Nodes Processed

var-GP
GP

nodes-GP

 0.0009

 0.00095

 0.001

 0.00105

 0.0011

 0.00115

 0.0012

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
es

t S
co

re

Bioavailability: Test Score v Nodes Processed

var-GP
GP

nodes-GP

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0 200000 400000 600000 800000 1e+06 1.2e+06

T
es

t S
co

re

Concrete Strength: Test Score v Nodes Processed

var-GP
GP

nodes-GP

Figure 3: For the best fit individual, mean score on
the unseen data is plotted for each problem.

best fit individual in regular GP runs has the best training
score in the population; correspondingly, the best-fit individ-
ual in variance based GP is the best as per criteria outlined
in section 3.

We ascertain the significance of performance differences
between the two GP setups. To facilitate this, each sampled
point in the performance plots depicts an average over 500
runs. Then, as in [8], the 95% confidence limits of the error
bars at each point are computed as follows:

X ± 1.96
σ√
n

where X and σ are the mean and standard deviation of n
observations; n = 500 represents the number of runs in this
case. We can be 95% confident that the statistical popula-
tion lies within these limits, and that a lack of overlap with

1319

another error bar means that the corresponding populations
are different.

Ideally, the results with variance based selection should be
superior to those with the corresponding benchmarks on all
counts; however, some trade-off is expected between train-
ing and test set performances. Moreover, a lesser training
performance should coincide with a stable or an improving
performance over the test set.

4.3 Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200000 400000 600000 800000 1e+06 1.2e+06

V
ar

ia
nc

e

Dow Chemical: Variance v Nodes Processed

var-GP
GP

nodes-GP

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 0 200000 400000 600000 800000 1e+06 1.2e+06

V
ar

ia
nc

e

Toxicity: Variance v Nodes Processed

var-GP
GP

nodes-GP

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200000 400000 600000 800000 1e+06 1.2e+06

V
ar

ia
nc

e

Bioavailability: Variance v Nodes Processed

var-GP
GP

nodes-GP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200000 400000 600000 800000 1e+06 1.2e+06

V
ar

ia
nc

e

Concrete Strength: Variance v Nodes Processed

var-GP
GP

nodes-GP

Figure 4: For the best fit individual, variance on
training data is plotted for each problem.

Figures 2-5 show results of the experiments. The figures
refer to standard GP as GP, to size minimising GP as nodes-
GP, and to variance based GP as var-GP.

First, we compare var-GP with GP. Figures 2 and 3 show
results on training and test sets respectively. Clearly, var-
GP performs better than GP on both training and test sets
for the first problem (Dow Chemical). For Toxicity and

 0

 50

 100

 150

 200

 250

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 S
iz

e

Dow Chemical: Best-Fit Size v Nodes Processed

var-GP
GP

nodes-GP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 S
iz

e

Toxicity: Best-Fit Size v Nodes Processed

var-GP
GP

nodes-GP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 S
iz

e

Bioavailability: Best-Fit Size v Nodes Processed

var-GP
GP

nodes-GP

 0

 50

 100

 150

 200

 250

 0 200000 400000 600000 800000 1e+06 1.2e+06

A
ve

ra
ge

 S
iz

e

Concrete Strength: Best-Fit Size v Nodes Processed

var-GP
GP

nodes-GP

Figure 5: For the best fit individual, tree size is
plotted for each problem.

Bioavailability, var-GP sacrifices some training perfor-
mance for a relatively stable and superior test set perfor-
mance. However, in the last problem, Concrete Strength,
var-GP is inferior both in training and test set performances.
Still, in all the cases with var-GP score on test set never de-
grades in the manner shown by GP in Figure 3 for the first
three problems.

Also, from the scales of the Figures 2 and 3, we notice
that when evolution stops, var-GP performs at least as well
on the test sets as it does on the training sets. The same is
not true for GP in the last two problems.

Results in Figures 4 and 5 are consistent across all the
problems. Figure 4 shows that variance with var-GP on
training sets is significantly lower than that with GP. Fig-
ure 5 shows that the expressions sizes are very similar across
the two setups despite considerable differences observed oth-
erwise. Hence, this result supports the previously cited ar-

1320

gument that differing test set performance can not be cor-
related with a change in tree sizes.

For nodes-GP, the training and test results are closer to
those with GP than those with var-GP. When compared with
var-GP, the test results of nodes-GP on the first two prob-
lems are consistently inferior; on Bioavailability the re-
sults are generally inferior but converge towards the end of
the runs. On the last problem, as with GP, nodes-GP per-
forms better than var-GP.

The results for variance and expression sizes show that de-
spite evolving much smaller expressions (except on toxicity)
than with the other two setups, nodes-GP has a much higher
variance than with var-GP.

4.4 Discussion
The scales of training results on the four problems show

that their difficulty for Genetic Programming varies. For
the first problem, GP attains a mean training score of 0.89
whereas for Toxicity, the second problem, the scores are of
the order of 10−7; the other two problems fall somewhere
in the middle. It may be possible to improve performance
by using some non-linear functions (for example, transcen-
dental functions); however, that is not the objective here.
What is important is that despite so much variation on the
difficulty scale, var-GP performs better than GP on test sets;
otherwise, it consistently improves over time (as happens
in the last problem). Also, unlike the two benchmarks, the
performance of var-GP on the test sets at the end of the runs
is never worse than the corresponding training performance.

We also find that, although nodes-GP can significantly
contain code-growth, only once does it perform better than
GP on the test sets. Thus, unlike Castelli et al. [7], we can
not conclude yet that bi-objective optimisation, regardless of
the objectives, consistently improves test set performance.
Moreover, since neither this study nor that of Castelli et
al. involved compact functions (for example, transcenden-
tal functions), some relationship between size and simplicity
might exist. However, we do agree that there can be merit
in further investigating the effect of multi-objective optimi-
sation on test set performance.

Given the approach taken in this paper, reducing variance
on the training data may hinder decreasing the error as much
as it could be. Perhaps this happens in the last problem
where an inferior training performance could not translate
into a superior test set performance in the available time
frame. However, this is a preliminary investigation. Further
work can look into utilising data sets separate from training
set to avoid a direct conflict with error reduction. How-
ever, additional data can be expensive or even unavailable
for many real world applications: for example, the data sets
for the second and third problem are already very sparse.
Therefore, the new techniques should not demand too much
data.

5. CONCLUSIONS
In this paper, we have proposed to use variance of output

values over the training data to measure smoothness of re-
sponse surfaces that we evolve with Genetic Programming.
We propose this measure because it is widely familiar, easy
to implement and integrate into a typical GP implementa-
tion, and does not significantly add to the computational
expense of GP runs. We highlight that variance is not a

strictly monotonic measure of smoothness but we also dis-
cuss the mitigating circumstances.

We also propose a simple tournament scheme that con-
siders both training error and variance in discriminating be-
tween two candidate solutions. While, the foremost crite-
rion used to discriminate is Pareto Dominance, we also use
a number of secondary criteria. We do so to avoid using
a standard multi-objective algorithm that ranks the popu-
lation based on a variety of factors. Among the secondary
criteria, first we look for a good trade-off: the gain in one
dimension should more than offset the loss in the other. As
we understand, the approach used to find this trade-off is
novel. If we can not get a suitable trade-off, then we select
the solution with lower variance or with fewer number of
nodes in that order of priority.

We test our proposals on four high dimensional real life
problems and find that in three cases we get test set results
better than those with standard GP. Moreover, the test set
performance never degrades in the manner associated with
standard GP - a manner also visible in three of the four
problems. Also, this performance is never worse than that
on the training set. Finally, we observe that the difference
in the test set performances does not correspond to a change
in the sizes of evolving expressions.

The study also opens up further research avenues. These
include finding a better yet simple measure of function vari-
ability for GP, using a standard multi-objective GA with the
same or new measures, using standard approaches to find the
knee-solutions, and using a data set other than training set
to estimate variance without compromising on the learning
efficiency particularly when training data is scarce.

6. REFERENCES
[1] F. Archetti, S. Lanzeni, E. Messina, and L. Vanneschi.

Genetic programming for human oral bioavailability of
drugs. In M. Keijzer, M. Cattolico, D. Arnold,
V. Babovic, C. Blum, P. Bosman, M. V. Butz,
C. Coello Coello, D. Dasgupta, S. G. Ficici, J. Foster,
A. Hernandez-Aguirre, G. Hornby, H. Lipson,
P. McMinn, J. Moore, G. Raidl, F. Rothlauf, C. Ryan,
and D. Thierens, editors, GECCO 2006: Proceedings
of the 8th annual conference on Genetic and
evolutionary computation, volume 1, pages 255–262,
Seattle, Washington, USA, 8-12 July 2006. ACM
Press.

[2] R. M. A. Azad and C. Ryan. Abstract functions and
lifetime learning in genetic programming for symbolic
regression. In J. Branke, M. Pelikan, E. Alba, D. V.
Arnold, J. Bongard, A. Brabazon, J. Branke, M. V.
Butz, J. Clune, M. Cohen, K. Deb, A. P. Engelbrecht,
N. Krasnogor, J. F. Miller, M. O’Neill, K. Sastry,
D. Thierens, J. van Hemert, L. Vanneschi, and
C. Witt, editors, GECCO ’10: Proceedings of the 12th
annual conference on Genetic and evolutionary
computation, pages 893–900, Portland, Oregon, USA,
7-11 July 2010. ACM.

[3] T. F. Bersano-Begey and J. M. Daida. A discussion on
generality and robustness and a framework for fitness
set construction in genetic programming to promote
robustness. In J. R. Koza, editor, Late Breaking
Papers at the 1997 Genetic Programming Conference,
pages 11–18, Stanford University, CA, USA, 13–16
July 1997. Stanford Bookstore.

1321

[4] C. M. Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

[5] T. Blickle and L. Thiele. Genetic programming and
redundancy. In J. Hopf, editor, Genetic Algorithms
within the Framework of Evolutionary Computation
(Workshop at KI-94, Saarbrücken), pages 33–38, Im
Stadtwald, Building 44, D-66123 Saarbrücken,
Germany, 1994. Max-Planck-Institut für Informatik
(MPI-I-94-241).

[6] J. Branke, K. Deb, H. Dierolf, and M. Osswald.
Finding Knees in Multi-Objective Optimization. In
Parallel Problem Solving from Nature - PPSN VIII,
pages 722–731, Birmingham, UK, Sept. 2004.
Springer-Verlag. Lecture Notes in Computer Science
Vol. 3242.

[7] M. Castelli, L. Manzoni, S. Silva, and L. Vanneschi. A
comparison of the generalization ability of different
genetic programming frameworks. In IEEE Congress
on Evolutionary Computation (CEC 2010), Barcelona,
Spain, 18-23 July 2010. IEEE Press.

[8] D. Costelloe and C. Ryan. On improving
generalisation in genetic programming. In
L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco,
and M. Ebner, editors, Proceedings of the 12th
European Conference on Genetic Programming,
EuroGP 2009, volume 5481 of LNCS, pages 61–72,
Tuebingen, Apr. 15-17 2009. Springer.

[9] J. M. Daida, T. F. Bersano-Begey, S. J. Ross, and
J. F. Vesecky. Computer-assisted design of image
classification algorithms: Dynamic and static fitness
evaluations in a scaffolded genetic programming
environment. In J. R. Koza, D. E. Goldberg, D. B.
Fogel, and R. L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Conference,
pages 279–284, Stanford University, CA, USA, 28–31
July 1996. MIT Press.

[10] M. Keijzer and V. Babovic. Genetic programming,
ensemble methods and the bias/variance tradeoff -
introductory investigations. In R. Poli, W. Banzhaf,
W. B. Langdon, J. F. Miller, P. Nordin, and T. C.
Fogarty, editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 76–90,
Edinburgh, 15-16 Apr. 2000. Springer-Verlag.

[11] W. B. Langdon. Quadratic bloat in genetic
programming. In D. Whitley, D. Goldberg,
E. Cantu-Paz, L. Spector, I. Parmee, and H.-G. Beyer,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages
451–458, Las Vegas, Nevada, USA, 10-12 July 2000.
Morgan Kaufmann.

[12] F. Larkin. Artificial Evolution Approaches to Address
the Data Challenges Encountered During Financial
Forecasting. PhD thesis, University of Limerick, May
2010.

[13] S. Luke and L. Panait. Lexicographic parsimony
pressure. In W. B. Langdon, E. Cantú-Paz,
K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph,
J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors, GECCO
2002: Proceedings of the Genetic and Evolutionary

Computation Conference, pages 829–836, New York,
9-13 July 2002. Morgan Kaufmann Publishers.

[14] S. Luke and L. Panait. A comparison of bloat control
methods for genetic programming. Evolutionary
Computation, 14(3):309–344, Fall 2006.

[15] T. M. Mitchell. Machine learning. McGraw Hill, New
York, US, 1996.

[16] F. W. Moore. Improving means and variances of
best-of-run programs in genetic programming. In
M. W. Evens, editor, Proceedings of the Ninth
Midwest Artificial Intelligence and Cognitive Science
Conference (MAICS-98), pages 95–101, Russ
Engineering Center, Wright State University, Dayton,
Ohio, USA, 20-22 Mar. 1998. AAAI Press.

[17] N. Nikolaev, L. M. de Menezes, and H. Iba.
Overfitting avoidance in genetic programming of
polynomials. In D. B. Fogel, M. A. El-Sharkawi,
X. Yao, G. Greenwood, H. Iba, P. Marrow, and
M. Shackleton, editors, Proceedings of the 2002
Congress on Evolutionary Computation CEC2002,
pages 1209–1214. IEEE Press, 12-17 May 2002.

[18] N. Y. Nikolaev and H. Iba. Regularization approach to
inductive genetic programming. IEEE Transactions on
Evolutionary Computing, 54(4):359–375, Aug. 2001.

[19] R. Poli and N. McPhee. Parsimony pressure made
easy. In M. Keijzer, G. Antoniol, C. B. Congdon,
K. Deb, B. Doerr, N. Hansen, J. H. Holmes, G. S.
Hornby, D. Howard, J. Kennedy, S. Kumar, F. G.
Lobo, J. F. Miller, J. Moore, F. Neumann, M. Pelikan,
J. Pollack, K. Sastry, K. Stanley, A. Stoica, E.-G.
Talbi, and I. Wegener, editors, GECCO ’08:
Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 1267–1274,
Atlanta, GA, USA, 12-16 July 2008. ACM.

[20] T. Soule and J. A. Foster. Effects of code growth and
parsimony pressure on populations in genetic
programming. Evolutionary Computation,
6(4):293–309, Winter 1998.

[21] L. Vanneschi, M. Castelli, and S. Silva. Measuring
bloat, overfitting and functional complexity in genetic
programming. In J. Branke, M. Pelikan, E. Alba,
D. V. Arnold, J. Bongard, A. Brabazon, J. Branke,
M. V. Butz, J. Clune, M. Cohen, K. Deb, A. P.
Engelbrecht, N. Krasnogor, J. F. Miller, M. O’Neill,
K. Sastry, D. Thierens, J. van Hemert, L. Vanneschi,
and C. Witt, editors, GECCO ’10: Proceedings of the
12th annual conference on Genetic and evolutionary
computation, pages 877–884, Portland, Oregon, USA,
7-11 July 2010. ACM.

[22] E. J. Vladislavleva, G. F. Smits, and D. den Hertog.
Order of nonlinearity as a complexity measure for
models generated by symbolic regression via pareto
genetic programming. IEEE Transactions on
Evolutionary Computation, 13(2):333–349, Apr. 2009.

[23] I. C. Yeh. Modeling of strength of high-performance
concrete using artificial neural networks. Cement and
Concrete Research, 28(12):1797 – 1808, 1998.

[24] I. C. Yeh. UCI machine learning repository, 2007.

[25] B.-T. Zhang and H. Mühlenbein. Balancing accuracy
and parsimony in genetic programming. Evolutionary
Computation, 3(1):17–38, 1995.

1322

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

