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ABSTRACT

Genetic programming based hyper-heuristics (GPHH) have
become popular over the last few years. Most of these pro-
posed GPHH methods have focused on heuristic generation.
This study investigates a new application of genetic pro-
gramming (GP) in the field of hyper-heuristics and proposes
a method called GPAM, which employs GP to evolve adap-
tive mechanisms (AM) to solve hard optimisation problems.
The advantage of this method over other heuristic selection
methods is the ability of evolved adaptive mechanisms to
contain complicated combinations of heuristics and utilise
problem solving states for heuristic selection. The method
is tested on three problem domains and the results show
that GPAM is very competitive when compared with exist-
ing hyper-heuristics. An analysis is also provided to gain
more understanding of the proposed method.

Categories and Subject Descriptors

I.2 [Computing Methodologies]: [Artificial Intelligence]

General Terms

Design, Performance, Algorithms

Keywords
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1. INTRODUCTION
Hyper-heuristics (HH) have recently emerged as a new

search method which explores the heuristic search space in-
stead of the solution space (as heuristics or meta-heuristics
do). HHs are described as “heuristics to choose heuristics”

and aim at “raising the level of generality” at which optimi-
sation systems can operate [2]. A key motivating goal for
this area is “the challenge of automating the design and tun-

ing of heuristic methods to solve hard computational search
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problems” [5]. Since searching for a good solution in heuris-
tic search space is not trivial and there are no exact methods
to find optimal HH solutions, heuristics, meta-heuristics and
machine learning methods have naturally become excellent
candidates for this task.

Heuristic selection and heuristic generation are currently
the two fundamental research directions in HH [5]. Heuristic
selection has mainly focused on developing HH frameworks
that are able to adaptively select suitable pre-existing heuris-
tics based on the problem solving states and the historical
records obtained from the problem solving process. Some
successful HH frameworks for heuristic selection such as the
choice function [11], [12], Tabu Search based HH [10], Sim-
ulated Annealing based HH [15] record the performance of
each heuristic as well as the performance of combinations of
different heuristics in the heuristic pool. In each iteration,
a heuristic is called based on its historical performance and
computational time. Some features to diversify HH solu-
tions are also included such as a tabu list of most recent or
unsuccessful heuristic calls.

Most heuristic selection methods have used very simple
approaches to record or evaluate the performance of each
low level heuristic (LLH) or the combination of two LLHs
as shown in [11], [12]. However, in order to be effective,
hyper-heuristics may require even more complicated combi-
nations of LLHs, for example, the sequential implementation
of three or more LLHs. Another limitation of previous stud-
ies in heuristic selection is the lack of using problem solving
state to enhance the performance of HH. For example, LLHs
with more exploitation such as local search could be very
powerful in many cases, however, it may be less effective
when the current solution is trapped at local optima, where
some LLHs with mutation could be more useful.

The objective of heuristic generation methods, on the
other hand, is to fabricate a new heuristic (or meta-heuristic).
The obtained heuristic can be either an improving or con-
structive heuristic. In order to generate a new heuristic, the
HH framework must be able to combine various small com-
ponents (normally common statistics or operations used in
pre-existing heuristics) and these heuristics are trained on a
training set and evolved to become more effective.

Genetic Programming (GP) [18] is an evolutionary com-
putation method aiming to evolve a population of programs,
traditionally represented as tree structures. In the last few
years, GP has been used very often in the field of hyper-
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heuristics [7]. Most common applications of GP in HH are
to automatically generate key components of problem solv-
ing methods (heuristics, meta-heuristics). In this paper, GP
is used as a heuristic selection method to solve combinatorial
optimisation problems. The objectives of this study are:

1. To employ GP system to incorporate problem solving

states and improve the heuristic selection process. It is
expected that the proposed GP, with its flexible rep-
resentation, can overcome the limitations encountered
by other heuristic selection methods.

2. To compare the performance of the proposed method

with other HHs. Since using GP as a heuristic selec-
tion method is quite new, it is interesting to see its
performance compared with other HHs for heuristic
selection to confirm the feasibility of this method.

3. To analyse the proposed method to gain more under-

standing of its behaviours as well as investigate the

possibility for further improvements. The analysis will
help explain how the proposed GP system evolves adap-
tive mechanisms and what factors could influence its
performance.

In the next section, a brief literature review of hyper-
heuristics is presented, followed by the methodology of the
proposed approach in section 3. Section 4 presents the pa-
rameters and experimental design, and the results of these
experiments are discussed in section 5. In section 6, an anal-
ysis of the proposed method is provided. Conclusions and
future research are given in section 7.

2. LITERATURE REVIEW
In the last decade, many novel hyper-heuristic methods

have been proposed and shown very promising results. In
general, hyper-heuristic methods can be classified into two
main categories [5]: (1) heuristic selection and (2) heuristic
generation.

2.1 Heuristic selection methods
Several new genetic algorithms have been applied to hyper-

heuristics. For instance, Krasnogor et al. [19] showed how a
simple inheritance mechanism is capable of learning the best
local search to use at different stages of the search. An in-
dividual is composed of its genetic material and its memetic
material. The memetic material specifies the strategy the
individual will use to do local search in the vicinity of the
solution encoded in its genetic part. This method is applied
to solve different combinatorial optimisation problems and
showed very promising results. The analysis also indicated
that the algorithm can really learn and make good choices
of local search approaches. Another interesting method was
developed by Ross et al. [22] for solving one-dimensional
bin-packing problems. In this method, the task of GA is
to choose the problem states and to associate a small set of
heuristics with each of them. A chromosome is composed
of blocks, and each block contains the five numbers repre-
senting a problem state and an integer that indicates which
heuristic is associated with this problem state. The experi-
ments showed promising results for a wide range of instances
when compared with known heuristics and the optimal so-
lutions.

In a series of papers, Cowling et al. [11], [12], [13] proposed
a hyper-heuristic method based on a choice function. The
choice function is the weighted sum of heuristic performance,

joint performance of pairs of heuristics, and CPU time from
the previous time the low-level heuristic was called. This
method adaptively ranks the low-level heuristics based on
the choice function and the ranks are then used to decide
which heuristic to choose in the next call. This method is
simple and can be easily applied to new problem domains.
An improved version of this approach was proposed in [12].
However, the performance of the choice function method
may depend on the performance of LLHs called at the early
stage and the myopic characteristic of this method could
prevent it from exploring better solutions, especially when
a solution is converged to a local optimum.

More recently, Cuesta-Canada et al. [14] employed Ant
colony optimisation (ACO) as hyper-heuristic method to
solve the 2D bin packing problem. The Hyper-Heuristic Ant
System algorithm (HHAS) uses two sets of heuristics for bin
and item selection. A heuristic is represented in HHAS as an
array of blocks, each of which includes five variables: quan-
tity of items to be placed by the heuristic defined in the
block; rotation decision; item order; bin selection; and item
selection. The main components of the ACO part of the
HHAS are: the pheromone matrix; the update and decay
function; and stagnation behaviour. 25 pheromone matrices
(5 × 5 combinations of decisions) are used to represent the
transition between two consecutive variables. Based on the
transition from quantity, rotation, item order to bin selec-
tion, etc., the path of a heuristic is created according to the
possible combinations of the variables used. The experiment
showed that HHAS outperformed the choice function based
HH, which indicates that more complicated approaches can
improve the performance of HH. One of the drawbacks of
this method is the use of pheromone matrices; when the
number of LLHs grows, it may be difficult for HHAS to col-
lect sufficient information to fill in these matrices.

Local search methods have also been used for heuristic se-
lection. Burke et al. [10] proposed a hyper-heuristic frame-
work for timetabling and rostering in which heuristics com-
pete using rules based on the principles of reinforcement
learning and a tabu list of heuristics is maintained which pre-
vents certain heuristics from being chosen at certain times
during the search. A multi-objective version of this frame-
work was introduced in [3] to solve space allocation and
timetabling. The idea of this multi-objective hyper-heuristic
approach is to choose a suitable LLH at each iteration for
the optimisation of a given individual objective. Downsland
et al. [15] improved the tabu search framework in [10] by
integrating the simulated annealing acceptance strategy into
the heuristic selection mechanism. The improved framework
was used to determine shipper sizes for storage and trans-
portation. Again, the myopic characteristic of a local search
based HH method may prevent from creating complicated
combinations of LLHs.

2.2 Heuristic generation methods
In recent years, GP has been widely applied to hyper-

heuristic frameworks and gained its own name as genetic
programming based hyper-heuristics (GP-HH)(see [7] for a
comprehensive review). With its flexible structure, GP can
be used to build either construction or perturbation heuris-
tics. Bolte et al. [1] may be the first that successfully
adopted GP to learn new heuristics. The proposed method
used standard GP to evolve annealing schedule functions in
simulated annealing to solve the quadratic assignment prob-
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Figure 1: An example program tree for an adaptive mechanism

lem (QAP). Fukunaga [16] proposed CLASS, an automated
heuristic discovery system, to develop new local search al-
gorithms for the satisfiability (SAT) problem. This system
uses GP to evolve the variable-selection heuristics used in
each application of the local search algorithm. The pro-
posed GP evolved new heuristics from a set of primitives
that can reformulate any existing heuristic approach in the
literature (score, age, rank, conditional branch, etc.). The
experimental results showed that the evolved heuristics are
very competitive compared with other popular heuristics.
Burke et al. [6], [8], [9] evolved new construction heuristics
for online bin packing problem with GP-HH. GP generates
a priority function of the size of piece p, and the fullness and
capacity of bin i. If the output of this function is higher than
zero, piece p is placed in bin i. Human designed heuristic
can also be found by GP under different trees (individuals).

3. METHODOLOGY
In this study, GP will be used to create an adaptive mech-

anism (AM) to decide which heuristics (or combinations of
heuristics) should be performed given a certain state of the
problem solving process. In order to achieve this goal, GP
must evolve a program that is capable of realising the prob-
lem solving states and make effective actions.

3.1 Representation
An advantage of GP for evolving adaptive mechanisms is

that GP individuals (represented in tree form) can perform
different conditional branching functions; useful for heuristic
selection based on the states of the problem solving process.
Moreover, good compositions of low level heuristics can also
be stored in a subtrees which can be activated by condi-
tional branching functions, and can be evolved by GP. In
this paper, GP is used to evolve an adaptive mechanism
similar to Iterated Local Search (ILS) [21], i.e., in each iter-
ation some local search heuristics are called to improve the
solution followed by different mutation heuristics based on
the problem solving states. Three conditional branches are
investigated. The subtree of the first branch is called when
an initial solution is created or the current solution is mu-
tated or ruined-and-rebuilt. When a local optimal solution is
found, the subtree of the second branch is activated. Finally,
when some LLHs are performed without any improvement
in the best found solution, LLHs in the last branch will be
performed.

An example program tree for an adaptive mechanism is
shown in Figure 1. In this example, when a new solution
is provided, AM will first perform local search 1 followed
by local search 2. If a local optimal solution is found, the
second branch will be activated and a new solution created

by applying small mutation 3 replaces the current solution.
If no improvement is realised in the previous steps, the last
branch will be activated to call the ruin and rebuild 1 to
destroy 20% of the current solution and rebuild a new one.
However, in this case, the new solution can only replace
the current solution if it satisfies the simulated annealing
acceptance criteria (AccSA). If the branching condition is
not satisfied, the subtree of that branch will be ignored. An
execution of AM is called an AM iteration. It is noted that
several AM iterations need to be performed in order to assess
the performance of an AM.

3.2 Function set
Within the subtrees of the three conditional branches,

there are two types of functions. The first is the acceptance
function which is used to decide whether a solution obtained
by a mutation or ruin-and-rebuild heuristic will replace the
current solution. Different acceptance functions may cre-
ate different behaviours of adaptive machanisms. For exam-
ple, if the all-move (accept all proposed changes) acceptance
function is used, it will be easier for AMs to escape from a
local optimum but it also reduces the exploitation ability of
AMs. On the other hand, if the improve-only acceptance
function is used, AMs may quickly trapped at a local opti-
mum. Including these acceptance functions in the function
set allows GP to evolve a smarter way to perform mutations.

The second type of function is the heuristic connectors
which are used to sequentially execute the left and right
subtrees. These connectors allows AMs to represent dif-
ferent combinations of local search heuristics, which help
GP overcome the limitation of other HH methods. There
are two connectors used in the proposed method: (1) lo-
cal search connectors to combine local search heuristics in
the first branch, and (2) perturbation connectors to combine
mutation or ruin-and-rebuild heuristics along with their ac-
ceptance functions in the second and the third conditional
branch as shown in Figure 1.

3.3 Terminal set
The terminal set includes all the LLHs available in a prob-

lem domain and these heuristics are categorised into three
groups: local search, mutation, and ruin-and-rebuild heuris-
tics. In the proposed representation, terminals in the local
search group can only appear in the first branch of GP tree
and terminals of the mutation group and the ruin/rebuild
group can only included in the second and the third branch
as an argument of acceptance functions.

3.4 Fitness function
There are several ways to measure the performance of an

adaptive mechanism such as quality of obtained solutions,
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computational time, etc. In this study, we only focus on the
quality of the solution obtained by AM. Given a particular
solution, the fitness of an adaptive mechanism is evaluated
by calculating the objective value of the best solution ob-
tained through a sequence of N applications of that adap-
tive mechanism. Within each application of AM, a solution
is transformed by LLHs included in that AM in the order
determined by the tree representation presented in previous
section. Basically, this fitness function measures the effec-
tiveness of an adaptive mechanism, which is either the ability
to exploit and improve a given solution provided by the com-
binations of local search heuristics, or the ability to explore
the solution search space for new potential solutions given
by the combinations of mutation and ruin/rebuild heuristics.

3.5 Proposed algorithm
The role of GP in this study is to choose from a given set

of low level heuristics to construct an adaptive mechanism
that can provide high quality solutions for a specific prob-
lem instance. Note that there are two objects being evolved
simultaneously in this study. The first is the adaptive mech-
anism within a GP population, which is produced by the
evolutionary process. The second is the problem solution
obtained by applying the evolved adaptive mechanism. The
genetic programming method for evolving adaptive mecha-
nisms (GPAM) is presented in Algorithm 1. The method

Algorithm 1: GPAM algorithm

Hl,Hm,Hr ← load problem domain heuristics;
D← load problem instance;
s← generate random solution for D;
s∗ ← s; //s∗ is the best found solution

P←Initialise population using Hl,Hm,Hr;
for n← 0 to maxGeneration do

foreach adaptive mechanism i in P do
si ← the best solution resulting from a sequence
of N applications of i starting from initial
solution s;
fitnessi ← objective value of si;
if si is better than s∗ then

s∗ ← si;
end

end
P← apply reproduction, crossover, mutation to P ;
s← s∗;

end

starts by loading all heuristics available for a specific prob-
lem domain. These heuristics will serve as terminals in GP.
The heuristics can be classified into three subsets Hl,Hm,Hr

which contain local search, mutation and ruin-and-rebuild
heuristics respectively. The problem instance D that needs
to be solved is then loaded and a single random solution s
is generated. The GP population is initialised based on the
function set mentioned above and terminal set of Hl,Hm,Hr.
In each generation, each individual in the population is an
adaptive mechanism. N is the number of iterations an adap-
tive mechanism is executed to find better solutions for D

starting from initial solutions s. N is an important param-
eter in GPAM because small N may not be sufficient to ac-
curately assess the quality of an adaptive mechanism, while
high N may increase computational time of GPAM. The
best solution si found by each individual is stored and its

objective value is used as fitness of that individual. The new
population is then created through reproduction, crossover
and mutation process. The best found solution s∗ found
in the previous generation is assigned to the initial solution
s and GP starts the new generation. In this algorithm, it
is obvious that GPAM is not only a search method to find
good solutions for a problem instance but also a heuristic
selection method which tries to improve the performance of
the adaptive mechanism.

4. EXPERIMENTAL DESIGN
In this study, HyFlex (Hyper-heuristics Flexible frame-

work) [4], a Java framework for the implementation hyper-
heuristics, is used to test performance of GPAM. HyFlex
has a collection of different problem domains and heuristics
used to solve these problems.

4.1 Problem domains
In the experiments, three problem domains available in

HyFlex [17] are used: maximum satisfiability problem (MAX-
SAT), one dimensional bin packing, and permutation flow
shop. For each problem domain, the default problem in-
stances in HyFlex are used to measure the performance of
GPAM.

4.1.1 MAX-SAT

Boolean satisfiability (SAT) is a problem of determining if
there is an assignment of boolean variables in a formula that
can make that formula evaluate to true. For example, given
a problem of n variables F (x) = (x1∨x2)∧(xn−1∨x3∨x16)∧
...∧(x2∨xn), the task is to find the truth assignment for each
xi for all i = 1, ..., n such that F (x) = TRUE. One of the
optimisation extensions of SAT is MAX-SAT in which the
goal is to find an assignment of the boolean variables that
maximise the number of clauses in F (x) that are true. In
MAX-SAT, each clause is a disjunction of a set of variables.

4.1.2 Bin packing

Bin packing is a traditional NP-hard problem in combina-
torial optimisation. The objective of this problem is to pack
a number of given items or pieces using the least number
of bins. The main constraint is that the sum of all pieces
cannot exceed the capacity of the bin. In order to avoid
large plateaus in the search space around best solutions,
fitness = 1 − 1

n

∑
n

i=1
(fullnessi/C)2 is used as objective

value instead of the total number of bins, where fullnessi
is the sum of all pieces in bin i, C is the capacity of the bin
and n is the number of bins being packed.

4.1.3 Flow-shop scheduling

Flow-shop scheduling is the problem of finding the best or-
der of n jobs to be processed on m consecutive machines in
order to minimise the makespan (the completion time of the
last job to exit the shop). In permutation flow-shop schedul-
ing, all jobs have to be processed through a pre-determined
sequence of machines and no job can jump over any other
jobs. A machine can only process a single job and if a job
comes to a busy machine, it has to wait in the queue. A
machine can be idle only if there are no jobs ready to be
processed by it.

4.2 GP parameters
The GP part of GPAM is developed based on ECJ19 [20],

an evolutionary computation software package developed at
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George Mason University. Since this paper focuses on the
idea of applying GP for heuristic selection, only the simple
standard GP system is used in order to avoid hindering the
analysis of the results. The GP parameters for the experi-
ments are shown in Table 1.

Table 1: Parameters of the proposed GPAM

Population Size 50
Crossover rate 90%
Mutation rate 5%
Reproduction rate 5%
Generations 50
Max-depth 5
Function set AM, IfNewSol, IfLocalOpt, IfNoIm-

proveN, AccSA, AccALL, AccIO,
ConL, Con

Terminal set LS(m,p), MT(m,p),RUIN(m,p)
Fitness objective value of the solution found by

AM

The initial GP population is created using ramped-half-
and-half [18]. Tournament selection with the size of 7 is
used to select individual for genetic operations. Standard
single point crossover and point mutation are used to pro-
duce new individuals. The function set includes all the
functions discussed in section 3 and Table 1, where AccSA,
AccALL, AccIO stand for simulated annealing, all move,
and improve-only acceptance function of heuristics; ConL
and Con are the connectors of local search and mutation/ruin
heuristics respectively; and LS (m, p), MT (m,p), RUIN
(m, p) are elements of Hl,Hm,Hr respectively, where pa-
rameter m indicates which specific mode of the low level
heuristics to be used (e.g. steepest descent local search) and
parameter p indicates the strength of a low level heuristic
(e.g. the number of elements in the solution to be mutated).
Both m and p are treated as ephemeral random constants
(ERC). In all experiments, the fitness of an adaptive mech-
anism is measured by executing it for N = 10 iterations, as
described in section 3.4.

5. RESULTS
This section presents the performance of GPAM on three

problem domains. The performance is also compared with
the top two hyper-heuristics (HH4 and HH6) within the
eight default hyper-heuristics developed by ASAP group at
the University of Nottingham [17]. Moreover, a random ver-
sion of the proposed method (rGPAM) is also implemented.
In rGPAM, all terminals are randomly regenerated in each
iteration and only the AM structures, which are the combi-
nations of LLHs created by connectors and acceptance func-
tions, are evolved by GP. rGPAM is equivalent to a random
iterated local search, in which the local search and muta-
tion parts are randomly selected. Comparison with rGPAM
will help explain whether the good solutions are obtained by
logically combining LLHs or just by the effectiveness of pre-
existing LLHs. In order to make a fair comparison, GPAM
and rGPAM always start with the same initial solution and
the results in this section are the best values of problem in-
stances obtained by one run of each proposed HH. All of the
problem domains are minimisation problems.

5.1 MAX-SAT
Table 2 shows the results obtained by GPAM and other

approaches for ten default MAX-SAT instances in HyFlex,
which contain between 311 and 744 variables, and between

Table 2: Objective values of MAX-SAT problems
Instance GPAM rGPAM HH4 HH6

#1 8 16 65 19
#2 33 38 48 29

#3 24 22 45 34
#4 8 8 9 11
#5 6 5 16 9
#6 7 4 17 7
#7 11 8 18 18
#8 6 7 37 37
#9 7 11 16 5

#10 6 7 18 7

Table 3: Objective values of Bin Packing problems
Instance GPAM rGPAM HH4 HH6

#1 0.007165 0.012618 0.016151 0.016235
#2 0.007559 0.016346 0.011968 0.016388
#3 0.021713 0.023184 0.022526 0.023137
#4 0.023108 0.024418 0.023530 0.023596
#5 0.005604 0.006840 0.004754 0.012858
#6 0.003985 0.008428 0.003146 0.015671
#7 0.069706 0.105994 0.026893 0.094808
#8 0.104935 0.123926 0.054556 0.118187
#9 0.070929 0.116033 0.087692 0.062025

#10 0.00503 0.014882 0.025665 0.017577

2200 and 3500 clauses. The objective value is the number
of unsatisfied clauses. The best objective value for each
instance is highlighting in bold. Table 2 shows that GPAM
is a very competitive hyper-heuristic method to solve MAX-
SAT problem. GPAM provides a better result than HH4

and HH6 in most instances. It is also quite interesting that
rGPAM also found very good results in these instances, even
better than those obtained by HH4 and HH6 in several
instances. Since many successful methods to solve MAX-
SAT are based on randomness (e.g WalkSAT, Novelty), it is
possible that rGPAM with high-diversity population can be
better than more systematic HHs. The good performance
of GPAM indicates the exploration ability of this method.

5.2 One dimensional bin packing
The experimental results are shown in Table 3. In this

problem domain, GPAM shows very promising result. GPAM
provides the best results in five problem instances and second-
best in the other five. In the two most difficult instances (7
and 8) with a triplet distribution of pieces (a well-filled bin
must contain one big item and two small items), GPAM is
only slightly dominated by HH4 but better than HH6. Dif-
ferent from MAX-SAT problems, rGPAM cannot compete
with other HHs methods and it is worse than GPAM in
all cases. The results emphasise the important of heuristic
learning which allows HHs to smartly select suitable heuris-
tics.

5.3 Permutation flow-shop scheduling
In this experiment, seven hard instances are used to access

the performance of GPAM. Since there are more LLHs for
this problem domain, crossover rate of 80% and mutation
rate of 20% are used in order to increase the diversity of
the GP population. The results for this problem domain are
shown in Table 4. The results again show that most solutions
obtained by rGPAM are dominated by other HHs. Although
GPAM only provides the best solutions for one instance in
this problem domain, other solutions found by GPAM are
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Figure 2: Performance of GPAM and rGPAM on the bin packing problem (30 runs)

Table 4: Objective values of permutation flow-shop
scheduling problems

Instance GPAM rGPAM HH4 HH6

#1 6310 6344 6305 6314
#2 6270 6284 6276 6242

#3 6340 6344 6346 6337

#4 6323 6369 6353 6332
#5 6421 6429 6422 6403

#6 10501 10515 10497 10497

#7 10944 10941 10957 10923

very competitive withHH4 andHH6; in 6 out of 7 instances,
GPAM is either the best or the second best method. It is also
noted the local search heuristics employed in this problem
domain mainly differ from one another only in their efforts
to explore the neighbourhood of the current solution. In this
case, it could be better to consider the computational time
to measure the quality of adaptive mechanisms because the
behaviors of these local search heuristics are quite similar.

6. FURTHER ANALYSIS
Previous experiments show that GPAM performs well on

different problem domains. In this section, an analysis of
GPAM is given in order to gain better understanding of this
method. The Bin Packing problem is used here as an exam-
ple because this problem domain includes a good collection
of low level heuristics and a wide range of problem instances
which are very useful for the analysis.

6.1 GPAM vs. rGPAM
Thirty independent runs of GPAM and rGPAM are used

to check the statistical significance. It is also noted that the
same initial solution of a problem instance is used in the
thirty runs to avoid the biased results caused by random
initial solutions.

Figure 2 shows the best fitness obtained by GPAM and
rGPAM on the ten Bin Packing instances. GPAM signif-
icantly outperforms rGPAM in all instances (T-test, p ≪
0.05) except for instance #5. It is also more robust than
rGPAM in most instances except for instance 7 and 8, which
are the two most difficult instances where pieces follow the
triplet distribution; in these instances, GPAM has wider
range of solutions. Although the best solutions are found
by GPAM, it is also the one that results in the worst so-
lutions. One explanation for these behaviours is that these
instances are more difficult than the others and require dif-
ferent combinations of low level heuristics at different states
of problem solving process. Since GPAM in this study only
uses the population size of 50, it is possible that the pop-
ulation cannot preserve the diversity at the latter stage of
the evolution process. rGPAM, on the other hand, is always
capable of executing all low level heuristics. This property
makes rGPAM more robust than GPAM in the two cases.

In order to confirm whether the behaviours observed from
instance 7 and 8 of the Bin Packing problem is because of the
lack of diversity in the population, GPAM with larger popu-
lation sizes is tested to solve instance 7 and 8. The results for
these experiments are presented in Figure 3 where three val-
ues of the population size (50, 100, 200) are tested. The la-
bels in the x-axis is the name of the method and the popula-
tion size used to solve the problem instance (e.g. rGPAM100
shows the peformance of rGPAM with the population size of
100). For instance 7, the population size influences GPAM
more strongly than rGPAM. The average (best) fitness of
GPAM decreases from 0.99945 with population size 50 to
0.06078 with the population size 200, while rGPAM only
decreases from 0.116389 to 0.096118 with the same increase
in the population size. The standard deviation of GPAM is
also reduced but still larger than that of rGPAM. In case
of instance 8, both average and standard deviation of best
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(a) Bin Packing - Instance #7
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(b) Bin Packing - Instance #8

Figure 3: Influence of the population size on the performance of GPAM and rGPAM

fitness are improved significantly when the population size
increase from 50 to 200, except for a few outliers. These
experiments support the assumption that it is possible to
improve the performance of GPAM by increasing the diver-
sity in the GPAM population.

6.2 GPAM behaviours
The rest of this analysis will focus mainly on the be-

haviours of GPAM within a specific run. Figure 4 shows
the performance of GPAM for instance 1 of the bin packing
problem. One interesting point in GPAM is that the fitness
of the GP population converges very fast to the best fitness
because the initial solution to measure the quality of evolved
adaptive mechanisms is updated by the best found solution
after each generation. Different from ordinary evolutionary
algorithms, it is noted that the convergence of fitness is not
equivalent to the convergence of the population. This prop-
erty allows GPAM to preserve the diversity of AMs in the
population, which help GP continue to improve the problem
solution.

The average fitness of GPAM with various population
sizes and number of AM iterations N is presented in Fig-
ure 5 and Figure 6. These parameters are important be-
cause it strongly influences the computation time of GPAM.
It is noticed that GPAM with larger population size tends
to converge faster but the behaviour is not much different
when population size is more than 150. The number of AM
iterations N shows a strong influence on the performance of
GPAM when it is increased from 5 to 40. It can be observed
that the increase of N and population size do help GPAM
find better solutions. While the large population size im-
proves GPAM by creating the diversity in the population,
the large N helps GPAM assess the quality of AMs more
accurately to make better selection decisions.
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Figure 4: Performance of GPAM on instance #1 of
the bin packing problem
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Figure 5: Performance of GPAM with different pop-
ulation sizes on instance #1 the bin packing problem
(N = 10)
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Figure 6: Performance of GPAM with different val-
ues of N on instance #1 of the bin packing problem
(Popsize = 50)

The average and standard deviation of best fitness of 30
runs of GPAM with different combinations of population
size and N are presented in Table 5. It is noted that GPAM
requires more computational effort to obtain the result in
the lower right of Table 5. The largest improvements are
observed along the diagonal of Table 5 although lesser im-
provements can also be realised when moving to the right or
down the table. These observations suggest that the com-
putational effort should be shared between the population
size and N in order to achieve the greatest improvement.
The values of the standard deviation in Table 5 do not show
a clear improvement except for the one at the botom right
with the population size 200 and N = 40. The results
of GPAM with a population size of 200 and N = 40 for
other instances have also been significantly improved (not
presented here due to page limit).
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Table 5: Performance of different combinations of the population size and N for instance #1 (30 runs)

Mean ± Std
N

10 20 40

Population size
50 0.006979 ± 0.001143 0.006316 ± 0.001794 0.005875 ± 0.001656
100 0.006535 ± 0.001098 0.004577 ± 0.001817 0.004276 ± 0.001736
200 0.005890 ± 0.001600 0.004329 ± 0.001799 0.003123 ± 0.000958

7. CONCLUSIONS
This paper proposed GPAM, a new hyper-heuristic method

based on genetic programming. The novelty of this method
is that GP is used for heuristic selection instead of heuristic
generation like previous genetic programming based hyper-
heuristics. The representation of GPAM allows GP to evolve
more complicated combinations of heuristics and incorpo-
rate problem solving states to support the selection of heuris-
tics. The proposed method have been tested on three prob-
lem domains and shown very promising results when com-
pared to existing hyper-heuristics and the random heuristic
selection method. The experimental results indicate that
GPAM is a robust HH method which provides good quality
solutions for different problem domains. Moreover, these re-
sults have shown that systematic heuristic selection methods
can solve problems more effectively than the random heuris-
tic selection method. An analysis of GPAM has also been
given to gain better understanding of the proposed method.
The analysis suggests that maintaining diversity in the pop-
ulation is important, especially when dealing with difficult
problems. In addition, the computational effort should be
reasonably shared between the population size and the num-
ber of AM iterations.

In future studies, a more extensive analysis of GPAM will
be investigated to improve its performance. An analysis of
evolved adaptive mechanisms would be important to explain
the behaviours of GPAM. It would also be interesting to try
other representations and fitness functions and study how
they influence the performance of GPAM.
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