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ABSTRACT

The Nelder-Mead Algorithm (NMA) is a close relative of
Particle Swarm Optimization (PSO) and Differential Evolu-
tion (DE). In recent work, PSO, DE and NMA have been
generalized using a formal geometric framework that treats
solution representations in a uniform way. These formal al-
gorithms can be used as templates to derive rigorously spe-
cific PSO, DE and NMA for both continuous and combinato-
rial spaces retaining the same geometric interpretation of the
search dynamics of the original algorithms across representa-
tions. In previous work, a geometric NMA has been derived
for the binary string representation and permutation rep-
resentation. Furthermore, PSO and DE have already been
derived for the space of genetic programs. In this paper, we
continue this line of research and derive formally a specific
NMA for the space of genetic programs. The result is a
Nelder-Mead Algorithm searching the space of genetic pro-
grams by acting directly on their tree representation. We
present initial experimental results for the new algorithm.
The challenge tackled in the present work compared with
earlier work is that the pair NMA and genetic programs is
the most complex considered so far. This combination raises
a number of issues and casts light on how algorithmic fea-
tures can interact with representation features to give rise
to a highly peculiar search behaviour.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory
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1. INTRODUCTION
The Nelder-Mead Algorithm [16] is a numerical optimiza-

tion method widely used in practice. Contrasted with the
majority of classic methods for numerical optimization, it
only uses the values of the objective function without any
derivative information. The search done by NMA is based
on geometric operations (reflection, expansion, contraction
and shrinking) on a current set of points, seen as the corners
of a n-dimensional polygon (a simplex), to determine what
points in space to evaluate next. The overall behaviour of
the NMA expands or focuses the search adaptively on the
basis of the topography of the fitness landscape.

Interestingly, the NMA can be seen as a form of (population-
based) evolutionary algorithm with special selection and re-
production operators [20]. Also, there are similarities be-
tween the search operators employed by the NMA and those
of DE and PSO that have led a number of authors to pro-
pose hybrid approaches (see for example [22] and [6]). As
the original versions of DE and PSO, NMA requires the
search space to be continuous and the points in space to be
represented as vectors of real numbers.

There are few extensions of DE and PSO to combinato-
rial spaces [19] [18] [3] [1] and to the space of genetic pro-
grams [17]. Some of these works recast the search in discrete
spaces as continuous search via encoding the candidate so-
lutions as vectors of real numbers and then applying the
traditional search algorithms to solve these continuous prob-
lems. Other works present PSO and DE algorithms defined
on combinatorial spaces acting directly on the original so-
lution representation that, however, are only loosely related
to the traditional algorithms in that the original geomet-
ric interpretation is lost in the transition from continuous to
combinatorial spaces. Furthermore, in the latter approaches
every time a new solution representation is considered, the
search algorithm needs to be rethought and adapted to the
new representation. Apart from very recent work [10], there
are no generalizations of the NMA to combinatorial spaces.

The searches done by PSO, DE and NMA have natural
geometric interpretations and can be understood as the mo-
tion of points in space obtained by different but related
linear combinations of their current and past positions to
determine their new positions. Geometric Particle Swarm
Optimization (GPSO) [8], Geometric Differential Evolution
(GDE) [15] and Geometric Nelder-Mead Algorithm (GNMA)
[10] are recently devised formal generalizations of PSO, DE
and NMA that, in principle, can be specified to any solution
representation while retaining the original geometric inter-
pretation of the dynamics of the points in space across rep-
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resentations. In particular, these formal algorithms can be
applied to any search space endowed with a distance and as-
sociated with any solution representation to derive formally
specific PSO, DE and NMA for the target space and for the
target representation.
Specific GPSOs were derived for different types of contin-

uous spaces and for the Hamming space associated with bi-
nary strings [9], for spaces associated with permutations [14]
and for spaces associated with genetic programs [21]. GDE
was specialized to the space of binary strings [15] and, very
recently, to the space of genetic programs [13]. GNMA was
specialized to the space of binary strings and to spaces asso-
ciated with permutations [10]. The derived algorithms per-
formed satisfactorily in experimental results. This suggests
that the generalization methodology employed is a promis-
ing one. In this paper, we continue this line of research and
derive the Geometric Nelder-Mead Algorithm for spaces as-
sociated with genetic programs. Preliminary experimental
results indicate that the GP-based GNMA does not perform
as well as the GNMA for other spaces. The reason behind it
seems to be related with the peculiar geometric properties
of the space of genetic programs. We present an analysis
aimed at understanding what features of the GP tree repre-
sentation makes it less suitable to be searched with GNMA.
This casts light on how some algorithmic features can in-
teract with some representation features to give rise to a
highly peculiar search behaviour. This knowledge may be
helpful to discriminate between desirable and less desirable
features of the combination algorithm-representation to ob-
tain a successful outcome when considering applying the ge-
ometric framework to generalise algorithms from continuous
to combinatorial spaces.

2. CLASSIC NELDER-MEAD ALGORITHM
In this section, we describe the traditional NMA [16] (see

Algorithm 1). The NMA uses n + 1 points in Rn. These
points form a type of n-dimensional polygon, a simplex,
which has n+ 1 points as vertices in Rn. For example, the
simplex is a triangle in R2 and a tetrahedron in R3. The ini-
tial simplex has to be non-degenerate, i.e., the points must
not lie in the same hyperplane. This allows the NMA to
search in all n dimensions. The method then performs a
sequence of transformations of the simplex, which preserve
non-degeneracy, aimed at decreasing the function values at
its vertices. At each step, the transformation is determined
by computing one or more test points and comparing their
function values. In Figure 1, we illustrate the NMA trans-
formations for the two-dimensional case, where the simplex
S consists of three points.
The optimization process described by Algorithm 1 starts

with creating a sample of n+1 random points in the search
space. Notice that, apart from the creation of the initial
simplex, all further steps are deterministic and do not in-
volve random choices. In each loop iteration, the points
in the simplex S are arranged in ascending order accord-
ing to their corresponding objective values. Hence, the best
solution candidate is S[0] and the worst is S[n]. We then
compute the center M of the n best points and then re-
flect the worst candidate solution S[n] through this point,
obtaining the new point R as also illustrated in Fig. 1(a).
The reflection parameter α is usually set to 1. In the case
that R is neither better than S[0] nor as worse as S[n], we
directly replace S[n] with it. If R is better than the best

Algorithm 1 Nelder-Mead Algorithm

1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink

coefficients
4: Output: x∗: the best solution found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do

8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best

points
10: M ← 1

n

∑
i=0,n−1

S[i]

11: // Reflection: reflect the worst point over M
12: R←M + α(M − S[n])
13: if f(S[0]) < f(R) < f(S[n]) then

14: S[n]← R
15: else

16: if f(R) ≤ f(S[0]) then

17: // Expansion: try to search farther in this direction
18: E ← R + γ(R−M)
19: if f(E) < f(R) then

20: S[n]← E
21: else

22: S[n]← R
23: end if

24: else

25: b← true
26: if f(R) ≥ f(S[n− 1]) then

27: // Contraction: a test point between R and M
28: C ← ρR + (1− ρ)M
29: if f(C) < f(R) then

30: S[n]← C
31: b← false
32: end if

33: end if

34: if b = true then

35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do

37: S[i]← S[0] + σ(S[i]− S[0])
38: end for

39: end if

40: end if

41: end if

42: end while

43: return S[0]

solution candidate S[0], we expand the simplex further into
this promising direction. As sketched in Fig. 1(b), we obtain
the point E with the expansion parameter γ set to 1. We
now take the best of these two points to replace S[n]. If R
is no better than S[n], the simplex is contracted by creating
a point C somewhere in between R and M . In Fig. 1(c),
the contraction parameter ρ was set to 1/2. We substitute
S[n] with C only if C is better than R. When everything
else fails, we shrink the whole simplex by moving all points
(except S[0]) into the direction of the current optimum S[0].
The shrinking parameter σ normally has the value 1/2, as
is the case in the example outlined in Fig. 1(d).

Figure 1: One step of the NMA in R2 (figure modi-
fied from [23])
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3. GEOMETRIC NMA
In this section, we present how the general Geometric

Nelder-Mead Algorithm [10] (Algorithm 2) was derived from
the classic Nelder-Mead Algorithm (Algorithm 1). The gen-
eralization was obtained using a methodology to general-
ize search algorithms for continuous spaces to combinatorial
spaces [15] based on the geometric framework introduced by
Moraglio [7], sketched in the following.

1. Given a search algorithm defined on continuous spaces,
one has to recast the definition of the search operators
expressing them explicitly in terms of Euclidean dis-
tance between parents and offspring.

2. Then one has to substitute the Euclidean distance with
a generic metric, obtaining a formal search algorithm
generalizing the original algorithm based on the con-
tinuous space.

3. Next, one can consider a (discrete) representation and
a distance associated with it (a combinatorial space)
and use it in the definition of the formal search algo-
rithm to obtain a specific instance of the algorithm for
this space.

4. Finally, one can use this geometric and declarative de-
scription of the search operator to derive its opera-
tional definition in terms of manipulation of the spe-
cific underlying representation.

This methodology was used to generalize PSO, DE and NMA
to any metric space, obtaining GPSO, GDE and GNMA,
then to derive the specific search operators for a number
of specific representations and distances. In particular for
GNMA, the generalization of the classic Nelder-Mead Algo-
rithm to general metric spaces was done by recasting the
search operations described in the previous section (reflec-
tion, expansion, contraction and shrinking) as functions of
the distance of the underlying search space, thereby obtain-
ing their abstract geometric definitions, as explained below.
Then, the specific GNMA for the Hamming space associated
with binary strings was derived. Analogously, the specific
GNMA for the space of permutations with swap distance
was derived by plugging this distance in the abstract defini-
tion of the search operators. In Section 4, we will derive the
specific GNMA for the space of genetic programs by using
the abstract definition with a distance function between GP
trees.

3.1 Geometric Generalization of the Nelder-
Mead Algorithm

Using the notion of convex combination CX, extension
ray ER and center of mass CM we can generalize all search
operators of the classical Nelder-Mead Algorithm from the
Euclidean case to generic metric spaces because, as we will
see in the following section, these are geometric elements
well-defined on any metric space.
The graphical description of the search operations of NMA

(Fig. 1) leads directly to their geometric interpretation in
terms of convex combination and extension ray, as follows.
The reflection of the worst point S[n] over M can be seen as
picking a point beyond M on the extension ray originating
in S[n] and passing through M . The expansion operation
can be seen as picking a point beyond R on the extension ray
originating in M and passing through R. The contraction

Algorithm 2 Formal Nelder-Mead Algorithm

1: Input: f : the objective function to minimize
2: Input: n + 1: number of points in the simplex
3: Input: α, ρ, γ, σ: reflection, expansion, contraction and shrink

coefficients
4: Output: x∗: the best solution candidate found
5:
6: S ← createPop(n + 1)
7: while stop criterion not met do

8: S ← sortPop(S, f)
9: // Center of mass: determine the center of mass of the n best

points
10: M ← CM(S[0], S[1], ..., S[n− 1])
11: // Reflection: reflect the worst point over m
12: R← ER(S[n],M) with weights ( α

1+α
, 1
1+α

)

13: if f(S[0]) < f(R) < f(S[n]) then

14: S[n]← R
15: else

16: if f(R) ≤ f(S[0]) then

17: // Expansion: try to search farther in this direction

18: E ← ER(M,R) with weights ( 1
γ
, γ−1

γ
)

19: if f(E) < f(R) then

20: S[n]← E
21: else

22: S[n]← R
23: end if

24: else

25: b← true
26: if f(R) ≥ f(S[n− 1]) then

27: // Contraction: a test point between R and M
28: C ← CX(R,M) with weights (ρ, 1− ρ)
29: if f(C) < f(R) then

30: S[n]← C
31: b← false
32: end if

33: end if

34: if b = true then

35: // Shrink towards the best solution candidate S[0]
36: for i from n down to 1 do

37: S[i]← CX(S[0], S[i]) with weights (1− σ, σ)
38: end for

39: end if

40: end if

41: end if

42: end while

43: return S[0]

operation can be seen as picking a point in the segment
between R and M . The shrink of all points S[i] towards the
best in the population S[0] can be seen as replacing each
point S[i] with a point in the segment between S[i] and
S[0].

In the following, we rewrite the algebraic definitions of the
search operations of NMA to determine the weights of the
corresponding convex combination or extension ray combi-
nation.

The definition of the reflection operation is R = M +
α(M −S[n]) (see Algorithm 1, line 12) and it can be rewrit-
ten as M = α

1+α
S[n] + 1

1+α
R. Since the coefficients of S[n]

and R are positive and sum up to 1 (for α ∈ [0, 1]), this
equation says that M is the convex combination of S[n] and
R with those coefficients. However, since R is the unknown
and S[n] and M are given, we can determine R as the in-
verse operation of the convex combination above, which is
the extension ray combination with origin in S[n] passing
through M and keeping the same weights ( α

1+α
, 1
1+α

) of the
convex combination.

The definition of the expansion operation is E = R +
γ(R−M) (see Algorithm 1, line 18) and it can be rewritten
as R = 1

γ
M+ γ−1

γ
E, which for γ > 1 is a convex combination

of M and E returning R. Analogously to the reflection op-
eration, since E is unknown and M and R are given, we can
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determine E by the extension ray combination with origin
in M passing through R with weights ( 1

γ
, γ−1

γ
).

The definition of the contraction operation is C = ρR +
(1 − ρ)M (see Algorithm 1, line 28), which for ρ ∈ [0, 1] is
a convex combination of R and M with weights (ρ, 1 − ρ)
returning C.
The definition of the shrink operation for a point S[i] is

S[i]′ = S[0] + σ(S[i] − S[0]) (where S[i]′ denotes S[i] at
the next time step) (see Algorithm 1, line 37). This can be
rewritten as S[i]′ = (1−σ)S[0]+σS[i], which for σ ∈ [0, 1] is
a convex combination of S[0] and S[i] with weights (1−σ, σ)
returning S[i]′.
By replacing in Algorithm 1 the original operations de-

fined on the Euclidean space with their generalized defi-
nitions we obtain the definition of a Formal Nelder-Mead
Algorithm valid for any metric space (see Algorithm 2).

3.2 Convex Combination, Extension Ray and
Centre of Mass

Center of mass, segments and extension rays in the Eu-
clidean space and their weighted extensions can be expressed
in terms of distances, hence, these geometric objects can be
naturally generalized to generic metric spaces by replacing
the Euclidean distance with a generic metric.
Let (S, d) be a metric space. A (metric) segment is a

set of the form [x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)}
where x, y ∈ S. The notion of convex combination in metric
spaces was introduced in the GPSO framework [8]. The con-
vex combination C = CX((A,WA), (B,WB)) of two points
A and B with weights WA and WB (positive and summing
up to one) in a metric space endowed with distance func-
tion d returns the set of points C in the segment [A;B] such
that d(A,C)/d(A,B) = WB and d(B,C)/d(A,B) = WA

(the weights of the points A and B are inversely propor-
tional to their distances to C). When specified to Euclidean
spaces, this notion of convex combination coincides with the
traditional notion of convex combination of real vectors.
The extension ray ER(A,B) in the Euclidean plane is a

semi-line originating in A and passing through B (note that
ER(A,B) 6= ER(B,A)). The notion of extension ray in
metric spaces was introduced in the GDE framework [15].
The weighted extension ray ER is defined as the inverse op-
eration of the weighted convex combination CX, as follows.
The weighted extension ray ER((A,wab), (B,wbc)) of the
points A (origin) and B (through) and weights wab and wbc

returns those points C such that their convex combination
with A with weights wbc and wab, CX((A,wab), (C,wbc)),
returns the point B.
The notion of center of mass was generalized to generic

metric spaces in the GNMA framework [10] , as follows.
The center of mass CM of a set of points p1, ..., pn in a
metric space (S, d) is the point p ∈ S that minimizes its
average distance to that set of points, i.e. CM(p1, ..., pn) =

argminp∈S

∑
i=1...n d(pi,p)

n
.

4. GNMA SEARCH OPERATORS FOR

GENETIC PROGRAMS
In order to specify the GNMA to the specific space of

genetic programs, we need to choose a distance between
genetic programs. A natural choice of distance would be
a distance (metric) associated to the Koza-style crossover
[4]. This would allow us to derive the specific GNMA that

searches the same fitness landscape seen by this crossover
operator. Unfortunately, the Koza-style crossover is prov-
ably non-geometric under any metric [12], so there is no dis-
tance associated with it1 we can use as basis for the GNMA.
Another crossover operator, the homologous crossover [5]
is provably geometric under Structural Hamming Distance
(SHD) [11] which is a variant of the well-known structural
distance for genetic programming trees [2]. We use this dis-
tance as basis for the GNMA because we will be able to use
the homologous crossover as a term of reference. Notice,
however, that in principle, we could choose any distance be-
tween genetic programming trees as a basis of the GNMA.
For each distance, we would obtain a different GNMA search-
ing the genetic programs space. In the following, we derive
formally specific convex combination, extension ray recom-
bination and center of mass operator for the space of genetic
programs under SHD.

4.1 Homologous crossover and
Structural Hamming Distance

The common region is the largest rooted region where
two parent trees have the same topology. In homologous
crossover [5] parent trees are aligned at the root and recom-
bined using a crossover mask over the common region. If
a node belongs to the boundary of the common region and
is a function then the entire subtree rooted in that node is
swapped with it.

The structural distance [2] is an edit distance specific to
genetic programming trees. In this distance, two trees are
brought to the same tree structure by adding null nodes to
each tree. The cost of changing one node into another can
be specified for each pair of nodes or for classes of nodes.
Differences near the root have more weight. The Structural
Hamming Distance [11] is a variant of the structural distance
in which, when two matched subtrees have roots of differ-
ent arities, they are considered to be at a maximal distance
(set to 1). Otherwise, their distance is computed as in the
original structural distance.

Definition 1. (Structural Hamming Distance (SHD)). Let
T1 and T2 be trees, and p and q their roots. Let hd(p, q) be
the Hamming distance between p and q (0 if p = q, 1 oth-
erwise). Let si and ti be the ith of the m subtrees of p and
q.

dist(T1, T2) = hd(p, q) if arity(p) = arity(q) = 0
dist(T1, T2) = 1 if arity(p) 6= arity(q)
dist(T1, T2) =

1
m+1

(hd(p, q)+
∑

i=1..m dist(si, ti)) if arity(p) =

arity(q) = m

Theorem 1. [11] Homologous crossover is a geometric
crossover under SHD.

4.2 Convex combination
The following definition presents a weighted version of

the homologous crossover that was introduced in the GDE
framework [13]. This operator is a convex combination in
the space of genetic programming trees endowed with SHD.
In other words, the weighted homologous crossover imple-
ments a convex combination CX in this space.

1In the sense that there is no distance such that the offspring
trees are always within the metric segment between parent
trees.
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Definition 2. (Weighted homologous crossover). Let P1

and P2 be two parent trees, and W1 and W2 their weights, re-
spectively. Their offspring O is generated using a crossover
mask on the common region of P1 and P2 such that for
each position of the common region, P1 nodes appear in the
crossover mask with probability W1, and P2 nodes appear
with probability W2.

Theorem 2. [13] The weighted homologous crossover is
(in expectation) a convex combination in the space of genetic
programming trees endowed with SHD.

4.3 Extension ray
Algorithm 3 reports a weighted homologous recombina-

tion which was originally introduced in the GDE framework
[13]. This operator is an extension ray recombination in the
space of genetic programming trees endowed with SHD.

Algorithm 3 Weighted extension ray homologous recombi-
nation

Inputs: parent trees TA (origin point of the ray) and TB (passing
through point of the ray), with corresponding weights wAB and
wBC (both weights are between 0 and 1 and sum up to 1)
Output: a single offspring tree TC (a point on the extension ray
beyond TB on the ray originating in TA and passing through TB)

1: compute the Structural Hamming Distance SHD(TA, TB) be-
tween TA and TB

2: set SHD(TB , TC) = SHD(TA, TB) · wAB/wBC (compute the
distance between TB and TC using the weights)

3: set p = SHD(TB , TC)/(1 − SHD(TA, TB)) (the probability p
of flipping nodes in the common region away from TA and TB

beyond TB)
4: set TC = TB

5: for all position i in the common region between TA and TB do

6: consider the paired nodes TA(i) and TB(i) in the common re-
gion and the subtrees SA(i) and SB(i) rooted in those nodes

7: if SB(i) = SA(i) then

8: (if the subtrees match in structure and contents)
9: create a random subtree TC and root it in the offspring at

position i
10: set i to skip the remaining nodes in the common region

covered by SA(i) and SB(i)
11: end if

12: if TB(i) = TA(i) and p > random number between 0 and 1
then

13: set TC(i) to a random node with the same arity of TA(i)
and TB(i)

14: end if

15: end for

16: return tree TC as offspring

Theorem 3. [13] The weighted extension homologous ray
recombination is (in expectation) an extension ray opera-
tor in the space of genetic programming trees endowed with
SHD.

4.4 Centre of Mass
When specified to the Hamming space on binary strings

the centre of mass CM coincides with the multi-parental
recombination that returns the offspring by taking position-
wise the majority vote of the parents [10]. This result gener-
alizes to genetic programming trees under Structural Ham-
ming Distance. Intuitively, the centre of mass tree can be de-
termined via a majority vote for each position in the parent
trees which keeps adequately into account their structures
by passing the structure (arity) of the most common nodes
at that position to the corresponding position in the centre
of mass tree. A multi-parental operator following this line
of thinking is reported in Algorithm 4. The next theorem
shows that this is indeed a center of mass operator.

Algorithm 4 Center of Mass Operator

1: inputs: parent trees P1, P2, ..., Pn

2: output: centre of mass tree pcm

3: Determine the most common root node of the parent trees.
4: Let R be this node, let A be its arity, and let S be the set of

parent trees whose root node has arity A.
5: Assign R to the offspring tree pcm at the current position.
6: if R is terminal then
7: Return pcm

8: end if

9: for all branch i (from 1 to A) do

10: Determine recursively the center of mass of the subtrees of the
branch i of the root nodes of the trees in S

11: Assign the center of mass of the branch i to the corresponding
branch i of the current node in the offspring tree pcm

12: end for

13: Return pcm

Theorem 4. The operator in Algorithm 4 is a centre of
mass operator in the space of genetic programming trees en-
dowed with SHD.

Proof. The centre of mass tree is the tree which is in
average closest to all parent trees in SHD, which is the tree
which minimises the sum of the distances from it to all par-
ent trees.

From the definition of SHD, the distance is a linear com-
bination of paired nodes contributions with nodes closer to
the root node having a larger weight. A pair of matched
nodes does not contribute to the distance only when they
coincide.

By construction the root node of the centre of mass tree,
which is the one with higher weight, gives the minimal con-
tribution to the sum of the SHD to all parent trees because
it is chosen to be the node which occurs the most. This
choice of node is optimal independently from the subsequent
choices of nodes to include in the offspring. Now, this rea-
soning can be applied recursively to all child subtrees of the
root node w.r.t. the parent trees that are left to be compat-
ible with the chosen structure (arity) of the root node. So,
an optimal decision in terms of keeping the contribution to
the sum of distances minimal is when the roots of these sub-
trees in the centre of masss tree are chosen to concur with
the root nodes that occur the most in the compatible par-
ent trees in the corresponding subtrees. By induction on all
levels of the tree, the centre of mass tree so generated is the
one at minimum average distance from the parent trees.

Unlike for the Euclidean case in which the simplex is
maintained non-degenerate throughout the search process,
so guaranteeing that any dimension is actually being searched,
this does not hold true for the cases of the Hamming space
and GP spaces. To counteract the degeneracy of the sim-
plex, in the experiments we will use a randomized version
of the CM operator which uses the frequency of the most
frequent element at each position in the parents as the prob-
ability of the offspring to have that element at that position
rather than fixing that element deterministically. The ex-
pected offspring of the randomized operator is the one ob-
tained with the Algorithm 4, but the variance of the output
gives a greater chance to the search of staying open in all
dimensions.

Now we have operational definitions of convex combina-
tion, extension ray and center of mass for the space of genetic
programming trees under SHD. These space-specific opera-
tors can be plugged in the formal GNMA (Algorithm 2) to
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obtain a specific GNMA for the genetic programming trees
space, the GNMA-GP.

5. EXPERIMENTS AND DISCUSSION
This section reports an initial experimental analysis of

the GNMA-GP behavior on the classic problem of Symbolic
Regression of the quartic polynomial [4] and on a unimodal
problem on the space of genetic programs under SHD, in
which the fitness of a tree (to minimise) is given by its dis-
tance to an arbitrary (i.e., sampled at random) but fixed
tree. The last problem can be seen as a generalisation of
the OneMax problem for binary strings 2, so we will refer
to it as the One-Max-like problem. The reason we included
the latter problem in the test-bed is because we wanted to
test the GNMA-GP under controlled conditions on a prob-
lem whose topographic features of the fitness landscape are
explicit and completely understood.
In preliminary experiments, we have found out that the

GNMA when specified to the space of Genetic Programs,
unlike the case when it is specified to the Hamming space
on binary strings, tends to lose population diversity very
rapidly. The cause of this seems to be that the average SHD
between programs in the initial population is maximal (=1),
and that when the GNMA search operators are applied to
maximally different trees they become degenerate and re-
turn always a clone of a parent as offspring. In particular,
operators based on the extension ray recombination become
degenerate because when parents are at maximal distance,
as there is no space beyond the second parent, the second
parent is always returned as offspring. This does not oc-
cur in the Hamming space because the average Hamming
distance in the initial population is half of the size of the
diameter of the space (i.e., of the maximal distance between
binary strings), and this allows for plenty of space to gener-
ate offspring beyond the second parent.
We attempted to resolve the problem above by recreat-

ing a distribution of the distances between individuals in
the initial population of Genetic Programs similar to that
obtained with binary strings. This can be achieved by sam-
pling at random a single tree at first, and then creating
an initial population with trees obtained applying random
walks originating in that tree. A random walk of length n
is a sequence of n repeated mutations applied to the same
individual. The average distance in the initial population
grows for increasing n. For n small all individuals generated
are grouped together; for larger n the individuals are more
spread, up to a critical n after which the individuals become
maximally distant on average. We set n such that the aver-
age SHD in the initial population is half of the diameter of
the space (i.e., SHD=0.5). We refer to the GNMA-GP with
the random-walk initialisation as GNMA-RW.
All the experiments used standard parameters for the clas-

sic Nelder-Mead Algorithm, which are α = 1, γ = 2, ρ =
0.5 and σ = 0.5. As baselines for comparison we used
(1) a volatile GP setting with standard subtree crossover

2This is because in the OneMax problem the fitness of a
solution to maximise is the number of ones it has. This is
equivalent to a problem in which the fitness of a solution to
minimise is given by the Hamming distance from the solution
to the string with all bits set to one. For the symmetry of
the Hamming space, this problem is in turn equivalent to
any problem in which the string with all bits set to one is
replaced with a fixed by arbitrary target string.

(50%) and mutation (50%), with no reproduction - we call
it StdGP; (2) a stable GP setting with homologous crossover
(70%) and reproduction (30%), always applying point mu-
tation with probability 1/L, where L is the number of nodes
of the individual - we call it HGP. Both used roulette selec-
tion and both are elitist in the sense that they always guar-
antee the survival of the best individual. All experiments
used populations of 500 individuals allowed to evolve un-
til 25 thousand evaluations were performed. All except the
GNMA-RW populations were initialized with the Ramped
Half-and-Half procedure [4] with an initial maximum depth
of 8. The initial tree of GNMA-RW was a random full tree
of depth 8. The function and terminal sets were the same
for both problems, containing eight functions protected ac-
cording to [4] (+,−,×, /, sin, cos, log, exp) and no constants.
Each experiment was repeated 20 times. The plots that fol-
low (except Figure 5) report the median values of these 20
runs.

Figure 2 shows the results obtained in the Regression
problem, in terms of best and median fitness, genotypic di-
versity (percentage of unique individuals in the population)
and average SHD between all pairs of individuals. In both
GNMA-GP and GNMA-RW there is very premature conver-
gence to suboptimal solutions, as diversity and average SHD
drop to minimal values. The random-walk initialization does
not make a difference in this problem. Figure 4 shows four
examples of the distribution of SHDs in the population along
the evolution, where plot c (GNMA-GP in the Regression
problem) reveals that the lower values of SHD, in particular
SHD=0, dominate from early in the run. A similar behavior
is observed for GNMA-RW (shown only for the One-Max-
like problem, plot d). On the other hand, both StdGP and
HGP keep diversity and average SHD high (higher diversity
in StdGP, as expected), dominated by SHD=1 (Figure 4).
The median fitness of StdGP (Figure 2b) is not visible due
to a high number of bad individuals in the population.

Figure 3 shows analogous results for the One-Max-like
problem. In this problem it is GNMA-GP and GNMA-RW
that clearly outperform the baselines. Even so, the diver-
sity and average SHD still drop, although not so fast as in
the previous problem. Random-walk initialization seems to
prevent the loss of diversity to a certain degree, but the
lines are very irregular so we look at Figure 5, that shows
the evolution of diversity in each of the 20 runs, along with
the average. Despite the high variability, it can be observed
that for most runs GNMA-RW is able to achieve a higher
diversity in the beginning of the run, and maintain it for a
longer time. It is not surprising that the median fitness (Fig-
ure 3b) is constantly maximal in StdGP, but that may not
have been the expectation for HGP. Figure 4b clearly shows
that it happens because the SHD distribution is dominated
by SHD=1 from the beginning to the end of the evolution.
This suggests that HGP could also benefit from random-
walk initialization.

Interestingly, when GNMA-GP and GNMA-RW are both
successful and not successful, they seem to converge the pop-
ulation too quickly. However, in the two cases this has differ-
ent causes. As symbolic regression is not a smooth problem
w.r.t. SHD, the population shrinks rapidly because most of
the attempts by the search operators of finding better solu-
tions by enlarging the simplex fail, and when that happens
the default operation is that of shrinking the population. As
the one-max-like problem is a smooth problem w.r.t. SHD
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Figure 2: Experimental results on the Regression problem. (a) Best fitness of run; (b) Median fitness of
population; (c) Genotypic diversity; (d) Average pairwise SHD in the population.

(a) (b) (c) (d)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

One−Max−like

Number of Evaluations

B
e

s
t 

F
it
n

e
s
s

StdGP

HGP

GNMA−GP

GNMA−RW

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1

One−Max−like

Number of Evaluations

M
e

d
ia

n
 F

it
n

e
s
s

0 0.5 1 1.5 2 2.5

x 10
4

0

20

40

60

80

100
One−Max−like

Number of Evaluations

D
iv

e
rs

it
y

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

0.6

0.8

1
One−Max−like

Number of Evaluations

A
v
e

ra
g

e
 S

H
D

Figure 3: Experimental results on the One-Max-like problem. (a) Best fitness of run; (b) Median fitness of
population; (c) Genotypic diversity; (d) Average pairwise SHD in the population.
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Figure 4: A sample of SHD distributions. (a) Regression, StdGP; (b) One-Max-like, HGP; (c) Regression,
GNMA-GP; (d) One-Max-like, GNMA-RW.

by construction, the population moves very rapidly up the
gradient, as the NMA search operators are designed to do
exactly that, and when the peak is reached the population
quickly groups around it, because it cannot find further im-
provement by attempting enlarging the simplex.
It is also noticeable that the population diversity in the

course of a single run can change dramatically, both increas-
ing and decreasing. This feature is related to the search be-
haviour of the traditional NM on continuous spaces whose
span of the simplex adapts to the topography of the fit-
ness landscape searched. However, whereas on continuous
spaces the simplex is kept non-degenerate (i.e., the diversity
of the population is always maximal) and what adapts is
the shape of the simplex, on discrete spaces both shape and
diversity are adaptive, due to the discreteness of the space
that does not allow the search operators to keep the popula-
tion diversity always maximal. When using GNMA-GP, the
adaptive population diversity is able to partly compensate
for the dramatic decrease of diversity due to the degeneracy

of the search operators in the initial population. That is
why GNMA-GP and GNMA-RW perform similarly.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have demonstrated how to specify the

general Geometric Nelder-Mead Algorithm to the space of
genetic programs under structural hamming distance. From
preliminary experimental results on symbolic regression and
on a unimodal problem, the new algorithm, whereas it per-
forms well on the unimodal problem, it does not perform as
well as standard GP with swap crossover and with homolo-
gous crossover on the symbolic regression problem. This is
a rather surprising result as the Geometric Nelder-Mead Al-
gorithm specified to binary strings under Hamming distance
performed significantly better than a genetic algorithm on
NK-landscapes [10], showing that, in principle, the GNMA
may work well when applied to combinatorial spaces. The
reason behind it seems to be related with the peculiar ge-
ometric properties of the GP space that forces the GNMA
towards a degenerate dynamic. It is fair to say that at the
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Figure 5: Diversity on the One-Max-like problem,
20 independent runs (grey thin lines) and average
(black thick line). (a) Ramped population initial-
ization; (b) Random-walk population initialization.

moment GNMA-GP is still a rather mysterious algorithm.
As future work, we will test this new algorithm more thor-
oughly and on a larger set of problems. Also, we will derive
the GNMA for GP programs under other distances which
may be more suitable to particular classes of problems, e.g.,
symbolic regression. Finally, as GNMA is a close relative
of GPSO and GDE, we will present the three algorithms
in a common theoretical framework highlighting their com-
monalities and differences and we will compare them experi-
mentally to find out which of their characteristics are better
suited to which type of problems and representations.
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