
XCS Cannot Learn All Boolean Functions
Charalambos Ioannides

Industrial Doctorate Centre in Systems
University of Bristol

Queen’s Building, University Walk
Bristol BS8 1TR, UK
+44 (0)117 331 5421

charalambos.ioannides@bristol.
ac.uk

Geoff Barrett
Broadcom BBE BU, Broadcom

Corporation
220 Bristol Business Park,

Coldharbour Lane
Bristol BS16 1FJ, UK
+44 (0)117 906 2750

gbarrett@broadcom.com

Kerstin Eder
Department of Computer Science,

University of Bristol
MVB, Woodland Road
Bristol BS8 1UB, UK
+44 (0)117 954 5146

kerstin.eder@bristol.ac.uk

ABSTRACT

In this paper we applied the eXtended Classifier System (XCS) on

a novel real world problem, namely digital Design Verification

(DV). We witnessed the inadequacy of XCS on binary problems

that contain high overlap between optimal rules especially when

the focus is on population and not system level performance. The

literature attempts to underplay the importance of the

aforementioned weakness and in short, supports that a) XCS can

potentially learn any Boolean function given enough resources are

allocated (right parameters used) and b) the main metric deciding

the learning difficulty of a Boolean function is the amount of

classifiers required to represent it (i.e. |[O]|). With this work we

experimentally refuted the aforementioned propositions and as a

result of the work, we introduce new insights on the behavior of

XCS when solving two-valued Boolean functions using a binary

reward scheme (1000/0). We also introduce a new population

metric (%[EPI]) that should necessarily be used to guide future

research on improving XCS performance on the aforementioned

problems.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition

General Terms

Algorithms, Performance, Design, Experimentation

Keywords

Learning Classifier Systems (LCS), XCS, Logic Optimization

1. INTRODUCTION
Machine Learning (ML) techniques aim to solve real-world

problems and constitute an essential tool for understanding,

learning, and inferring knowledge from the deluge of information

readily available in today‟s scientific, industrial, and societal

systems. These intelligent techniques are formed and improved

either through scientific exploration or through industrial

application and experimentation. This paper describes how the

adoption of Learning Classifier Systems (LCS) and, more

specifically, accuracy-based fitness LCS (a.k.a. XCS), in the

digital design verification (DV) field has exposed a weakness,

which instigated experimentation that intended to draw a more

complete picture of the true properties of these systems. It is

hoped that future improvements in XCS will follow based on the

work presented here.

In digital design verification, engineers are interested in

discovering as many bugs related to a digital design as possible

before it is manufactured. Two prominent methodologies are

followed: The first uses formal verification to prove formal

properties of designs. The second uses simulation-based

verification to produce tests that exercise the functionality of the

designs to achieve a sufficient degree of coverage; this

methodology is relevant to the study presented in this paper.

In its lifecycle, a design can be viewed at differing levels of

abstraction. Relevant to this work (i.e., simulation-based

verification) is the code or register transfer level (RTL), as

realized through the use of hardware description languages such

as Verilog or VHDL. To test such a design, a testbench is

constructed that allows test code to be sent to the design and

feedback from the process to be stored for later processing. In

assessing the completeness of the verification process, various

metrics are used. These include code coverage metrics, such as

branch, expression, and toggle coverage, along with custom

declared metrics, such as functional coverage [1].

Coverage Directed Generation (CDG) of tests is a technique that

aims to automate obtaining full coverage of digital designs

through the use of ML methods. The assumption underlying CDG

is that the learning mechanism can identify, from existing tests

and coverage data, how best to bias stimulus generation such that

the resulting new tests when run on the design under verification

(DUV) can reach outstanding coverage. This is not as straight-

forward as it seems because designs nowadays are significantly

complex systems, requiring equally elaborate tests in order for

100% of their structure and functionality to be exercised.

Furthermore, due to delays of variable time length between an

input and a potential output ports, any cause and effect

relationships are difficult to spot and learn.

A very important aspect in CDG is achieving 100% coverage as

soon as possible and with as few resources as possible. A key in

achieving the latter is to find a way to balance coverage achieved

over all cover points as dictated by the chosen coverage model. In

fulfilling this requirement, it is necessary to form a complete

mapping between the test input biases and the coverage they

achieve. The extent to which coverage can be balanced between

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

GECCO’11, July 12–16, 2011, Dublin, Ireland.

Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

1283

the cover points in the coverage model is very much dependent on

the completeness and accuracy of the mapping learnt.

The XCS variant [2], has been shown to develop rules forming a

complete, accurate, minimal, and non-overlapping mapping

between the input and output space of Boolean functions [3]. The

aforementioned four properties of solutions as they are discovered

by XCS have made them a very attractive ML technique to try out

in solving the aforementioned DV problem. The only prerequisite

is the representation of the problem using a ternary alphabet (i.e.,

{0, 1, #}) while treating it as a single-step problem.

Although the original intent of this work was to use XCS in

solving the DV and coverage balancing problem, its inability to

do so for a very simplified example has led to further

investigation to identify the underlying causes. This investigation

has allowed for a better understanding of the true properties of

XCS and its abilities when utilizing a ternary representation and

binary reward scheme in solving Boolean functions.

The structure of the paper is as follows: In Section 2, a

background on XCS and Boolean function minimization is

presented. Section 3 describes the DV problem as formulated for

solution via XCS. Section 4 includes the initial experiments

performed and the findings that required further investigation.

Section 5 presents the new insights gained and the hypotheses

formed on suboptimal XCS behavior. Section 6 provides evidence

for the claims made in this paper, and Sections 7 and 8 summarize

findings and conclude this paper by providing an overview of the

work and future research topics.

2. BACKGROUND
To follow the material and ideas discussed in this paper, some

background in LCS, and Boolean Function representation and

minimization is required.

2.1 XCS
The eXtended Classifier System (XCS), as first introduced in [2],

is a very popular LCS variant. LCS is an adaptive rule-based ML

technique that usually combines Reinforcement Learning (RL)

and Genetic Algorithms (GA) to derive a set of production (IF

condition THEN action) rules (or classifiers) that form the

solution to presented problems. Problems are categorized as

single-step, i.e., requiring one action for their solution, or multi-

step, requiring a series of jointly optimal actions.

XCS is popular because it uses a novel classifier fitness function

that is based on the accuracy of the prediction of the classifiers in

the evolved populations (accuracy-based fitness), rather than on

the reward prediction (strength-based fitness). This type of

classifier fitness function is one of the mechanisms that apply

pressure towards complete, accurate, minimal, and non-

overlapping populations of classifiers [4], [5]. A very good

overview of the evolution of classifier systems is found in [6].

Many classification studies with XCS have dealt with Boolean

functions, for which classifiers typically use a ternary

representation of {0, 1, #}n for the n-bit Condition part and the

binary strings {0, 1}m for the m-bit Action part. The # symbol

represents generalization over „0‟ and „1‟ values. A very popular

Boolean function, which helped in evolving and evaluating the

performance of LCS and XCS implementations, is the multiplexer

problem described in the following subsection.

2.1.1 Multiplexer Problem
Using the operation of a well-known digital design component,

this problem is related to finding which bit in an input bit string is

to be selected and propagated to the output of the component. The

input bit string received from the „environment‟ of XCS

comprises the address and data parts as they would be inputted to

a multiplexer component. XCS must learn the correct data bit to

be sent to the output given a particular input. The formula that

gives the length L of a problem is L = k + 2k , where k is the

number of the address bits. Figure 1 illustrates the 6-MUX and

11-MUX problems, with the 11-MUX depicted on the left.

D
a

ta
 - 8

 b
its

Address - 3 bits

Output

01111010001 → 1

011011 → 0

6 - MUX

11 - MUX
0 1 2 3 4 5 6 7

0 1 2 3

Figure 1. The Multiplexer problem (11-MUX)

These types of problems have been popular in the LCS

community due to their properties of multi-modality (more than

one solution can be assigned maximum reward), scalability (the

size of the problem can grow with the address bits), and epistasis

(the importance of a bit in solving the problem is affected by other

bits in the input string).

2.2 Boolean Functions and Minimization
A Boolean function is a mapping between two Boolean spaces. If

n bits define the input and m bits define the output spaces, then the

mapping is formally noted as f : Bn → Bm. When m = 1, Boolean

functions are called single-output; otherwise, when m > 1, they are

called multiple-output. An input variable or its complement is

called a literal. A product term in which no variable appears more

than once is called a normal product term. Boolean functions can

be expressed as either the sum of products of n literals, called

minterms, or the product of sums of n literals, called maxterms.

An alternative definition is that every value assignment of the n-

bit input literals that corresponds to a „1‟ in the output of single-

output functions is a minterm, while those with an output of „0‟

are the maxterms of the function.

2.2.1 Boolean Function Representation
Boolean functions can be represented in tabular form, as logic

expressions or as binary decision diagrams. The simplest of

tabular forms is the two-column truth table. The first column

contains an ordered listing of all possible Boolean input vectors,

and the second column contains the corresponding output vectors.

Logic expressions are formed by conjunction (∙ or AND),

disjunction (+ or OR) and negation (‟ or NOT) Boolean operators,

when applied to the n input literals of a Boolean function. As

previously mentioned, when the expression is in terms of a sum of

products (SOP), then these products are called minterms, and

when it is in terms of a product of sums (POS), these sums are

called maxterms.

Binary decision diagrams (BDD) are an alternative way to

represent Boolean functions. They are undirected graphs, with

1284

each vertex being an input variable, and thus a decision point, in

predicting the output of the function (e.g., either „0‟ or „1‟ in

single-output functions).

Another, more compact way to represent Boolean functions is the

Sigma notation. If each of the rows in a truth table is indexed and

grouped into minterms (onset) and maxterms (offset), the Sigma

notation defines the function by listing its onset indices. For

example, the function F = A∙B + A∙B‟ can be represented in

Sigma notation as Σ(2,3). Figure 2 depicts the 3-MUX problem in

all the aforementioned forms of representation.

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Truth Table

Minimized Logic

Expression (SOP)

F = (A’∙B) + (A∙C)

A

B

10

C

0 1

0 01 1

BDD

Sigma Notation

Σ(2,3,5,7)

Logic Expression (SOP)

F = (A’∙B∙C’) + (A’∙B∙C)

+ (A∙B’∙C) + (A∙B∙C)

Figure 2. Representations of 3-MUX function

2.2.2 Boolean Function Minimization
The primary use of Boolean function optimization is for logic

circuit design and synthesis. In that context, Boolean functions are

converted to circuits. Minimizing logic gate count and the

connections between gates and input signals (fan-in) reduces the

silicon area (hence cost) and improves signal propagation delays.

The discussion of optimization here is limited to single output

functions expressed as SOPs. The following are relevant

definitions: A minimal sum is a SOP expression such that no other

expression contains fewer product terms. An implicant is a normal

product term that implies the function F; e.g., F = A∙B‟ + A∙B‟∙C

+ A∙C contains three implicants. A prime implicant (PI) is an

implicant of F, such that if a variable is removed from the

implicant, it no longer implies F; in other words, it is a maximally

general term that implies F. In the previous example, only the

implicants A∙B‟ and A∙C are prime. An essential prime implicant

(EPI) is one which implies one or more minterms implied by no

other prime implicant. A minimal cover of a function is the set of

prime implicants from which any further removal does not allow

coverage of the function. The set with the aforementioned

properties is called a minimal prime implicant (MPI) set. Those

necessarily include all essential prime implicants plus any other

prime implicants that cover the remaining minterms of the

function, see Figure 3. The aforementioned types of prime

implicants form sets, now on being denoted as [PI], [EPI], [MPI].

PI

Implicants of F

MPI2

MPI3

MPI1 EPI

Figure 3. Venn diagram of Implicant sets

A Boolean function can have one [PI], one [EPI] but potentially

many [MPI] sets. This is because some minterms can be covered

by more than one prime implicants and therefore the number of

total [MPI] per function is relative to the different combinations of

prime implicants covering those minterms.

All [MPI] of a given function are of equal cardinality. It is also

possible to have a function with the property [MPI]=[EPI], in that

case the cover is said to be the minimum cover of the function.

3. PROBLEM DESCRIPTION
Following investigations on the properties of XCS, e.g., [5] and

[7], especially for single-step problems with ternary

representation, we decided to use XCS to learn the relationship

between biases of a test generator and the coverage thereby

achieved, after describing the problem in Boolean function form.

To the best of our knowledge this was the first time any type of

LCS had been used in solving DV problems.

The expectations, therefore, were that XCS would manage to

learn a complete, accurate, minimal, and potentially non-

overlapping mapping between biases and the coverage they

achieve. The ultimate goal was to rely on the learnt population to

guide effective test generation so that balanced and efficient

coverage is achieved.

3.1 Design Under Verification
The DUV chosen for this work was a digital signal processor

called FirePath, at the accumulator stage in the long pipeline of its

design. Originally, we decided that the Bias bits would represent

the presence or absence of specific types of opcodes in the tests

simulated on the DUV. The number of such bits was decided to be

21, enough to represent all types of opcodes.

The coverage model chosen was the toggle coverage of all control

signals in the accumulator stage of the long pipe. Toggle coverage

refers to whether a signal‟s value has been changed from zero to

one and back to zero, i.e., a full period, during simulation. The

control signals of interest required 42 bits to be represented.

3.2 Proof of Concept Setup
Before attempting to solve the entire problem as described above,

we decided to first test XCS abilities in a much smaller example,

to test the validity of our expectations. The smaller example

grouped bias controls in a more compact way, thus requiring only

7 bits to represent the conditions of classifiers. Accordingly, and

trying to mimic a traditional single-output Boolean function, only

one control signal was chosen to form the coverage model and,

therefore, the Action part of classifiers.

4. METHODOLOGY
In the experimental setup, XCS alternates between explore and

exploit trials. During explore trials the classifiers update their

statistics while during exploit trials the system performance is

recorded. XCS receives random bias strings from the

„environment‟ (i.e., a pseudorandom bit string generator) and a

test is generated accordingly. Next, the test is simulated on the

DUV. Depending on the coverage results achieved, XCS is

expected to learn which bias strings (conditions) toggle the chosen

signal (action). The test generator used in our setup is called

FireDrill, and it constructed tests containing 100 instructions. If

tests predict correctly whether they toggle the signal or not, they

are assigned a reward of 1000, if not they are assigned 0.

1285

The experimental loop depicted in Figure 4 was used in the

beginning of the experiments. However, it had to be emulated to

eliminate the repeated computationally expensive calls to the

simulator. Learning epochs usually allocated for XCS systems

range from a few thousands to hundreds of thousands; therefore,

given that each call to the simulator required ~2 minutes of

runtime, we decided to first simulate all possible tests (27 = 128

tests), store their coverage results, and then allow XCS to treat

them as a lookup table. This way, experimental runs were sped up

by three orders of magnitude.

XCS

SIMULATOR

fire_drill

.cov

Pseudorandom

Generator

01001100100110 Test

1 2 3

4

56

Figure 4. The main experimental setup

The results of the aforementioned exhaustive simulation formed a

Boolean function henceforth named DV1, with the following

sigma notation: Σ(1, 2, 3, 8, 9, 10, 11, 13, 14, 24, 25, 26, 27, 28,

30, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70,

71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91,

93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 109,

110, 113, 114, 115, 117, 118, 121, 122, 123, 125, 126, 127).

The XCS system used is the XCSlib v.1.1 developed at the

Politecnico di Milano by Prof. Pier Luca Lanzi et al. [8]. The

parameter settings used for all experiments in this work, unless

otherwise stated, were N = 1000, P# = 0.3, α = 0.1, β = 0.2,

χ = 0.8, μ = 0.04, ν = 5, ε0 = 10, pI = 10, εI = 0, fI = 0.01, θGA = 25,

θdel = 20, θGAsub = 20, θASsub = 100, 1-point x-over = on,

AS subsumption = on, GA subsumption = on, GA tournament

selection = off.

The statistics reported are the system performance as a percentage

of correct predictions, the system error as the difference between

predicted and actually achieved reward by XCS and finally the

population which is the percentage of N (population size). The

three main metrics, as shown on graphs and for each exploit

problem, denote the moving average of the last 100 exploit trials.

4.1 Initial Results
Judging from the literature [5], [7], [9], the DV1 function would

be sufficiently small (37 × 2 = 4374 possible unique rules and only

27 = 128 input examples) to be fully learnt within 2×106 exploit

trials, i.e. achieve 100% performance and almost zero error.

However, as seen in Figure 5, the system performance fluctuated

sub-optimally with the system error being relatively high, never

settling throughout the experiment.

Figure 5. XCS performance on DV1 function1

4.2 Further Investigation
To investigate the reasons behind the suboptimal behavior, it was

necessary to learn which rules should exist in the final population

to achieve optimal performance. To this end, we decided to use a

technique from the Logic Optimization literature, the Quine-

McCluskey (Q-M) algorithm [10]. This is an exact Boolean

function optimization algorithm which means that it calculates all

prime implicants (i.e. the [PI] set), all essential prime implicants

(i.e. the [EPI] set) and one of the possible minimal prime

implicant sets (i.e. an [MPI] set) of a Boolean function. When

applying this technique to the onset as well as the offset of the

DV1 function and combining the two resulting MPI sets, it is

possible to discover the minimal set of rules that fully and

accurately cover it.

ONSET [MPI]

#00#0#1 1####10

#00#01# #0#10##

#001#01 ##010##

0011##0 #0#1#10

0101#1# 100###1

0##10## 1#00##1

#111#01 1#11##1

1####01 1###0#1

16 rules

OFFSET [MPI]

###0#00 010#10#

0##01## ##10111

##0#100 1###100

00##111 1101111

0#10### 111##00

001#1#1 011#1#0

01#0### 0#1#111

14 rules

DV1 function

Figure 6. DV1 MPI set

It was believed that this [MPI], see Figure 6, would be equivalent

to what was defined and termed in [9] as [O] (complete, accurate,

minimal, and non-overlapping population of rules). Therefore, it

was expected that the population would need to converge to this

[MPI], if XCS was expected to fully solve/learn it. In blue are all

the essential prime implicants of the function, while in black, the

list of the prime implicants that cover the remaining minterms of

the DV1 function, thus forming an [MPI], as explained in Section

2.2.2.

To test whether XCS would fundamentally end up with this

„optimal‟ population, we seeded the population with these rules at

the beginning of the experiment and observed whether the rules

would survive in it, having the GA and Deletion mechanisms on.

1 All graphs in the paper are in color for better readability

1286

The results of this experiment, as discussed in more detail in

Section 6, were contrary to expectations. Only a few of these rules

survived, while a limited set of those, in the course of the 2×106

learning epochs, were deleted and rediscovered. In addition, many

of these rules, although containing correct Reward and Error

statistics, they had Fitness that was far from optimal. Their

suboptimal fitness would be a plausible reason for their deletion.

This is because it would increase the probability of deletion and

reduce reproduction opportunities of the corresponding rules, as

identified and investigated in [5] and [11].

The findings on the DV1 problem call for more investigation on

the claims made in [7], [9], and [12], as XCS was clearly unable

to retain the rules that optimally cover the DV1 function.

5. NEW INSIGHTS
Having a closer look at the prime implicants in the [MPI] of the

DV1 function, we discovered that most of these overlapped,

which explained the suboptimal Fitness statistics and subsequent

system performance. The question then was, “Can these overlaps

be avoided?” or “Is there a set of optimal and non-overlapping

classifiers for this problem?”

Looking into these questions using a free online logic

minimization tool [13] and testing various Boolean functions of

the same or smaller size of DV1, we discovered that overlap of

essential prime implicants in [MPI] of functions was unavoidable

and constituted the norm in the cases investigated. These findings

are due to the properties of the Boolean function representation

chosen and therefore the generalization properties of disjunctive

or conjunctive normal forms (DNF or CNF).

Previous work [12] has suggested the difficulty of learning a

Boolean function is related to its dimensionality, the mean

hamming distance (MHD) of classifiers in [MPI], and the size of

[MPI]. We now propose that overlaps between high-fitness rules,

especially when members of [EPI], are a major factor. Another

implication of these results is that XCS performs logic

minimization from two ends at once, discovering both prime

implicants as well as prime implicates (i.e. maximally general

rules implying the maxterms of a function) when using the ternary

representation {0,1,#} and a binary reward scheme (1000/0).

Additionally, using [MPI] to denote the population to be learnt is

better than [O]. The latter contains the condition of

disjunctiveness of classifier conditions, something that, as

previously stated, is not always possible. In fact, the vast majority

of Boolean functions of any arbitrary length contain overlaps in

their ternary (or DNF) rule representations, thus making the use of

[O] as a population metric non-realistic.

We analyzed the multiplexer function, which was heavily used as

a test in the development and analysis of XCS, and the parity

function, that was previously claimed to be the most difficult

Boolean function of a given length for XCS to learn [12]. Both

belong to the class of functions that have [MPI]=[EPI] and do not

contain overlapping prime implicants (or classifiers) in [MPI]. We

propose that this class of functions is easier for XCS to learn than

those which contain overlaps in [MPI]. Additionally, tests using

Q-M have pointed out that the functions with these properties,

given the set of all possible n-bit functions, are vastly fewer in

comparison to those containing overlaps. To begin realigning the

view in the literature on what XCS can and cannot learn with

respect to the above findings, we attempt to succinctly summarize

the literature‟s views and then experimentally refute them. These

views on XCS‟s capabilities on single-step Boolean functions

have been investigated in [7], [9], and [12] and are summarized in

the following two propositions:

1. XCS can potentially learn any Boolean function if

enough resources are allocated (the right parameters are

used).

2. The main metric in determining the difficulty of

learning a Boolean function via XCS is the amount of

classifiers required to represent the function (i.e., |[O]|).

The following two experiments have been devised to refute the

aforementioned and corresponding propositions.

Experiment 1:

One can experimentally show that XCS will never completely

solve a binary problem with overlapping EPIs (i.e., achieve 100%

system and population performance), if:

 a. Seeding XCS with [MPI], with GA discovery off, the rules

obtain the correct reward error and fitness values with no more

rules being introduced via the covering mechanism [2].

 b. Seeding the starting population with [MPI], with GA

discovery on, some rules are eventually deleted. They may be

rediscovered and deleted but in general the cardinality of [MPI]

remains below the optimum.

Experiment 2:

Choose a 6-bit Boolean function that, although requires fewer

prime implicants to form a complete cover than the 6-MUX

problem, the implicants happen to overlap. One such generic

problem is Σ(8,9,10,11,16,17,18,19,24,25,26,27), henceforth

referred to as GEN. The idea is to perform an experiment similar

to Experiment 1 on GEN and MUX, and show that, with GA

discovery on, rules are deleted and rediscovered, never attaining

maximum %[MPI]2.

ONSET [MPI]

0#10##

01#0##

2 rules

OFFSET [MPI]

#00###

###1##

1#####

3 rules

ONSET [MPI]

001###

01#1##

10##1#

11###1

4 rules

OFFSET [MPI]

000###

01#0##

10##0#

11###0

4 rules

GEN function 6-MUX function

Figure 7. GEN and 6-MUX MPI set

6. EVALUATION
In this section, the results of the two aforementioned experiments

are presented. In addition to the three classical performance

metrics, the three population performance metrics, namely %[PI],

%[EPI] and %[MPI] are also included. These are not averaged

over the last 100 exploit trials but correspond to the percentages

recorded at each exploit trial. All results are averaged over 10

experiment runs unless otherwise stated.

2 The %[X] population performance metric ([X] being some

arbitrary set of classifiers), has been defined in [11] as the

proportion of rules in [X] existing in [P].

1287

6.1 Experiment 1 – Results
The first part of this experiment is to confirm that the [MPI]

constitutes a maximal, accurate and complete coverage of the

function. If this was not the case, then, even with GA off, the

covering mechanism would introduce new classifiers.

The classifiers forming the [MPI] set of the DV1 function are 60.

The onset of the function is covered by 16 members of [MPI],

while the offset is covered by another 14. The final number was

obtained by doubling the aforementioned sum as both actions in

XCS must be represented for each rule [2].

Figure 8. Results of Experiment 1a on DV1 problem

After performing this first part of the experiment on 2×106 exploit

cycles with N=3000 and the rest of the parameters as stated in

Section 4, no new classifiers were introduced in the population

[P]. Furthermore, all classifiers attained the correct statistics on

Reward (R) and Error (E), see Figure 8, but not on the Fitness (F)

metric due to overlaps in [EPI] and therefore in [MPI].

Table 1. Sample of classifiers in [MPI] of DV1 with GA off

C : A R E F AS EXP NUM

1101111 : 0 1000 0.00 1.00 1.00 216 1

1101111 : 1 0 0.00 1.00 1.00 82 1

1####10 : 1 1000 0.00 0.88 1.25 3825 1

1####10 : 0 0 0.00 0.82 1.57 1241 1

##10111 : 1 0 0.00 0.78 2.27 272 1

0101#1# : 0 0 0.00 0.69 1.93 330 1

0011##0 : 0 0 0.00 0.68 1.76 316 1

00##111 : 0 1000 0.00 0.67 2.33 972 1

01#0### : 0 1000 0.00 0.66 2.00 3716 1

011#1#0 : 1 0 0.00 0.65 2.46 302 1

Table 1 contains a sample of the [MPI] population sorted in

descending fitness order. As can be seen, only the maximally

specific rules obtain full fitness. The results of the second part of

the experiment are illustrated in Figure 9. The only difference

with the previous experiment is that GA discovery is on. The

purpose of this experiment is to show that XCSs are incapable of

sustaining the [MPI], which forces system performance to behave

sub-optimally. Also, the deletion and rediscovery mechanism is

evident from a sample of rules in Table 2.

Figure 9. Results of Experiment 1b on DV1 problem

Commenting on Figure 9, the system performance, although not

poor, never attains maximum value. On the other hand, there is a

sharp decrease of the three population performance metrics which

remain ~50% throughout the 2×106 explore/exploit trials. This is

due to two reasons, the second being the consequence of the first:

Initially fitness declines on overlapping EPI rules (fitness

sharing). Consequently, these rules are less likely to be picked as

parents during GA application.

The system performance is not as affected, however, since

suboptimally-general classifiers in the population compensate for

the rules missing from [MPI]. For some problems, this behavior is

acceptable, but for the design verification field, it is very

important to learn the full and accurate mapping between biases

and coverage points.

Table 2. Sample of classifiers in [MPI] of DV1 with GA on

C : A R E F AS EXP NUM

###0#00 : 1 0 0 0.67 450.67 124994 169

1#0#### : 1 799 205 0.62 183.42 296 5

111##10 : 1 1000 0 0.62 145.14 46 2

11##110 : 1 1000 0 0.62 151.69 73 1

0#10### : 1 0 0 0.61 428.02 25290 130

1##0#10 : 1 1000 0 0.59 153.15 53 1

#00#01# : 0 0 0 0.55 302.22 64546 53

01#0### : 1 0 0 0.53 464.49 25405 132

011#11# : 1 0 0 0.51 391.69 26758 32

#111#01 : 0 0 0 0.47 304.48 31327 57

In Table 2 the rules that are part of [MPI] are in italics, while the

deleted and rediscovered classifiers of [MPI] are in bold. Clear

differences can be seen in the Experience (EXP) and Numerosity

(NUM) stats between the classifiers that were rediscovered and

those that survived. Out of the 60 classifiers in [MPI], only 33

1288

exist in the final population, with 20 of those rediscovered in

recent trials.

Another point to notice is that some of the non-[MPI] rules have

higher fitness than those in [MPI]. As ranking of fitness is one

indicator distinguishing optimal from non optimal rules [7],

especially if the former are unknown, the aforementioned

behavior makes it harder to see how changing parameters in XCS

would allow the correct ranking to be achieved and hence problem

solution to be potentially reached.

6.2 Experiment 2 – Results
The purpose of the experiments here was to show that the

difficulty of learning a binary problem with XCS is not primarily

related to the cardinality of the optimal rule set to be learnt, but to

the amount of overlap between those rules.

Figure 10. Results of Experiment 2 on 6-MUX problem

It is argued in [12] that the Parity problem would be most difficult

in the case where |[O]| was the primary problem difficulty metric

(i.e., 2l classifiers in [O], l being the length of the input bit string).

The differing settings for this experiment were N = 300 and

learning problems = 10,000. Figure 10 provides results for the 6-

MUX problem. After seeding the initial population with [MPI],

system performance reaches 100% quickly but not immediately

(due to time taken to assign correct statistics to classifiers), while

%[MPI] is always at maximum.

Figure 11. Results of Experiment 2 on GEN problem

The results are different with the GEN problem, as seen in Figure

11. Though |[MPI]| = |[PI]| = 10, the system performance is unable

to stabilize at 100%, while %[MPI] declines to ~60%. As a result,

the error is high enough to indicate incomplete learning after

10,000 exploit trials, even with |[MPI]|GEN < |[MPI]|6MUX.

7. SUMMARY
It has been shown experimentally that XCS cannot solve all

single-output and in consequence n-output Boolean functions,

regardless of the resources allowed. This is due to XCS‟s fitness

regime, which only allocates appropriate fitness when the solution

consists of disjunctive rules. But more fundamentally, the reason

behind the problem witnessed is the inevitability of overlap

between maximally general and accurate rules (i.e. prime

implicants), when using a ternary generalization representation.

In addition, it has been shown that the population metric %[O] is

not a realistic measure on the majority of Boolean functions as it

implies not only completeness, accuracy and minimality but also

disjunctiveness of rules. Instead, using terms known in the

Boolean function optimization literature, e.g. sets such as [MPI],

[EPI] and [PI] along with their percentage metrics, would be more

appropriate as their definitions map one-to-one to the ternary

generalization representation of Boolean functions that XCS uses.

In [11], %[m-DNF] (i.e. %[MPI]) and %[PI] are first introduced,

but the %[EPI] metric is absent. This metric is a necessary

measure towards obtaining any of the potentially many minimal

representations a Boolean function can have, as any of those will

need to include all members of [EPI]. A potential overlap of rules

in [EPI] is expected to render the problem particularly difficult for

XCS to solve.

The problems with fitness sharing have also been identified in

[14]. There, although Boolean functions are separated in three

classes (i.e., requiring only overlapping, only non-overlapping and

at least one non-overlapping solution), the authors seem confident

that there can be a potential setup of XCS from which optimal

behavior can be obtained, even if there are overlaps in the [O]

solution. In contrast, the results presented in this paper clearly

demonstrate that given a problem‟s population solution is more

important than the system performance and, given an overlap of

the EPI, it is impossible for XCS in its current form to provide a

stable solution.

8. CONCLUSIONS
When XCS is used on single-step Boolean function problems that

use ternary conditions and a binary reward scheme (1000/0), then

its operation is that of a logic optimizer. In this case, each optimal

classifier discovered is effectively a PI of the function, with a

good chance of belonging to the [EPI] and [MPI] as well. XCS

tries to find minimal, accurate and complete equivalents of the

function presented to it (in parallel both on the onset and the

offset, something which does not happen with deterministic

algorithms such as the Q-M method).

What does not help its operation is the fitness function

traditionally used, which shares the overall fitness of a niche to its

members [2]. Though this would not be a problem if all Boolean

functions could be minimally represented by maximally general

classifiers without overlaps in their conditions, this is not the case

in reality. Although a Boolean function can potentially have more

than one [MPI], it can only have one [EPI], and when essential

implicant overlap is inevitable, then XCS performance suffers.

1289

As a natural consequence of the above, the Parity function cannot

be considered the hardest binary problem to be presented to XCS.

Its [MPI] members, although as numerous as possible, are non-

overlapping; therefore, a complete solution would be expected,

depending on the parameters chosen. In fact, the Parity problem is

the hardest of the class of easy binary problems (i.e. problems

with disjoint solutions), as it is time-consuming for XCS to

discover many and fully specific rules (due to its natural

generalization pressure). This motivates us to discover classes of

Boolean functions, rather than specific cases, on which XCS

exhibits similar behavior.

Requiring XCS to be good at finding minimal and thus potentially

non-overlapping (which is not always possible) solutions is

making the system behave sub-optimally in terms of system level

performance. Hence there is a trade-off issue here. It has to do

with the restrictions imposed on XCS‟ performance by the way

the algorithm has been structured. So, as aforementioned,

requiring disjunctiveness as well as completeness, minimality and

accuracy, is making the system behave non-optimally, as

disjunctiveness of rules is a very rare property of Boolean

functions.

For future work, judging from more recent attempts to analyze the

effect of overlapping classifiers in the final solution representation

[15] and work related to classifying XCS as a probably

approximately correct (PAC) learner for k-DNF functions given

non-severe solution overlap [16], these could be used to

investigate the findings of this paper from a different perspective.

This should be related to what constitutes a hard problem for XCS

and what are the most important or influential criteria for learning

difficulty. It is the belief of the authors that overlap of classifiers

has been so far underestimated in both its effects and implications.

Finally, the link between Boolean function classes and the

difficulty of using XCS to solve them (w.r.t. the overlapping [EPI]

problem) should be investigated. In light of this new population

metric, future experiments that investigate the effects or severity

of overlaps should be made to include it as standard practice.

Another valuable direction of future research would be to propose

a new fitness function or XCS setup that allows the coexistence of

overlapping EPIs. If accomplished, XCS would be made more

robust, adding to its reputation of being a versatile genetics-based

ML technique that can handle on-line learning for single-step and

multi-step problems.

9. ACKNOWLEDGMENTS
The authors would like to thank Dr. Tim Kovacs for his

invaluable support and comments towards the completion of this

work. Charalambos Ioannides is an EPSRC and Broadcom

Corporation funded research engineer at the IDC in Systems,

University of Bristol.

10. REFERENCES
[1] A. Piziali, Functional verification coverage measurement

and analysis. Berlin: Springer, 2007.

[2] S. W. Wilson, “Classifier Fitness Based on Accuracy,”

Evolutionary Computation, vol. 3, no. 2, pp. 149-175,

1995.

[3] T. Kovacs, “What Should a Classifier System Learn?,”

Evolutionary Computation, vol. 2, pp. 775 - 782, 2001.

[4] T. Kovacs, “Strength or Accuracy? Fitness Calculation in

Learning Classifier Systems,” in Learning Classifier

Systems, From Foundations to Applications, London, UK,

2000, p. 143–160.

[5] M. V. Butz, Rule-Based Evolutionary Online Learning

Systems: A Principled Approach to LCS Analysis and

Design, 1st ed. Springer, 2005.

[6] R. J. Urbanowicz and J. H. Moore, “Learning classifier

systems: a complete introduction, review, and roadmap,” J.

Artif. Evol. App., vol. 2009, p. 1:1–1:25, 2009.

[7] T. Kovacs, “A Comparison of Strength and Accuracy-

Based Fitness in Learning Classifier Systems,” PhD thesis,

University of Birmingham, 2001.

[8] P. L. Lanzi and D. Loiacono, XCSLib: The XCS Classifier

System Library. Illinois Genetic Algorithms Lab:

University of Illinois, 2009.

[9] T. Kovacs, “XCS Classifier System Reliably Evolves

Accurate, Complete, and Minimal Representations for

Boolean Functions,” in Soft Computing in Engineering

Design and Manufacturing, Springer, 1997, pp. 59-68.

[10] W. V. Quine, “The Problem of Simplifying Truth

Functions,” The American Mathematical Monthly, vol. 59,

no. 8, pp. 521-531, Oct. 1952.

[11] T. Kovacs, “Performance and population state metrics for

rule-based learning systems,” in Proceedings of the

Evolutionary Computation on 2002. CEC '02. Proceedings

of the 2002 Congress - Volume 02, Washington, DC, USA,

2002, p. 1781–1786.

[12] T. Kovacs and M. Kerber, “What Makes a Problem Hard

for XCS?,” in Revised Papers from the Third International

Workshop on Advances in Learning Classifier Systems,

London, UK, 2001, p. 80–102.

[13] N. UFRGS Research Lab, “KARMA3.”[Online].

Available: http://www.inf.ufrgs.br/logics/docman/karma/.

[Accessed: 01-Jul-2011].

[14] M. V. Butz, D. E. Goldberg, and K. Tharakunnel,

“Analysis and improvement of fitness exploitation in XCS:

bounding models, tournament selection, and bilateral

accuracy,” Evolutionary Computation, vol. 11, no. 3, pp.

239-277, 2003.

[15] M. V. Butz, D. E. Goldberg, P. L. Lanzi, and K. Sastry,

“Problem solution sustenance in XCS: Markov chain

analysis of niche support distributions and the impact on

computational complexity,” Genetic Programming and

Evolvable Machines, vol. 8, p. 5–37, Mar. 2007.

[16] M. V. Butz, D. E. Goldberg, and P. L. Lanzi,

“Computational Complexity of the XCS Classifier

System,” in Foundations of Learning Classifier Systems,

vol. 183, L. Bull and T. Kovacs, Eds. Springer Berlin /

Heidelberg, 2005, pp. 914-914.

1290

