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ABSTRACT 

In this paper we applied the eXtended Classifier System (XCS) on 

a novel real world problem, namely digital Design Verification 

(DV). We witnessed the inadequacy of XCS on binary problems 

that contain high overlap between optimal rules especially when 

the focus is on population and not system level performance. The 

literature attempts to underplay the importance of the 

aforementioned weakness and in short, supports that a) XCS can 

potentially learn any Boolean function given enough resources are 

allocated (right parameters used) and b) the main metric deciding 

the learning difficulty of a Boolean function is the amount of 

classifiers required to represent it (i.e. |[O]|). With this work we 

experimentally refuted the aforementioned propositions and as a 

result of the work, we introduce new insights on the behavior of 

XCS when solving two-valued Boolean functions using a binary 

reward scheme (1000/0). We also introduce a new population 

metric (%[EPI]) that should necessarily be used to guide future 

research on improving XCS performance on the aforementioned 

problems. 

Categories and Subject Descriptors 

I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition 

General Terms 

Algorithms, Performance, Design, Experimentation 

Keywords 

Learning Classifier Systems (LCS), XCS, Logic Optimization 

1. INTRODUCTION 
Machine Learning (ML) techniques aim to solve real-world 

problems and constitute an essential tool for understanding, 

learning, and inferring knowledge from the deluge of information 

readily available in today‟s scientific, industrial, and societal 

systems. These intelligent techniques are formed and improved 

either through scientific exploration or through industrial 

application and experimentation. This paper describes how the 

adoption of Learning Classifier Systems (LCS) and, more 

specifically, accuracy-based fitness LCS (a.k.a. XCS), in the 

digital design verification (DV) field has exposed a weakness, 

which instigated experimentation that intended to draw a more 

complete picture of the true properties of these systems. It is 

hoped that future improvements in XCS will follow based on the 

work presented here. 

In digital design verification, engineers are interested in 

discovering as many bugs related to a digital design as possible 

before it is manufactured. Two prominent methodologies are 

followed: The first uses formal verification to prove formal 

properties of designs. The second uses simulation-based 

verification to produce tests that exercise the functionality of the 

designs to achieve a sufficient degree of coverage; this 

methodology is relevant to the study presented in this paper. 

In its lifecycle, a design can be viewed at differing levels of 

abstraction. Relevant to this work (i.e., simulation-based 

verification) is the code or register transfer level (RTL), as 

realized through the use of hardware description languages such 

as Verilog or VHDL. To test such a design, a testbench is 

constructed that allows test code to be sent to the design and 

feedback from the process to be stored for later processing. In 

assessing the completeness of the verification process, various 

metrics are used. These include code coverage metrics, such as 

branch, expression, and toggle coverage, along with custom 

declared metrics, such as functional coverage [1]. 

Coverage Directed Generation (CDG) of tests is a technique that 

aims to automate obtaining full coverage of digital designs 

through the use of ML methods. The assumption underlying CDG 

is that the learning mechanism can identify, from existing tests 

and coverage data, how best to bias stimulus generation such that 

the resulting new tests when run on the design under verification 

(DUV) can reach outstanding coverage. This is not as straight- 

forward as it seems because designs nowadays are significantly 

complex systems, requiring equally elaborate tests in order for 

100% of their structure and functionality to be exercised. 

Furthermore, due to delays of variable time length between an 

input and a potential output ports, any cause and effect 

relationships are difficult to spot and learn. 

A very important aspect in CDG is achieving 100% coverage as 

soon as possible and with as few resources as possible. A key in 

achieving the latter is to find a way to balance coverage achieved 

over all cover points as dictated by the chosen coverage model. In 

fulfilling this requirement, it is necessary to form a complete 

mapping between the test input biases and the coverage they 

achieve. The extent to which coverage can be balanced between 
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the cover points in the coverage model is very much dependent on 

the completeness and accuracy of the mapping learnt. 

The XCS variant [2], has been shown to develop rules forming a 

complete, accurate, minimal, and non-overlapping mapping 

between the input and output space of Boolean functions [3]. The 

aforementioned four properties of solutions as they are discovered 

by XCS have made them a very attractive ML technique to try out 

in solving the aforementioned DV problem. The only prerequisite 

is the representation of the problem using a ternary alphabet (i.e., 

{0, 1, #}) while treating it as a single-step problem. 

Although the original intent of this work was to use XCS in 

solving the DV and coverage balancing problem, its inability to 

do so for a very simplified example has led to further 

investigation to identify the underlying causes. This investigation 

has allowed for a better understanding of the true properties of 

XCS and its abilities when utilizing a ternary representation and 

binary reward scheme in solving Boolean functions. 

The structure of the paper is as follows: In Section 2, a 

background on XCS and Boolean function minimization is 

presented. Section 3 describes the DV problem as formulated for 

solution via XCS. Section 4 includes the initial experiments 

performed and the findings that required further investigation. 

Section 5 presents the new insights gained and the hypotheses 

formed on suboptimal XCS behavior. Section 6 provides evidence 

for the claims made in this paper, and Sections 7 and 8 summarize 

findings and conclude this paper by providing an overview of the 

work and future research topics. 

2. BACKGROUND 
To follow the material and ideas discussed in this paper, some 

background in LCS, and Boolean Function representation and 

minimization is required. 

2.1 XCS 
The eXtended Classifier System (XCS), as first introduced in [2], 

is a very popular LCS variant. LCS is an adaptive rule-based ML 

technique that usually combines Reinforcement Learning (RL) 

and Genetic Algorithms (GA) to derive a set of production (IF 

condition THEN action) rules (or classifiers) that form the 

solution to presented problems. Problems are categorized as 

single-step, i.e., requiring one action for their solution, or multi-

step, requiring a series of jointly optimal actions. 

XCS is popular because it uses a novel classifier fitness function 

that is based on the accuracy of the prediction of the classifiers in 

the evolved populations (accuracy-based fitness), rather than on 

the reward prediction (strength-based fitness). This type of 

classifier fitness function is one of the mechanisms that apply 

pressure towards complete, accurate, minimal, and non-

overlapping populations of classifiers [4], [5]. A very good 

overview of the evolution of classifier systems is found in [6]. 

Many classification studies with XCS have dealt with Boolean 

functions, for which classifiers typically use a ternary 

representation of {0, 1, #}n for the n-bit Condition part and the 

binary strings {0, 1}m for the m-bit Action part. The # symbol 

represents generalization over „0‟ and „1‟ values. A very popular 

Boolean function, which helped in evolving and evaluating the 

performance of LCS and XCS implementations, is the multiplexer 

problem described in the following subsection. 

2.1.1 Multiplexer Problem 
Using the operation of a well-known digital design component, 

this problem is related to finding which bit in an input bit string is 

to be selected and propagated to the output of the component. The 

input bit string received from the „environment‟ of XCS 

comprises the address and data parts as they would be inputted to 

a multiplexer component. XCS must learn the correct data bit to 

be sent to the output given a particular input. The formula that 

gives the length L of a problem is L = k + 2k , where k is the 

number of the address bits. Figure 1 illustrates the 6-MUX and 

11-MUX problems, with the 11-MUX depicted on the left. 
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0 1 2 3

 

Figure 1. The Multiplexer problem (11-MUX) 

These types of problems have been popular in the LCS 

community due to their properties of multi-modality (more than 

one solution can be assigned maximum reward), scalability (the 

size of the problem can grow with the address bits), and epistasis 

(the importance of a bit in solving the problem is affected by other 

bits in the input string). 

2.2 Boolean Functions and Minimization 
A Boolean function is a mapping between two Boolean spaces. If 

n bits define the input and m bits define the output spaces, then the 

mapping is formally noted as f : Bn → Bm. When m = 1, Boolean 

functions are called single-output; otherwise, when m > 1, they are 

called multiple-output. An input variable or its complement is 

called a literal. A product term in which no variable appears more 

than once is called a normal product term. Boolean functions can 

be expressed as either the sum of products of n literals, called 

minterms, or the product of sums of n literals, called maxterms. 

An alternative definition is that every value assignment of the n-

bit input literals that corresponds to a „1‟ in the output of single-

output functions is a minterm, while those with an output of „0‟ 

are the maxterms of the function. 

2.2.1 Boolean Function Representation 
Boolean functions can be represented in tabular form, as logic 

expressions or as binary decision diagrams. The simplest of 

tabular forms is the two-column truth table. The first column 

contains an ordered listing of all possible Boolean input vectors, 

and the second column contains the corresponding output vectors. 

Logic expressions are formed by conjunction (∙ or AND), 

disjunction (+ or OR) and negation (‟ or NOT) Boolean operators, 

when applied to the n input literals of a Boolean function. As 

previously mentioned, when the expression is in terms of a sum of 

products (SOP), then these products are called minterms, and 

when it is in terms of a product of sums (POS), these sums are 

called maxterms. 

Binary decision diagrams (BDD) are an alternative way to 

represent Boolean functions. They are undirected graphs, with 

1284



each vertex being an input variable, and thus a decision point, in 

predicting the output of the function (e.g., either „0‟ or „1‟ in 

single-output functions). 

Another, more compact way to represent Boolean functions is the 

Sigma notation. If each of the rows in a truth table is indexed and 

grouped into minterms (onset) and maxterms (offset), the Sigma 

notation defines the function by listing its onset indices. For 

example, the function F = A∙B + A∙B‟ can be represented in 

Sigma notation as Σ(2,3). Figure 2 depicts the 3-MUX problem in 

all the aforementioned forms of representation. 

A B C  F

0 0 0   0

0 0 1   0

0 1 0   1

0 1 1   1

1 0 0   0

1 0 1   1

1 1 0   0

1 1 1   1

Truth Table

Minimized Logic 

Expression (SOP)

F = (A’∙B) + (A∙C)

A

B

10

C

0 1

0 01 1

BDD

Sigma Notation

Σ(2,3,5,7)

Logic Expression (SOP)

F = (A’∙B∙C’) + (A’∙B∙C) 

+ (A∙B’∙C) + (A∙B∙C)

 

Figure 2. Representations of 3-MUX function 

2.2.2 Boolean Function Minimization 
The primary use of Boolean function optimization is for logic 

circuit design and synthesis. In that context, Boolean functions are 

converted to circuits. Minimizing logic gate count and the 

connections between gates and input signals (fan-in) reduces the 

silicon area (hence cost) and improves signal propagation delays. 

The discussion of optimization here is limited to single output 

functions expressed as SOPs. The following are relevant 

definitions: A minimal sum is a SOP expression such that no other 

expression contains fewer product terms. An implicant is a normal 

product term that implies the function F; e.g., F = A∙B‟ + A∙B‟∙C 

+ A∙C contains three implicants. A prime implicant (PI) is an 

implicant of F, such that if a variable is removed from the 

implicant, it no longer implies F; in other words, it is a maximally 

general term that implies F. In the previous example, only the 

implicants A∙B‟ and A∙C are prime. An essential prime implicant 

(EPI) is one which implies one or more minterms implied by no 

other prime implicant. A minimal cover of a function is the set of 

prime implicants from which any further removal does not allow 

coverage of the function. The set with the aforementioned 

properties is called a minimal prime implicant (MPI) set. Those 

necessarily include all essential prime implicants plus any other 

prime implicants that cover the remaining minterms of the 

function, see Figure 3. The aforementioned types of prime 

implicants form sets, now on being denoted as [PI], [EPI], [MPI]. 

PI

Implicants of F

MPI2

MPI3

MPI1 EPI

 

Figure 3. Venn diagram of Implicant sets 

A Boolean function can have one [PI], one [EPI] but potentially 

many [MPI] sets. This is because some minterms can be covered 

by more than one prime implicants and therefore the number of 

total [MPI] per function is relative to the different combinations of 

prime implicants covering those minterms. 

All [MPI] of a given function are of equal cardinality. It is also 

possible to have a function with the property [MPI]=[EPI], in that 

case the cover is said to be the minimum cover of the function. 

3. PROBLEM DESCRIPTION 
Following investigations on the properties of XCS, e.g., [5] and 

[7], especially for single-step problems with ternary 

representation, we decided to use XCS to learn the relationship 

between biases of a test generator and the coverage thereby 

achieved, after describing the problem in Boolean function form. 

To the best of our knowledge this was the first time any type of 

LCS had been used in solving DV problems. 

The expectations, therefore, were that XCS would manage to 

learn a complete, accurate, minimal, and potentially non-

overlapping mapping between biases and the coverage they 

achieve. The ultimate goal was to rely on the learnt population to 

guide effective test generation so that balanced and efficient 

coverage is achieved. 

3.1 Design Under Verification 
The DUV chosen for this work was a digital signal processor 

called FirePath, at the accumulator stage in the long pipeline of its 

design. Originally, we decided that the Bias bits would represent 

the presence or absence of specific types of opcodes in the tests 

simulated on the DUV. The number of such bits was decided to be 

21, enough to represent all types of opcodes. 

The coverage model chosen was the toggle coverage of all control 

signals in the accumulator stage of the long pipe. Toggle coverage 

refers to whether a signal‟s value has been changed from zero to 

one and back to zero, i.e., a full period, during simulation. The 

control signals of interest required 42 bits to be represented. 

3.2 Proof of Concept Setup 
Before attempting to solve the entire problem as described above, 

we decided to first test XCS abilities in a much smaller example, 

to test the validity of our expectations. The smaller example 

grouped bias controls in a more compact way, thus requiring only 

7 bits to represent the conditions of classifiers. Accordingly, and 

trying to mimic a traditional single-output Boolean function, only 

one control signal was chosen to form the coverage model and, 

therefore, the Action part of classifiers. 

4. METHODOLOGY 
In the experimental setup, XCS alternates between explore and 

exploit trials. During explore trials the classifiers update their 

statistics while during exploit trials the system performance is 

recorded. XCS receives random bias strings from the 

„environment‟ (i.e., a pseudorandom bit string generator) and a 

test is generated accordingly. Next, the test is simulated on the 

DUV. Depending on the coverage results achieved, XCS is 

expected to learn which bias strings (conditions) toggle the chosen 

signal (action). The test generator used in our setup is called 

FireDrill, and it constructed tests containing 100 instructions. If 

tests predict correctly whether they toggle the signal or not, they 

are assigned a reward of 1000, if not they are assigned 0. 
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The experimental loop depicted in Figure 4 was used in the 

beginning of the experiments. However, it had to be emulated to 

eliminate the repeated computationally expensive calls to the 

simulator. Learning epochs usually allocated for XCS systems 

range from a few thousands to hundreds of thousands; therefore, 

given that each call to the simulator required ~2 minutes of 

runtime, we decided to first simulate all possible tests (27 = 128 

tests), store their coverage results, and then allow XCS to treat 

them as a lookup table. This way, experimental runs were sped up 

by three orders of magnitude. 

XCS

SIMULATOR

fire_drill

.cov

Pseudorandom 

Generator

01001100100110 Test

1 2 3

4

56

 

Figure 4. The main experimental setup 

The results of the aforementioned exhaustive simulation formed a 

Boolean function henceforth named DV1, with the following 

sigma notation: Σ(1, 2, 3, 8, 9, 10, 11, 13, 14, 24, 25, 26, 27, 28, 

30, 40, 41, 42, 43, 46, 47, 56, 57, 58, 59, 61, 65, 66, 67, 69, 70, 

71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 91, 

93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 109, 

110, 113, 114, 115, 117, 118, 121, 122, 123, 125, 126, 127). 

The XCS system used is the XCSlib v.1.1 developed at the 

Politecnico di Milano by Prof. Pier Luca Lanzi et al. [8]. The 

parameter settings used for all experiments in this work, unless 

otherwise stated, were N = 1000, P# = 0.3, α = 0.1, β = 0.2, 

χ = 0.8, μ = 0.04, ν = 5, ε0 = 10, pI = 10, εI = 0, fI = 0.01, θGA = 25, 

θdel = 20, θGAsub = 20, θASsub = 100, 1-point x-over = on, 

AS subsumption = on, GA subsumption = on, GA tournament 

selection = off. 

The statistics reported are the system performance as a percentage 

of correct predictions, the system error as the difference between 

predicted and actually achieved reward by XCS and finally the 

population which is the percentage of N (population size). The 

three main metrics, as shown on graphs and for each exploit 

problem, denote the moving average of the last 100 exploit trials. 

4.1 Initial Results 
Judging from the literature [5], [7], [9], the DV1 function would 

be sufficiently small (37 × 2 = 4374 possible unique rules and only 

27 = 128 input examples) to be fully learnt within 2×106 exploit 

trials, i.e. achieve 100% performance and almost zero error. 

However, as seen in Figure 5, the system performance fluctuated 

sub-optimally with the system error being relatively high, never 

settling throughout the experiment. 

 

Figure 5. XCS performance on DV1 function1 

4.2 Further Investigation 
To investigate the reasons behind the suboptimal behavior, it was 

necessary to learn which rules should exist in the final population 

to achieve optimal performance. To this end, we decided to use a 

technique from the Logic Optimization literature, the Quine-

McCluskey (Q-M) algorithm [10]. This is an exact Boolean 

function optimization algorithm which means that it calculates all 

prime implicants (i.e. the [PI] set), all essential prime implicants 

(i.e. the [EPI] set) and one of the possible minimal prime 

implicant sets (i.e. an [MPI] set) of a Boolean function. When 

applying this technique to the onset as well as the offset of the 

DV1 function and combining the two resulting MPI sets, it is 

possible to discover the minimal set of rules that fully and 

accurately cover it. 

ONSET [MPI] 

#00#0#1 1####10

#00#01# #0#10##

#001#01 ##010##

0011##0 #0#1#10

0101#1# 100###1

0##10## 1#00##1

#111#01 1#11##1

1####01 1###0#1

16 rules

OFFSET [MPI]

###0#00 010#10#

0##01## ##10111

##0#100 1###100

00##111 1101111

0#10### 111##00

001#1#1 011#1#0

01#0### 0#1#111 

14 rules

DV1 function

 

Figure 6. DV1 MPI set 

It was believed that this [MPI], see Figure 6, would be equivalent 

to what was defined and termed in [9] as [O] (complete, accurate, 

minimal, and non-overlapping population of rules). Therefore, it 

was expected that the population would need to converge to this 

[MPI], if XCS was expected to fully solve/learn it. In blue are all 

the essential prime implicants of the function, while in black, the 

list of the prime implicants that cover the remaining minterms of 

the DV1 function, thus forming an [MPI], as explained in Section 

2.2.2. 

To test whether XCS would fundamentally end up with this 

„optimal‟ population, we seeded the population with these rules at 

the beginning of the experiment and observed whether the rules 

would survive in it, having the GA and Deletion mechanisms on. 

                                                                 
1 All graphs in the paper are in color for better readability 
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The results of this experiment, as discussed in more detail in 

Section 6, were contrary to expectations. Only a few of these rules 

survived, while a limited set of those, in the course of the 2×106 

learning epochs, were deleted and rediscovered. In addition, many 

of these rules, although containing correct Reward and Error 

statistics, they had Fitness that was far from optimal. Their 

suboptimal fitness would be a plausible reason for their deletion. 

This is because it would increase the probability of deletion and 

reduce reproduction opportunities of the corresponding rules, as 

identified and investigated in [5] and [11]. 

The findings on the DV1 problem call for more investigation on 

the claims made in [7], [9], and [12], as XCS was clearly unable 

to retain the rules that optimally cover the DV1 function. 

5. NEW INSIGHTS 
Having a closer look at the prime implicants in the [MPI] of the 

DV1 function, we discovered that most of these overlapped, 

which explained the suboptimal Fitness statistics and subsequent 

system performance. The question then was, “Can these overlaps 

be avoided?” or “Is there a set of optimal and non-overlapping 

classifiers for this problem?” 

Looking into these questions using a free online logic 

minimization tool [13] and testing various Boolean functions of 

the same or smaller size of DV1, we discovered that overlap of 

essential prime implicants in [MPI] of functions was unavoidable 

and constituted the norm in the cases investigated. These findings 

are due to the properties of the Boolean function representation 

chosen and therefore the generalization properties of disjunctive 

or conjunctive normal forms (DNF or CNF). 

Previous work [12] has suggested the difficulty of learning a 

Boolean function is related to its dimensionality, the mean 

hamming distance (MHD) of classifiers in [MPI], and the size of 

[MPI]. We now propose that overlaps between high-fitness rules, 

especially when members of [EPI], are a major factor. Another 

implication of these results is that XCS performs logic 

minimization from two ends at once, discovering both prime 

implicants as well as prime implicates (i.e. maximally general 

rules implying the maxterms of a function) when using the ternary 

representation {0,1,#} and a binary reward scheme (1000/0). 

Additionally, using [MPI] to denote the population to be learnt is 

better than [O]. The latter contains the condition of 

disjunctiveness of classifier conditions, something that, as 

previously stated, is not always possible. In fact, the vast majority 

of Boolean functions of any arbitrary length contain overlaps in 

their ternary (or DNF) rule representations, thus making the use of 

[O] as a population metric non-realistic. 

We analyzed the multiplexer function, which was heavily used as 

a test in the development and analysis of XCS, and the parity 

function, that was previously claimed to be the most difficult 

Boolean function of a given length for XCS to learn [12]. Both 

belong to the class of functions that have [MPI]=[EPI] and do not 

contain overlapping prime implicants (or classifiers) in [MPI]. We 

propose that this class of functions is easier for XCS to learn than 

those which contain overlaps in [MPI]. Additionally, tests using 

Q-M have pointed out that the functions with these properties, 

given the set of all possible n-bit functions, are vastly fewer in 

comparison to those containing overlaps. To begin realigning the 

view in the literature on what XCS can and cannot learn with 

respect to the above findings, we attempt to succinctly summarize 

the literature‟s views and then experimentally refute them. These 

views on XCS‟s capabilities on single-step Boolean functions 

have been investigated in [7], [9], and [12] and are summarized in 

the following two propositions: 

1. XCS can potentially learn any Boolean function if 

enough resources are allocated (the right parameters are 

used). 

2. The main metric in determining the difficulty of 

learning a Boolean function via XCS is the amount of 

classifiers required to represent the function (i.e., |[O]|). 

The following two experiments have been devised to refute the 

aforementioned and corresponding propositions. 

Experiment 1: 

One can experimentally show that XCS will never completely 

solve a binary problem with overlapping EPIs (i.e., achieve 100% 

system and population performance), if:  

   a. Seeding XCS with [MPI], with GA discovery off, the rules 

obtain the correct reward error and fitness values with no more 

rules being introduced via the covering mechanism [2]. 

   b. Seeding the starting population with [MPI], with GA 

discovery on, some rules are eventually deleted. They may be 

rediscovered and deleted but in general the cardinality of [MPI] 

remains below the optimum. 

Experiment 2: 

Choose a 6-bit Boolean function that, although requires fewer 

prime implicants to form a complete cover than the 6-MUX 

problem, the implicants happen to overlap. One such generic 

problem is Σ(8,9,10,11,16,17,18,19,24,25,26,27), henceforth 

referred to as GEN. The idea is to perform an experiment similar 

to Experiment 1 on GEN and MUX, and show that, with GA 

discovery on, rules are deleted and rediscovered, never attaining 

maximum %[MPI]2. 

ONSET [MPI] 

0#10##

01#0##

2 rules

OFFSET [MPI]

#00###

###1##

1#####

3 rules

ONSET [MPI] 

001###

01#1##

10##1#

11###1

4 rules

OFFSET [MPI]

000###

01#0##

10##0#

11###0

4 rules

GEN function 6-MUX function

 

Figure 7. GEN and 6-MUX MPI set 

6. EVALUATION 
In this section, the results of the two aforementioned experiments 

are presented. In addition to the three classical performance 

metrics, the three population performance metrics, namely %[PI], 

%[EPI] and %[MPI] are also included. These are not averaged 

over the last 100 exploit trials but correspond to the percentages 

recorded at each exploit trial. All results are averaged over 10 

experiment runs unless otherwise stated. 

                                                                 
2 The %[X] population performance metric ([X] being some 

arbitrary set of classifiers), has been defined in [11] as the 

proportion of rules in [X] existing in [P]. 
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6.1 Experiment 1 – Results 
The first part of this experiment is to confirm that the [MPI] 

constitutes a maximal, accurate and complete coverage of the 

function. If this was not the case, then, even with GA off, the 

covering mechanism would introduce new classifiers. 

The classifiers forming the [MPI] set of the DV1 function are 60. 

The onset of the function is covered by 16 members of [MPI], 

while the offset is covered by another 14. The final number was 

obtained by doubling the aforementioned sum as both actions in 

XCS must be represented for each rule [2]. 

 

Figure 8. Results of Experiment 1a on DV1 problem 

After performing this first part of the experiment on 2×106 exploit 

cycles with N=3000 and the rest of the parameters as stated in 

Section 4, no new classifiers were introduced in the population 

[P]. Furthermore, all classifiers attained the correct statistics on 

Reward (R) and Error (E), see Figure 8, but not on the Fitness (F) 

metric due to overlaps in [EPI] and therefore in [MPI]. 

Table 1. Sample of classifiers in [MPI] of DV1 with GA off 

C : A R E F AS EXP NUM 

1101111 : 0 1000 0.00 1.00 1.00 216 1 

1101111 : 1 0 0.00 1.00 1.00 82 1 

1####10 : 1 1000 0.00 0.88 1.25 3825 1 

1####10 : 0 0 0.00 0.82 1.57 1241 1 

##10111 : 1 0 0.00 0.78 2.27 272 1 

0101#1# : 0 0 0.00 0.69 1.93 330 1 

0011##0 : 0 0 0.00 0.68 1.76 316 1 

00##111 : 0 1000 0.00 0.67 2.33 972 1 

01#0### : 0 1000 0.00 0.66 2.00 3716 1 

011#1#0 : 1 0 0.00 0.65 2.46 302 1 

 

Table 1 contains a sample of the [MPI] population sorted in 

descending fitness order. As can be seen, only the maximally 

specific rules obtain full fitness. The results of the second part of 

the experiment are illustrated in Figure 9. The only difference 

with the previous experiment is that GA discovery is on. The 

purpose of this experiment is to show that XCSs are incapable of 

sustaining the [MPI], which forces system performance to behave 

sub-optimally. Also, the deletion and rediscovery mechanism is 

evident from a sample of rules in Table 2. 

 

Figure 9. Results of Experiment 1b on DV1 problem 

Commenting on Figure 9, the system performance, although not 

poor, never attains maximum value. On the other hand, there is a 

sharp decrease of the three population performance metrics which 

remain ~50% throughout the 2×106 explore/exploit trials. This is 

due to two reasons, the second being the consequence of the first: 

Initially fitness declines on overlapping EPI rules (fitness 

sharing). Consequently, these rules are less likely to be picked as 

parents during GA application. 

The system performance is not as affected, however, since 

suboptimally-general classifiers in the population compensate for 

the rules missing from [MPI]. For some problems, this behavior is 

acceptable, but for the design verification field, it is very 

important to learn the full and accurate mapping between biases 

and coverage points. 

Table 2. Sample of classifiers in [MPI] of DV1 with GA on 

C : A R E F AS EXP NUM 

###0#00 : 1 0 0 0.67 450.67 124994 169 

1#0#### : 1 799 205 0.62 183.42 296 5 

111##10 : 1 1000 0 0.62 145.14 46 2 

11##110 : 1 1000 0 0.62 151.69 73 1 

0#10### : 1 0 0 0.61 428.02 25290 130 

1##0#10 : 1 1000 0 0.59 153.15 53 1 

#00#01# : 0 0 0 0.55 302.22 64546 53 

01#0### : 1 0 0 0.53 464.49 25405 132 

011#11# : 1 0 0 0.51 391.69 26758 32 

#111#01 : 0 0 0 0.47 304.48 31327 57 

 

In Table 2 the rules that are part of [MPI] are in italics, while the 

deleted and rediscovered classifiers of [MPI] are in bold. Clear 

differences can be seen in the Experience (EXP) and Numerosity 

(NUM) stats between the classifiers that were rediscovered and 

those that survived. Out of the 60 classifiers in [MPI], only 33 
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exist in the final population, with 20 of those rediscovered in 

recent trials. 

Another point to notice is that some of the non-[MPI] rules have 

higher fitness than those in [MPI]. As ranking of fitness is one 

indicator distinguishing optimal from non optimal rules [7], 

especially if the former are unknown, the aforementioned 

behavior makes it harder to see how changing parameters in XCS 

would allow the correct ranking to be achieved and hence problem 

solution to be potentially reached. 

6.2 Experiment 2 – Results 
The purpose of the experiments here was to show that the 

difficulty of learning a binary problem with XCS is not primarily 

related to the cardinality of the optimal rule set to be learnt, but to 

the amount of overlap between those rules. 

 

Figure 10. Results of Experiment 2 on 6-MUX problem 

It is argued in [12] that the Parity problem would be most difficult 

in the case where |[O]| was the primary problem difficulty metric 

(i.e., 2l classifiers in [O], l being the length of the input bit string). 

The differing settings for this experiment were N = 300 and 

learning problems = 10,000. Figure 10 provides results for the 6-

MUX problem. After seeding the initial population with [MPI], 

system performance reaches 100% quickly but not immediately 

(due to time taken to assign correct statistics to classifiers), while 

%[MPI] is always at maximum. 

 

Figure 11. Results of Experiment 2 on GEN problem 

The results are different with the GEN problem, as seen in Figure 

11. Though |[MPI]| = |[PI]| = 10, the system performance is unable 

to stabilize at 100%, while %[MPI] declines to ~60%. As a result, 

the error is high enough to indicate incomplete learning after 

10,000 exploit trials, even with |[MPI]|GEN < |[MPI]|6MUX. 

7. SUMMARY 
It has been shown experimentally that XCS cannot solve all 

single-output and in consequence n-output Boolean functions, 

regardless of the resources allowed. This is due to XCS‟s fitness 

regime, which only allocates appropriate fitness when the solution 

consists of disjunctive rules. But more fundamentally, the reason 

behind the problem witnessed is the inevitability of overlap 

between maximally general and accurate rules (i.e. prime 

implicants), when using a ternary generalization representation. 

In addition, it has been shown that the population metric %[O] is 

not a realistic measure on the majority of Boolean functions as it 

implies not only completeness, accuracy and minimality but also 

disjunctiveness of rules. Instead, using terms known in the 

Boolean function optimization literature, e.g. sets such as [MPI], 

[EPI] and [PI] along with their percentage metrics, would be more 

appropriate as their definitions map one-to-one to the ternary 

generalization representation of Boolean functions that XCS uses. 

In [11], %[m-DNF] (i.e. %[MPI]) and %[PI] are first introduced, 

but the %[EPI] metric is absent. This metric is a necessary 

measure towards obtaining any of the potentially many minimal 

representations a Boolean function can have, as any of those will 

need to include all members of [EPI]. A potential overlap of rules 

in [EPI] is expected to render the problem particularly difficult for 

XCS to solve. 

The problems with fitness sharing have also been identified in 

[14]. There, although Boolean functions are separated in three 

classes (i.e., requiring only overlapping, only non-overlapping and 

at least one non-overlapping solution), the authors seem confident 

that there can be a potential setup of XCS from which optimal 

behavior can be obtained, even if there are overlaps in the [O] 

solution. In contrast, the results presented in this paper clearly 

demonstrate that given a problem‟s population solution is more 

important than the system performance and, given an overlap of 

the EPI, it is impossible for XCS in its current form to provide a 

stable solution. 

8. CONCLUSIONS 
When XCS is used on single-step Boolean function problems that 

use ternary conditions and a binary reward scheme (1000/0), then 

its operation is that of a logic optimizer. In this case, each optimal 

classifier discovered is effectively a PI of the function, with a 

good chance of belonging to the [EPI] and [MPI] as well. XCS 

tries to find minimal, accurate and complete equivalents of the 

function presented to it (in parallel both on the onset and the 

offset, something which does not happen with deterministic 

algorithms such as the Q-M method). 

What does not help its operation is the fitness function 

traditionally used, which shares the overall fitness of a niche to its 

members [2]. Though this would not be a problem if all Boolean 

functions could be minimally represented by maximally general 

classifiers without overlaps in their conditions, this is not the case 

in reality. Although a Boolean function can potentially have more 

than one [MPI], it can only have one [EPI], and when essential 

implicant overlap is inevitable, then XCS performance suffers. 
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As a natural consequence of the above, the Parity function cannot 

be considered the hardest binary problem to be presented to XCS. 

Its [MPI] members, although as numerous as possible, are non-

overlapping; therefore, a complete solution would be expected, 

depending on the parameters chosen. In fact, the Parity problem is 

the hardest of the class of easy binary problems (i.e. problems 

with disjoint solutions), as it is time-consuming for XCS to 

discover many and fully specific rules (due to its natural 

generalization pressure). This motivates us to discover classes of 

Boolean functions, rather than specific cases, on which XCS 

exhibits similar behavior. 

Requiring XCS to be good at finding minimal and thus potentially 

non-overlapping (which is not always possible) solutions is 

making the system behave sub-optimally in terms of system level 

performance. Hence there is a trade-off issue here. It has to do 

with the restrictions imposed on XCS‟ performance by the way 

the algorithm has been structured. So, as aforementioned, 

requiring disjunctiveness as well as completeness, minimality and 

accuracy, is making the system behave non-optimally, as 

disjunctiveness of rules is a very rare property of Boolean 

functions. 

For future work, judging from more recent attempts to analyze the 

effect of overlapping classifiers in the final solution representation 

[15] and work related to classifying XCS as a probably 

approximately correct (PAC) learner for k-DNF functions given 

non-severe solution overlap [16], these could be used to 

investigate the findings of this paper from a different perspective. 

This should be related to what constitutes a hard problem for XCS 

and what are the most important or influential criteria for learning 

difficulty. It is the belief of the authors that overlap of classifiers 

has been so far underestimated in both its effects and implications. 

Finally, the link between Boolean function classes and the 

difficulty of using XCS to solve them (w.r.t. the overlapping [EPI] 

problem) should be investigated. In light of this new population 

metric, future experiments that investigate the effects or severity 

of overlaps should be made to include it as standard practice. 

Another valuable direction of future research would be to propose 

a new fitness function or XCS setup that allows the coexistence of 

overlapping EPIs. If accomplished, XCS would be made more 

robust, adding to its reputation of being a versatile genetics-based 

ML technique that can handle on-line learning for single-step and 

multi-step problems. 
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