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ABSTRACT

Models in Genetic Based Machine Learning (GBML) sys-
tems are commonly used to gain understanding of how the
system works and, as a consequence, adjust it better. In this
paper we propose models for the probability of having a good
initial population using the Attribute List Knowledge Rep-
resentation (ALKR) for discrete inputs using the GABIL en-
coding. We base our work in the schema and covering bound
models previously proposed for XCS. The models are ex-
tended to (a) deal with the combination of ALKR+GABIL
representation, (b) explicitly handle datasets with niche over-
lap and (c) model the impact of using covering and a de-
fault rule in the representation. The models are designed
and evaluated within the framework of the BioHEL GBML
system and are empirically evaluated using first boolean
datasets and later also nominal datasets of higher cardi-
nality. The models in this paper allow us to evaluate the
challenges presented by problems with high cardinality (in
terms of number of attributes and values of the attributes)
as well as the benefits contributed by each of the components
of BioHEL’s representation and initialisation operators.

Categories and Subject Descriptors

F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General ; I.2.6 [Artificial Intel-

ligence]: Learning—Concept Learning, Induction

General Terms

Algorithms, Theory, Experimentation

Keywords

Evolutionary Algorithms, Learning Classifier Systems, Rule
Induction, ALKR, GABIL

1. INTRODUCTION
Facetwise analyses [9] have been performed in the past

over GBML systems[5, 13, 14, 16] to understand their do-
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mains of competence and the requirements that should be
fulfilled for their correct functioning. In most of these anal-
yses the authors derived models suitable for the ternary rep-
resentation {0,1,#}. Thus, there is a need to extend these
models to other representations so other systems take fur-
ther advantage of this knowledge. In this work we develop
models which correspond to the covering and schema bounds
proposed for the XCS system[5], that is, the probabilities
that an initial population covers the whole search space and
that it contains representatives from all niches in a prob-
lem, respectively. These models are developed for a specific
framework: the BioHEL GBML system[3, 17], which em-
ploys an Iterative Rule Learning paradigm[18], and its At-
tribute List Knowledge Representation (ALKR)[3] which,
for discrete variables, uses the GABIL encoding[11]. More-
over, the models explicitly take into account other charac-
teristics from BioHEL such as its covering operator or the
use of an explicit default rule. Finally, specific models are
developed for problems where there is overlap between some
of its niches (rules).

These models are empirically evaluated, in a first stage,
using binary problems with and without niche overlap: the
multiplexer problem and randomly generated kDNF prob-
lems[6], respectively. The experiments show the models are
accurate in these two types of scenarios. Moreover, the mod-
els also show how the covering and default rule mechanisms
of BioHEL increase the probability of having a good initial
population. In a second stage we present a generalisation
of those models for x-ary attributes. The models show how
the problem gets harder with the increase of the cardinality
of the problem attributes and the number of classes. Nev-
ertheless, they also show how the GABIL encoding can be
made more robust by decreasing the probability of generat-
ing unmatchable rules, a known weakness of this represen-
tation[12].

These models are useful, not only because they show in-
sights about the strengths and weaknesses of BioHEL, but
also because they are the start point to design principled
methodologies to automatically adjust some of the parame-
ters of the system. This adjustment is particularly desirable
when handling large scale datasets, since it helps avoiding
the high computational costs involved in preliminary exper-
imentation.

2. BACKGROUND WORK
Since Genetic Algorithms (GA)[10] were presented by Hol-

land in the 60’s there was a need to develop a theory that
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formalises this technique. Goldberg[9] proposed an approach
to formalise the design and application of GAs by employ-
ing a facetwise methodology in which the different aspects
of the system are analysed individually, assuming that the
rest of the components are working correctly. This method-
ology was adapted by Butz et al.[5] to the specific context
of Michigan Learning Classifier Systems (LCS)[19]. In re-
cent years, this methodology has been applied also to spe-
cific, challenging, learning scenarios such as problems with
class imbalance[13]. Moreover, this analysis has also been
extended to continuous domains in [14, 16].

Furthermore, other formal analyses of LCS have been pro-
posed from a more probabilistically model-based perspec-
tive[7, 8]. In this work the authors model LCS as a Mixture
of Experts (MoE), showing how this metaphor can generate
a very similar prediction models and explain how LCS works
from a machine learning point of view.

Also, other analysis over the initialisation stage of the
GABIL representation have been performed in the past[2] in
the context of the GAssist[1] Pittsburgh LCS. In this work
the probability of covering the search space with the GABIL
representation was modelled in order to propose smart ini-
tialisation strategies for GAssist. Moreover, the GABIL rep-
resentation has also been analysed in terms of scalability in
[12]. In this work the authors point out weaknesses of the
GABIL representation, such as generating rules that are in-
capable of matching any example. Here the authors show
how the number of unmatchable rules increase exponentially
with the problem size, presenting scalability problems for the
systems that use this representation.

3. BIOHEL, ALKR AND GABIL
BioHEL[3] is a GBML system specially designed to cope

with large scale datasets[17, 4]. This system is inspired
by a previous Pittsburgh LCS called GAssist[1], but in-
stead of following the same paradigm it follows an Itera-
tive Rule Learning Approach[18]. In this paradigm the rules
are learnt, one at a time, in sequence until all the training
set has been covered. As a consequence of this learning
paradigm, the rule sets generated by BioHEL follow a deci-
sion list structure[15], the same rule set structure that GAs-
sist employs and thus its explicit default rule mechanism[1]
is inherited directly. For a complete description of BioHEL,
please see [3].

BioHEL employs a rule representation called Attribute
List Knowledge Representation (ALKR) [3], designed to cope
with high dimensionality problems. This representation au-
tomatically identifies which are the relevant attributes of
a rule and discards all others. Hence, its match process is
more efficient, as irrelevant attributes are simply not present
in the rule, but also, its exploration process is more focused,
as the rule only contains data about attributes considered
to be relevant. In order to explore the space of attributes to
identify the relevant ones, this representation has two extra
operators, called generalise and specialise. This operators
drop or add attributes from/into the rule, respectively. For
discrete attributes this representation employs the GABIL
encoding[11], while intervals[20] are employed for continuous
attributes.

Figure 1 shows an example of an individual using this
representation. Each classifier condition is formed by five
structures: a) an integer with the number of attributes rep-
resented b) a list of the identifiers of the represented at-

tributes, c) a list of values for the represented attributes
(nominal and continuous), d) a list with the positions where
each attribute can be found in this classifier and e) the class
of the classifier.

Figure 1: Representation of a classifier using ALKR

We will describe the GABIL encoding as it is employed in
the models proposed in this paper. In GABIL the attributes
are represented by binary strings of fixed length. The length
correspond to the number of possible values the feature can
have. For example if the attribute F1 may have the values
(A,B,C), F2 the values (O,P), and F3 the values (W,Z,X,Y)
a possible condition string for each one of the attributes
would look like:

F1 F2 F3
100 01 1101

Each attribute is read as a disjunctive clause between all
the values that have their bit on. For example, this condition
can be interpreted as if F1 is A and F2 is P and F3 is W
or Z or Y.

The initialisation of rules using the ALKR+GABIL rep-
resentation works as follows. First, since the ALKR list
usually do not represent all the attributes, the probability
of an attribute to appear in a randomly generated classifier
depends on ExpAtts. This is a user defined parameter that
determines the expected value of the number of relevant at-
tributes in a rule. Based on this value and the number of
attributes d we can calculate the probability ld of an at-
tribute to appear in the attribute list as follows:

ld =

(

1 d <= ExpAtts
ExpAtts

d
d > ExpAtts

(1)

After an attribute is selected to appear in the list, the
conditional structure for this attribute is determined. The
construction of it depends on whether the system is using
covering, the default rule mechanism and the type of at-
tribute.

If the attribute is nominal we will set each one of the po-
sitions of the GABIL representation in 1 with probability
p. When covering is used, for each attribute the bits corre-
sponding to the instance’s values are set to one and the rest
of the positions will be defined probabilistically depending
on p. If a default class is employed, the rules in the popu-
lation are not allowed to cover this class. This means that
(a) the class attribute of the rule cannot take the value for
the predefined default class and (b) the covering operator
will not sample instances from that class.

4. PROBABILISTIC MODELS
There are two characteristics a good initial population

needs to comply with, according to [5]. First, all the build-
ing blocks of the problem should be present in the initial
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population, meaning that there should be representatives of
each niche. That is rules that belong to a niche and do not
mis-classify. Moreover, the whole search space should be
covered. These two requirements are referred as the schema
and covering bounds respectively.

In this paper we will focus on calculating the probabilities
on which the bounds are based. Afterwards, this probabil-
ities can be used as in [5] to specify restrictions or bounds
over system parameters.

In the following sections we calculate the probabilities of
fulfilling these two requirements independently for the bi-
nary case. In Section 5 we generalise the models for x-ary
attributes. The derivation of problem parameters based on
the bound formulas will be done as a further work.

4.1 Schema Bound
In a binary domain, a schema is a sequence of ternary

symbols that represent some of the bits in the string (i.e
1*0*11) [10]∗. These correspond to the inner structure or
rules of the problem. A representative is a classifier that
represents at least† all the bits in the schema (i.e 110#11).

The schema bound constraints the parameters of the sys-
tem so the probability of having representatives of each
schema (a rule that covers all/part of a schema and does not
misclassify) in the initial population is high enough[5]. This
is important since having good building blocks in the initial
population of a GA is essential for the learning process[9]. It
is also possible to generate building blocks along the learn-
ing process. However, this is modelled by the reproductive
opportunity and sustenance bounds which we will adapt to
BioHEL as a further work.

The schema bound is based on modelling the probability
of generating a rule that is a representative of a schema. The
probability of a representative was already calculated for the
ternary alphabet in [5] based on the global specificity of the
population and without considering overlapping. However,
the probability for BioHEL is different since this system uses
the ALKR+GABIL encoding. The probability in this case
depends on the methodologies used to create new classifiers
(covering and default class) and two user defined parameters
p and ExpAtts.

Considering the covering and the default rule mechanisms
in BioHEL, there are four ways in which a rule can be cre-
ated: (a) not using covering or default rule (base case), (b)
using default rule only, (c) using coverage only and (d) using
coverage and default rule.

For each one of these cases we derived the probability of
having a representative in problems that do not have over-
lapping. Afterwards, based on this probability we handle the
niche overlapping case. The models generated in this stage
are based on the multiplexer problem and its more general
case, the kDNF family of problems[6]. In subsequent sec-
tions we show a generalisation of the models for problems
with x-ary attributes.

To calculate the probability of the representative we need
to consider two types of attributes:

Fully mapped attributes. Attributes for which all its pos-
sible values are specified within the schemata.

∗We use the ternary representation to explain the concept of
schema as it is more compact. However, the representation
used in this paper is the GABIL representation.
†It might be a more specific than the schema.

Partially mapped attributes. Attributes for which only
one of its possible values is specified in the schemata,
either 1 or 0.

We will refer to the number of fully mapped attributes as
kf and the number of partially mapped attributes as kp. If
the schemata have k attributes, then kf + kp = k.

Considering that BioHEL uses the GABIL representation
immerse in a ALKR list of attributes, an attribute is relevant
if it was selected to be in the attribute list. This occurs
with probability ld as shown in Equation 1. Moreover, an
attribute can also be relevant if the attribute is fully mapped
and the strings generated are 01 or 10, or if the attribute is
partially mapped and the “right” string is generated.

In the following sections we will show the final probability
formulas for each one the the cases mentioned before.

4.1.1 Base case (No covering and no default rule)

Considering that a representative should have at least the
number of bits in the schema represented k, the size of the
problem d, and the number of possible actions n, the prob-
ability of a rule becoming a representative is:

P (rep) =
(rp

d)kp

“

rf
d

”kf

(1 − ldP (00))d−k

n
(2)

where rp
d is the probability of relevance of a partially mapped

attribute and rf
d is the probability for a fully mapped at-

tribute. Moreover, the last term avoids the string 00 in the
d−k attributes that are not relevant. If one of the attributes
has this string the classifier would not match any instance,
and consequently a representative would not be formed.

Considering that P (00), rp
d and rf

d can be calculated as:

rp
d = ldP (01 ∨ 10) = 2ldp(1 − p) (3)

rf
d = ldP (01) = ldp(1 − p) (4)

P (00) = (1 − p)2 (5)

we can construct the probability of having a representative
without using covering or default rule mechanism as shown
in Equation (6).

P (rep) =
2kf (ldp(1 − p))k

`

1 − ld(1 − p)2
´d−k

n
(6)

4.1.2 Default class case (no covering)

When there is a default class, there are only n−1 possible
actions for a new classifier. Including this assumption, the
probability of a representative in this case would be:

P (rep) =
2kf (ldp(1 − p))k

`

1 − ld(1 − p)2
´d−k

n − 1
(7)

4.1.3 Covering case (no default rule)

To model the usage of covering we need to consider four
new aspects over Equation (2):

1. The number of possible actions will be equal to 1.
Since the action will be copied from the example there
is no choice besides using that action.

2. The probability of having a string 01 or 10 will depend
on the probability of the attribute in the instance being
0 or 1.
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3. Having an attribute 00 is not possible through covering
anymore.

4. Despite the fact that the classes might be imbalanced
the covering opportunities for all the classes are the
same.

In this case the values for rp
d and rf

d will be the same as
shown in (8).

rp
d = rf

d = ld(1 − p) (8)

The probability for fully mapped attributes being relevant
in this case is reduced by half. This is because the string
generated does not depend only on p but on the string that
we are actually copying from the example.

However the whole probability (rp
d)kp of the partial at-

tributes being relevant depends on the relation of classes
mapped m over the total number of classes n. This is be-
cause all the classes have the same probability of being se-
lected for covering, but only the classes represented in the
schemata will produce representatives. Substituting this as-
sumptions we obtain the probability of having a representa-
tive using covering as shown in Equation (9).

P (rep) =
m

n
(ld (1 − p))k (9)

4.1.4 Covering and Default class case

The usage of a default rule mechanisms limits the number
of classes that can be used for covering to n − 1. Also the
number of mapped classes m would not include the default
class. Including this changes in Equation (9) we obtain the
probability using covering and default class:

P (rep) =
m

n − 1
(ld (1 − p))k (10)

4.1.5 How does the overlapping affects?

A randomly generated kDNF problem has a very high
probability that some of its rules overlap among themselves,
specially if the number of rules is very high and the number
of specified attributes is small. In this sense, the multiplexer
problem is a extremely rare case of kDNF since none of the
rules overlap with each other. We will extend our models
now to consider the overlapping between rules.

To calculate this probability we first have to calculate the
probability that a rule belongs to a specific niche P (niche).
For a problem with no overlapping this probability consists
in dividing the probability of a representative by the number
of niches or rules.

P (niche)no =
P (rep)

r
(11)

When there is overlapping each rule covers the same amount
of examples as before. However, the covered space shrinks
because there are instances covered by more than one rule.
Then the percentage of space covered by one niche can be
generalised by dividing the amount of examples covered by a
niche EN among the total number of examples covered EC.

For a randomly generated kDNF problem we have a prob-
abilistic estimation of the amount of positive examples (ex-
amples covered) with the following formula:

EC = 2d
“

1 −
“

1 − 2−k
”r”

Moreover, we know the amount of examples covered by
each rule is:

EN = 2d
/2k

Substituting the value 1/r by EN/EC we obtain that the
probability of having a representative of certain niche is:

P (niche) =
P (rep)

2k (1 − (1 − 2−k)r)
(12)

Using (12) we can calculate the probability of having a
representative under overlapping conditions P ′(rep) by forc-
ing that at least one of the niches has a representative.

P ′(rep) = (1 − (1 − P (niche))r) (13)

This model is based on the assumption that the rules of
a problem cover random subsets of the problem attributes.
If the distribution of niches is not uniform, the model does
not fully hold.

4.2 Covering bound
The covering bound assures that at least each instance of

the problem space is covered by one classifier in the popu-
lation. In this way, we will map the whole problem domain
into a initial population.

To calculate the covering bound we need to calculate the
probability of matching an instance with a randomly gener-
ated classifier. Although, this was already calculated for the
ternary alphabet in [5], in this work we adapted this to the
ALKR+GABIL representation. In the following sections we
will calculate this probability using and not using the cover-
ing mechanism. The default class mechanism in this case do
not affect the results obtained in terms of matching. There-
fore, no specific formulas are presented for these cases.

4.2.1 Base case (No covering)

There are three ways in which a randomly generated at-
tribute can match an example: a) the attribute does not
appear in the list with probability 1 − ld, b) the attribute
appears in the list and its value is 11 or c) the attribute
appears in the list and has the correct value. Cases b and c
occur with probability p of setting the right bit on. There-
fore, the probability of matching is:

P (match) = (1 − ld + ldp)d (14)

4.2.2 Covering Case

The usage of covering affects the probabilities of setting
the right bit on. We need to consider two cases: a) the
instance used for covering is similar to the one we want to
match or b) the instance used for covering is different. If the
instance is similar the probability is 1 and if the instance is
different the probability is p. Then the probability of setting
the right bit on considering these two cases is (1 + p)/2.

Applying this changes on equation (14) we obtain:

P (match) =

„

1 − ld + ld

„

1 + p

2

««d

(15)

For the worst case, matching an instance when the exam-
ple used for covering is different happens with probability
1/2. If the number of instances is smaller than the number
of classifiers this factor might grow up to 1.

4.3 Model validation
To validate the previous models we used kDNF and mul-

tiplexer problems. The kDNF problems used are of size
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Figure 2: Validation of the probability of a repre-

sentative using the multiplexer problem.

d = 10, with k = {2 − 10} and r = {1, 5, 10, 20, 40}. On
the other hand, the multiplexer problems used were of size
3, 6, 11 and 20. For the kDNF problems we generated 5
different instances of each configuration and run each one of
them with 25 different seeds. In the case of the multiplexer
problems we run each one of them with 125 seeds. For each
run we generated a random population of 500 individuals
and calculated the average number of classifiers that had
the bits in the schema represented, and the average num-
ber of classifiers that match each one of the instances in the
problem. For all experiments the value for the ExpAtts pa-
rameter was 15 (or the number of attributes in the problem,
if less than 15).

Figures 2 and 3 show the validation of the schema bound
for non-overlapping problems using the multiplexer and the
kDNF problems respectively. In particular Figure 2 only
shows the base case and the covering case, since the usage
of the default rule does not produce changes in the proba-
bility for the multiplexer problem. For the kDNF models we
only used problems with one rule to guarantee that there is
no rule overlap. In these figures we can see that the mod-
els adjust to the empirical data. While the number of at-
tributes increase the probability of having a representative
decreases. It can be observed in the figures that the mech-
anisms of default rule and covering increase the chances of
creating representatives, which demonstrate the benefits of
these techniques. Moreover, as expected, using a p too large
decreases the probability of having a representative because
it raises the chances that a rule misclassifies. However, when
not using covering a larger p is beneficial.

To validate the models for problems with niche overlap we
used the kDNF problems with more than one rule. Figure 4
shows the validation of these models. In this figure we can
see that the models fit the empirical data. Moreover, the
probability of generating a representative increases with the
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Figure 3: Validation of the probability of a repre-

sentative using the kDNF problem with one rule

number of rules. Once again we can observe the benefits of
the usage of covering and default rule mechanisms.

Figure 5 shows the validation for the probability of match
using the multiplexer problem‡. We can see that while the
problem size increases the probability of match decreases.
Moreover, we can see that when the problem is very small
the empirical probability is higher, this is because the prob-
lem has less instances than classifiers in the population, so
the probability of generating classifiers with the same in-
stance increases. We can also observe a plateau in the mod-
els when the number of dimensions in the problem is larger
than ExpAtts, as attributes that do not appear in ALKR’s
list are considered as irrelevant, hence matching any value.

5. TOWARDS A GENERALISED MODEL

FOR X-ARY ATTRIBUTES
As a small step towards general models we generalised

the formulas presented previously to work with nominal at-
tributes with more than 2 values. This generalisation will
show how the problem becomes more difficult when we in-
crease the domains of each attribute. Also it will show how
the GABIL representation gets more robust by decreasing
the probability of generating unmatchable rules (rules with
all the bits set to 0) which is an issue that had been identified
in the literature as a weakness of this representation[12]. In
the following sections, we present the generalised formulas
for the schema and covering bound for x-ary attributes.

5.1 Schema bound
Let’s call the number of possible values of a attribute t

and the number of specified values in a attribute e. A rep-

‡In this case the kDNF problems were not used because all
of them had the same number of attributes
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Figure 4: Validation of the probability of a representative for kDNF problem with rule overlap and p = 0.75.
The graphics show the probability of having a representative considering all the niches
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Figure 5: Validation of the probability of match us-

ing the multiplexer problems.

resentative will be created if we set to 1 e bits and to 0 the
rest of t − e bits. Considering this, the formula for the base
case can be generalised as follows:

P (rep) =
tkf

`

ldpe(1 − p)t−e
´k `

1 − ld(1 − p)t
´d−k

n
(16)

In this formula, we can see that the probability of creat-
ing unmatchable rules decreases while t increases. Figure 6
shows how the probability of generating a matchable rule
`

ld(1 − (1 − p)t)
´d−k

compares to the probability of gener-

ating the right string
`

ldpe(1 − p)t−e
´k

. We can see that
while t and k increase it is less likely that we generate rules
that do not match. However, the probability of generating
the right string decreases when t and k increase.

Furthermore, the probability for the default class case is
similar to (16) but subtracting 1 to the number of classes.

On the other hand, the usage of covering can be gener-
alised by assuming that the right string will be created if we
put the rest of the t − e bits in 0.

P (rep) =
m

n

`

ld (1 − p)t−e
´k

(17)

Similar as the case with no covering, the introduction of
the default class only restricts the classifiers considered for
covering. Therefore, to calculate the probability for this case
we only need to substitute m/n for m/n-1 in (17).

5.2 Covering bound
When no covering is used the probability of matching an

instance is the same, no matter the number of values an
attribute can accept. However, when the covering mecha-
nism is activated the probability of generating a matching
individual varies. Therefore, this probability will be:
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Figure 6: Probability of generating the schema

attributes against the probability of generating a

matchable rule

P (match) =

„

1 − ld + ld

„

e + (t − e)p

t

««d

(18)

This means that if the attribute is selected to be in the list
we face t possible cases. The first e cases is that the instance
used for covering is similar to the one that we want to match.
Then the probability of matching is 1. The following t − e
cases refers to the cases where both instances are different
and we will match with probability p.

5.3 Model validation
To validate these models we generated ternary multiplexer

problems, which instead of only accepting values 0,1, they
accept an extra value. In this case the size of the problem
string would be k−1+3k−1, where k is the number of bits in
the schemata. We generated ternary multiplexer problems
of size 4 and 11. We generated initial populations with 25
different seeds for each one of these problems and calculated
the empirical probabilities for a representative and match.
Again, the population size was 500 and ExpAtts was 15.

Figure 7 shows the validation for the generalised models
of the schema bound. Since the multiplexer does not show
any differences on the probabilities using the default rule,
this cases are not shown. In this figures we can see that the
models fit the empirical data. However, there is a subestima-
tion of the models because the empirical data considers the
cases where the address bits might map two values and the
model does not. We can notice also that while the domains
of the attributes expand the probabilities of generating a
representative are lower. Moreover, while a smaller p is bet-
ter when using covering, p = 0.50 gives the best results in
the non-covering case, as expected.
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Figure 7: Validation of the probability of a repre-

sentative using the ternary multiplexer problem.

Figure 8 shows the validation of the generalised models for
the covering bound. We can see that in this case the models
also fit the empirical data. Moreover, we can notice that the
increase of t, the attribute domain, reduces the probabilities
of matching. However, the covering mechanism, as it was
shown before, slightly increases the chances of covering the
whole search space.

6. CONCLUSIONS AND FURTHER WORK
The models presented in this paper predict satisfactorily

the probabilities of generating a good initial population in
terms of: (a) covering the search space and (b) generating
accurate representatives for each niche in a problem. The
models were generated considering the ALKR representa-
tion with GABIL encoding for binary attributes. Moreover,
we presented a generalisation of the models for x-ary at-
tributes and validated it with ternary multiplexer problems.
This generalisation showed how the GABIL representation
becomes more robust with the increase of the cardinality
of the attributes, in terms of generating unmatchable rules.
However, the overall probability of having a good initial pop-
ulation decreases when the number of values per attribute in-
creases, since it is more difficult to generate the right string.
The models also show how the covering and default mech-
anisms introduced in BioHEL improve the chances of gen-
erating a better and more useful initial population for the
system.

We have modelled with high accuracy several scenarios
for the ALKR representation. However, these models were
based on the assumption that we could estimate several pa-
rameters of the problems. In a further work, we would like to
study how can we simplify these models so some of these as-
sumptions can be removed without producing a large impact
in the accuracy. Moreover, models for the reproductive op-
portunity, sustenance and learning time should be developed

1297



 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

P
(m

a
tc

h
)

k - Number of Attributes

Empirical p=0.75
Model p=0.75

Empirical p=0.50
Model p=0.50

Empirical p=0.25
Model p=0.25

(a) No covering

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14

P
(m

a
tc

h
)

k - Number of Attributes

Empirical p=0.75
Model p=0.75

Empirical p=0.50
Model p=0.50

Empirical p=0.25
Model p=0.25

(b) Covering

Figure 8: Validation of the probability of match us-

ing the ternary multiplexer problems

in order to have an unified theory for the correct function-
ing of BioHEL with ALKR representation and, for instance,
derive boundaries for the population size and other user-
defined parameters. Furthermore, additional challenges or
differences between Iterative Rule Learning and the Michi-
gan approach should be identified in order to model specific
limitations of this type of systems. Finally, based on this
models, we are interested in proposing methods for the au-
tomatic adaptation of some of BioHEL’s parameters.
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