
Semi-supervised Genetic Programming for Classification

Filipe de L. Arcanjo
∗

Universidade Federal de
Minas Gerais (UFMG), Brazil

filipe@dcc.ufmg.br

Gisele L. Pappa
Universidade Federal de

Minas Gerais (UFMG), Brazil
glpappa@dcc.ufmg.br

Paulo V. Bicalho
†

Universidade Federal de
Minas Gerais (UFMG), Brazil
p.bicalho@dcc.ufmg.br

Wagner Meira Jr.
Universidade Federal de

Minas Gerais (UFMG), Brazil
meira@dcc.ufmg.br

Altigran S. da Silva
Universidade Federal de
Manaus (UFAM), Brazil

alti@dcc.ufam.edu.br

ABSTRACT
Learning from unlabeled data provides innumerable advan-
tages to a wide range of applications where there is a huge
amount of unlabeled data freely available. Semi-supervised
learning, which builds models from a small set of labeled
examples and a potential large set of unlabeled examples, is
a paradigm that may effectively use those unlabeled data.
Here we propose KGP, a semi-supervised transductive ge-
netic programming algorithm for classification. Apart from
being one of the first semi-supervised algorithms, it is trans-
ductive (instead of inductive), i.e., it requires only a training
dataset with labeled and unlabeled examples, which should
represent the complete data domain. The algorithm relies
on the three main assumptions on which semi-supervised
algorithms are built, and performs both global search on
labeled instances and local search on unlabeled instances.
Periodically, unlabeled examples are moved to the labeled
set after a weighted voting process performed by a com-
mittee. Results on eight UCI datasets were compared with
Self-Training and KNN, and showed KGP as a promising
method for semi-supervised learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning Concept Learning;
I.5.2 [Design Methodology]: Classifier design and evalu-
ation

General Terms
Algorithms

∗Undergraduate student in Computer Science
†Undergraduate student in Computer Science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Keywords
semi-supervised learning, genetic programming, transduc-
tion, classification

1. INTRODUCTION
Learning from unlabeled data provides innumerable ad-

vantages to a wide range of applications, including image
and video processing [23], computational linguistics [11], and
speech recognition [22], among others. Unsupervised learn-
ing often does the job, but it may be better to employ a semi-
supervised learning strategy to effectively grasp the implicit
models from the data. Semi-supervised learning is charac-
terized by building models from a few labeled and a great
number of unlabeled examples [5], and is becoming very at-
tractive for scenarios such as the Web, where huge amounts
of unlabeled data are available.

Semi-supervised learning methods may perform inductive
or transductive learning [25]. When inductive learning takes
place, the classifier learns a function fi from the training
data, and fi is expected to be a good predictor for future
data (test data). In transductive methods, in contrast, the
function ft — which is also learned from the training set —
has as its main objective to be a good predictor of training
unlabeled instances. Hence, the function ft is not expected
to generalize for future data.

In this sense, transductive learning could be considered
as a simple case of inductive learning. However, there is no
consensus in the literature, and the definition given above is
based on [25]. Despite that, transductive methods are use-
ful in contexts where the “whole universe” of data is known,
and the main objective is to learn labels for unlabeled in-
stances. Examples of these scenarios include record dedu-
plication and web-page classification, among others.

Regardless of being inductive or transductive, there are
three common assumptions on which semi-supervised meth-
ods rely on [5]. The first is the smoothness assumption,
which states that dense regions of the problem search space
may be modeled by smooth functions. An immediate conse-
quence of this assumption is that two near points in a dense
region should be associated with similar classes. The second
assumption is that the boundaries between dense regions in
the search space are not dense, helping to separate dense re-
gions. The third assumption is that, despite the high dimen-
sionality of the data, there are dense regions in the search

1259

space that are also detectable considering less dimensions.
It is worth noting that most of the existing methods rely on
just one or at most two of these assumptions, which might
explain their poor performance on some datasets.

Although evolutionary methods have been successfully ap-
plied to solve classification problems involving supervised
learning [10, 18, 21], their use in semi-supervised learning is
still understudied [8]. In this direction, this paper proposes a
novel Genetic Programming method that takes into account
the three aforementioned assumptions of semi-supervised
learning.

More specifically, the main characteristics of the GP me-
thod proposed, and from now on referred as KGP (as some
of its features implement a KNN-like strategy), are: (i) it
is a semi-supervised method, which receives as input a set
of labeled and a set of unlabeled examples, (ii) it performs
transductive learning, and hence works only with a training
set, (iii) the labels of unlabeled examples are not assigned
by a single individual, but instead by a committee of clas-
sifiers, (iv) from time to time, unlabeled examples are clas-
sified and moved to the labeled set, and (v) the decisions
of committee members are weighted according to how well
they perform in the neighborhood of the unlabeled exam-
ples.

Another interesting feature of KGP is that, in contrast
with conventional semi-supervised methods that create a
new model from the updated training set, it evolves the
model (in our case a committee of classifiers) together with
new labeled instances. Hence, during the evolution process,
every time a new unlabeled instance is labeled by the set of
classifiers, this instance is used to improve the model.

A key issue for semi-supervised learning methods is how
to evaluate them. Specifically, we did not find, by defini-
tion, a truly transductive method to be used as a baseline.
Transductive SVM [14], which is commonly regarded as be-
ing transductive, does not exactly fit in the definition we
adopt [25]. Indeed, as pointed out, this method creates mod-
els that should generalize to new data, and hence uses train-
ing and test sets. KGP, in turn, requires only a training set.
Thus, we introduce a methodology to analyze transductive
methods, and test KGP in a set of eight UCI datasets [19].

Results were compared with the well-known self-training
algorithm [5], and also with a supervised algorithm, since
we know the labels for all training examples, including un-
labeled ones. In this case, KGP’s evaluation may consider
the number of examples correctly classified when compared
to the ground-truth, as well as an analysis of the strengths
and weaknesses the KGP semi-supervised learning strategy
offers [24].

The remainder of this paper is organized as follows. Sec-
tion 2 describes related works in the areas of GP for clas-
sification and semi-supervised learning. Section 3 intro-
duces KGP, our semi-supervised transductive genetic pro-
gramming algorithm, KGP. Section 4 reports experimental
results, while Section 5 draws some conclusions and discusses
future works.

2. RELATED WORK
Evolutionary computation has been used to generate a

great variety of models using supervised learning (i.e., prob-
lems where the labels of training instances are known), in-
cluding rules, trees and mathematical functions [1, 15, 21].
Here we follow this last approach, and generate mathemat-

ical functions to solve classification problems, but with one
main difference: we work within a semi-supervised frame-
work.

Semi-supervised learning techniques have become increas-
ingly popular in the last years. In fact, since the commu-
nities of natural language processing and text classification
showed their interest in automatically labeling data to im-
prove learning, there has been a fast growth in the develop-
ment of methods that work with both labeled and unlabeled
data [17, 20]. The methods most disseminated in this area
were initially the self-training and co-training algorithms [4].
Co-training has peculiarities, as it employs multi-view learn-
ing, and requires differentiated input data (i.e., data coming
from different data views). Self-training, in contrast, was
first proposed in the seventies, but it is still successfully
used in many contexts [20,24].

Self-training works as a wrapper, in the sense that it re-
quires another learning algorithm. This approach has flex-
ibility as its main strength. Performance is, however, lim-
ited by the fact that the models used in each iteration are
obtained independently. The underlining method has no
knowledge of how its being used and therefore cannot em-
ploy the models obtained in iterations i1, i2, ...ik in any way
to obtain a new one in ik+1. The method proposed here, in
contrast, works with a population of classifiers that evolves
over time. At each step, models are built not only from the
data but also from the models of previous iterations.

Usually, semi-supervised algorithms, including self-train-
ing and co-training, work under one or more of the three
aforementioned assumptions [5]: (i) the smoothness assump-
tion, which states that label functions are smoother on high-
density regions than in low-density regions, and hence points
separated by a high-density path are likely to be close; (ii)
the cluster or low-density separation, which states that de-
cision boundaries should lie on low-density regions; and (iii)
the manifold assumption, which says that high-dimensional
data lie roughly on a low-dimensional manifold.

The Transductive SVM [14], for instance, is based on the
assumption of low-density separation, and works by moving
the decision boundary away from the unlabeled points. It
does not fit, however, the definition of transductive learn-
ing adopted here [25], as the algorithm produces a model
which is expected to generalize. The first assumption is fol-
lowed by generative methods, including those that estimate
the conditional density p(x|y) of the data, where x is the
attribute vector and y the class, and use the information
coming from p(x) to help this estimation. Most of these are
also not transductive. Note that methods based on assump-
tions (i) and (ii) are local, while methods based on (iii) are
global.

KGP addresses these three assumptions, as showed in Sec-
tion 3. It also explores the powerful global search of GP to
ensure that we have classifiers dealing with attributes depen-
dencies, and that they are specialized into different regions
of the example space. By using a committee to predict la-
bels of examples we allow classifiers to be general enough
when learning from labeled examples but also local enough
to classify neighbour examples accordingly.

Concerning genetic programming algorithms, they are well-
known for solving classification problems under a super-
vised context, but methods following semi-supervised ap-
proaches are still underexplored. Two recently published
papers have presented contributions in this direction. In

1260

[12] the authors propose a new semi-supervised clustering
method, also known as constrained clustering. In the case
of semi-supervised clustering, prior background knowledge
is often introduced using constraints, which are based on
instances relationships or spatial contiguity. [12] works with
instance-level constraints, which restrict memberships of pa-
irs of instances. They use a hybrid genetic-guided semi-
supervised clustering algorithm, named Cop-HGA, to find
clusters while obeying imposed constraints. Something sim-
ilar was proposed in [9].

In [8], in contrast, a new inductive method called AGP was
introduced for dealing with semi-supervised learning clas-
sification. It employs Active learning [6], a type of data
sampling technique where, instead of selecting a subset of
random examples to train a classifier, a subset of the most
informative examples is selected. These examples are then
given to a user to label, and added to the set of labeled
training examples.

AGP is based on a committee of classifiers that chooses
the best example to be labeled. However, it does not apply
self-learning, i.e., the labeled set does not grow over time and
remains static. It is also not transductive, as the result of the
learning process is a single classifier that is expected to label
instances of a training set. KGP does both transductive and
self-learning, but not active learning. As shown later, the
combination of KGP with an active learning approach may
lead to even better results. It also employs committees in a
rather different way, as the votes of each individual in the
population are weighted.

3. THE KGP METHOD
This section describes KGP, a semi-supervised transduc-

tive genetic programming algorithm. One of the main stren-
gths of KGP is to take into account the three basic assump-
tions of semi-supervised algorithms.

The smoothness assumption is addressed by the weighted
voting process, which weights classifiers according to their
performance on the neighborhood of the unlabeled example.
This process guarantees that classifiers consider both the
global (when learning from labeled data) and local contexts
of data (when labeling unlabeled data). The low-density
separation is covered by the voting process itself. Individ-
uals with very high confidence for classifying an unlabeled
instance have a high probability of lying on different dense
regions (clusters) of the search space. Those with low prob-
abilities are likely to be closer to the class boundaries, and
that is why the voting process is important. By using the
voting process, KGP almost ignores classifiers close to the
class borders. Finally, the manifold assumption is indirectly
addressed when the classifiers use only a subset of the at-
tributes to generate classification functions, creating simpler
functions in a reduced dimensional space.

Moreover, KGP evolves the model (in our case a com-
mittee of classifiers) together with new labeled instances.
Hence, during the evolution process, every time a new unla-
beled instance is labeled by the set of classifiers, this instance
is used to improve the model previously created.

The next sections give an overview of the algorithm, de-
tailing the individual representation, fitness function, ge-
netic operators and the weighted voting process.

3.1 Overview
As a semi-supervised algorithm, KGP takes as inputs two

sets of instances, namely U and L. The former is called
unlabeled set, and consists of a series of vectors �xi ∈ R

n.
The latter, which is the labeled set, contains pairs of the
form (�xi, yi), where yi ∈ {−1,+1} represents the class of
the example. The current version of the method supports
only binary classification, but can be easily extended to
deal with multi-class problems following a one-against-al ap-
proach similar to that of SVM [13]. KGP’s main goal is to
correctly predict the classes of the instances in U and trans-
fer them to L. This process is done incrementally.

Algorithm 1 shows an overview of the method, whose un-
derlying process is the same as any supervised GP classifica-
tion method. It begins by initializing a random population
of ni individuals, using the well-known techniques of grow
and full [3]. Each individual consists of a mathematical ex-
pression and represents a classifier. In order to classify an
individual as belonging to class +1 or −1, a threshold is
applied to the output of the expression.

It then enters a loop that iterates for a maximum num-
ber of generations g. At each iteration, the individuals in
the current population are evaluated using instances in L.
That is, we use each individual i to obtain a map mi :
L → {−1,+1} that assigns a label to each of those in-
stances. This predicted label may or not be equal to the
one in L.

The success of an individual in correctly classifying la-
beled examples is taken into consideration to compute its
fitness. The fitness value determines the chances of an in-
dividual being chosen by tournament selection [3]. Chosen
individuals undergo crossover and mutation. Their offspring
then becomes part of a new population, which will replace
the current one. We also employ elitism, by copying the e
most fit individuals to the new population.

Every τ generations, a labeling round takes place, and a
committee of individuals votes to determine the class of each
unlabeled instance. These votes are then weighted consider-
ing a confidence metric, which reflects how well each classi-
fier performs in the labeled neighbourhood of the unlabeled
example. Votes and weights are combined into a final pre-
diction for the instance’s class. At the end of this process,
only the � instances with higher votes’ absolute values are
moved to U . After g generations, the method guarantees
that U is empty.

In the next subsections, the details of our method are
presented by describing the steps of Algorithm 1.

3.2 Individual Representation
Each individual in KGP is a classifier, represented by a

binary tree corresponding to mathematical expression. Four
basic operations are allowed as function nodes: protected di-
vision [3], multiplication, addition, and subtraction. Termi-
nals consist on integer constants from −9 to 9 and attributes
from vectors that describe each instance. Figure 1 shows an
example, where a and b are attributes from the dataset be-
ing considered. Individuals are bound to a maximum height
h, and genetic operators are designed in such a way that this
value is never exceeded.

When classifying an example, we go through the nodes
recursively, replacing the attributes in the leaves by their
values, and a value z(�x) is obtained. In general, we cannot
assure that z(�x) will be bounded, which is a consequence of
the fact that no restrictions are imposed as to what types of
individuals can be generated.

1261

Algorithm 1: KGP(L, U)

1: Build a random initial population;
2: for j = 1, 2, ..., g do
3: Evaluate each individual i using the examples in L;
4: Compute the fitness of each i according to its

predictions for L’s instances;
5: Perform crossover and mutation according to user

defined probabilities;
6: Update the current population;
7: if j ≡ 0 (mod τ) then
8: Let S be an empty list;
9: for �x ∈ U do
10: Evaluate each individual i in �x.
11: Compute the set NN(k, �x) of the k nearest

labeled neighbors of �x;
12: Evaluate each i in N and compute its weight;
13: Compute the final vote for v(�x) combining

evaluation results and weights;
14: Append v(�x) to S;
15: end for
16: Sort S by the absolute value of each element;
17: Label the instances in U associated with the top �

values in S;
18: Transfer these � instances to L;
19: end if
20: end for

+

/

a b

5

Figure 1: A simple individual tailored to classify
instances of the form �x = (a, b)

The fact that no bounds can be obtained forbids any kind
of normalization. To counter that, we apply a sigmoid to
each z obtained, and consider its value instead. The sigmoid
takes any real value and maps it on the open real interval
(0, 1):

f(�x) =
1

2
tanh

(
z(�x)

10

)
(1)

A threshold t, whose value has to be obtained experimen-
tally, is then applied to f . As the sigmoid returns a value
within (0, 1), t needs to be a value in this interval, instead of
an arbitrary real number. Finally, we obtain the predicted
class y′ from f(�x):

y′(�x) =
{

+1, if f(�x) ≥ t
−1, if f(�x) < t

(2)

3.3 Fitness Function
The evaluation of the individuals (classifiers) is based only

on the set of labeled examples, and hence employs the tradi-
tional metrics used to evaluate supervised learning methods.
Considering a problem with two classes, there are four pos-
sible combinations of real and predicted classes, as shown in

Real
-1 +1

Predicted
-1 α α

+1 β β

Table 1: Confusion matrix and the four possible
combinations for predicted and real class.

Table 1. We take the harmonic mean of two rather common
measurements used to assess classifier quality: true positive
rate and true negative rate. For binary classification prob-
lems, they are defined as follows:

true positive rate =
α

α+ β
(3)

true negative rate =
β

β + α
(4)

in which α, α, β, β denote the number of instances in each
cell of the aforementioned table. The obtained value is a
real number between 0 and 1. It is used in conjunction
with tournament selection [3] to choose individuals that will
undergo crossover and mutation.

3.4 Genetic Operators
The classifiers are modified according to the traditional

crossover and mutation operators. Crossover takes two indi-
viduals A and B as input and outputs a pair of new individ-
uals A′ and B′. A′ and B′ are created by swapping their re-
spective selected subtrees. Following a procedure suggested
by Koza [16], we introduce a bias to this operator, assuring
that terminal nodes are selected 10% of the time.

Mutation chooses a node of an individual randomly, and
replaces it by a subtree generated randomly.

3.5 Weighted Voting Process
As previously mentioned, every τ generations a labeling

round takes place. During it, a committee of individuals
composed by the whole population votes to determine the
class of each unlabeled instance. The votes of all individ-
uals are combined using vote weights. These weights are
computed based on two main assumptions:

1. Individuals do not have equal performance over the
whole feature space, that is, they tend to be better in
certain regions and worse in others.

2. An instance �x is more likely to belong to the class
which is more common among its neighbors. Thus we
should reward classifiers that predict the most common
class in the neighborhood and penalize the ones which
do not.

During the voting process, first the k nearest labeled neigh-
bors NN(k, �x) of each unlabeled instance �x ∈ U are identi-
fied. For that matter, any distance function will do. We
currently use the Euclidean distance for reasons of simplic-
ity and broad usage in a diverse range of applications. In
scenarios such as text classification, other metrics such as
the cosine distance may be employed [2].

Next, weights are computed taking into consideration the
accuracy of the classifier in predicting the classes for the
already labeled instances in NN(k, �x).

1262

Table 2: Datasets from the UCI repository
Dataset Instances Attributes Class Distribution
diabetes 768 9 268/500
ionosphere 351 35 126/225
magic 19020 11 6688/12332
musk 6598 167 1017/5581
spam 4601 58 1813/2788
spectf 267 45 212/55
survival 306 4 225/81
wdbc 569 31 357/212

The voting process also takes into account a number p,
which is simply the percentage of neighbors belonging to
class −1, as described in Equation 5. It is used to penal-
ize classifiers that go against the most popular class in the
neighbourhood, thus satisfying the second assumption we
have adopted.

wi(�x) = accuracy(i,NN(k, �x)) ·
{

p, if y′(�x) = −1
1− p, if y′(�x) = +1

(5)
The voting decision on the label to be assigned to an in-

stance �x is taken by computing the weighted average of the
classes predicted by each individual i from the population
P for �x:

v(�x) =

∑
i∈P wi(�x) · y′

i(�x)∑
i∈P wi(�x)

(6)

Notice that v(�x) ∈ [−1,+1] is a real number. We take
its absolute value as a measurement of how confident the
committee is of its choice. As shown in Algorithm 1, the
obtained v(�x) values are ranked by confidence.

The top � instances in this rank are labeled by rounding
v(�x) to either +1 (if positive) or −1 (if negative) and trans-
ferred from U to L. The value of � is chosen according to
τ , in such a way that after g generations, all instances are
labeled:

� =

⌊ |U0|
r

⌋
(7)

where r is the amount of labeling rounds, that is, �g/τ�,
and |U0| denotes the amount of unlabeled instances initially
present on the unlabeled set. It is worth noticing that |U0|
might not divide r. In that case, the last labeling round will
handle more than � instances.

4. EXPERIMENTS
Evaluating semi-supervised methods is still a challenge,

as there is no consensus as to how it should be done. Here,
in order to validate the proposed technique, we work with
eight datasets from the UCI repository [19], described in Ta-
ble 2. As observed, all of them have two classes and only
numerical attributes. Experiments were performed varying
the size of the labeled set L. For each size, 20 random sam-
ples were extracted from the complete dataset. The results
were compared with two other algorithms: self-training and
KNN itself. KNN was chosen because, apart from provid-
ing a general good accuracy, its rationale is partially similar
to the one used by KGP. Self-training was chosen for be-
ing one of the most popular approaches to semi-supervised
learning [5]. KNN works by assigning to each instance the
most popular class amoung its K nearest neighbours. Self-
training works as follows. It first creates an initial model

from the labeled training set, and then uses this model to
label examples from the unlabeled set. After that, according
to a confidence metric provided by the enclosed classifier C
, the algorithm adds the m best classified examples in terms
of confidence to the labeled training set. This enhanced
training set is then used to create an updated model. The
process continues until all examples are labeled. Note that
self-training has the advantage of working as a wrapper, i.e.,
it may employ any classification algorithm in its core. Here
we have selected KNN for that matter, for the same rea-
sons expressed above. This combination of self-training and
KNN will be refered to as Self-KNN hereafter.

The GP parameters were set in a preliminary phase, and
their values are reported in Table 3. For comparison pur-
poses, we choose for KNN and Self-KNN the same k as used
by KGP, that is, they look into neighbourhoods of the same
size. We also assure Self-KNN performs as much iterations
as KGP’s labeling rounds.

Considering the parameters described in Table 3, it is in-
teresting to analyze some statistics collected during the ex-
ecution of KGP. Figure 2 shows six graphs obtained for the
datasets ionosphere (10% of labeled instances) and spam
(50%). All results are averages over 20 runs with different
random seeds but the same data sample.

In the first column, we observe the behavior of the indi-
viduals’ fitness during evolution. Note that the algorithm
does not converge. Although the average fitness improves
over time, there is still a fair diversity in the last genera-
tion. This is important considering the committee strategy
adopted here.

The graphs in the second column report the confidences
associated with each final vote v(�x) made by the classifiers.
As evolution goes on, the average confidence decreases. This
can be explained by an association of two factors. The first
is a decay in the quality of the model, which is a consequence
of incorrectly labeled instances moved to the labeled train-
ing set during execution. The other is the fact that hard to
classify instances and outliers tend to accumulate over time.
The behavior is consistent with the graphs in the third col-
umn, which contain the accuracy of labeled instances per
labeling round. It also decreases with time.

Currently, a fixed number of examples is labeled at each
round. One way to try to solve this problem is to add to the
labeled training sets only examples labeled with a confidence
higher than a threshold, which may be relaxed at the final
generations, as at this point only the most difficult examples
remain in the dataset. In some way, we have already tried
to increase or reduce this number of examples when setting
the parameters for the number of labeling rounds. However,
we intend to study it more deeply in future work.

The results obtained by KGP, Self-KNN, and KNN using
different sample sizes for labeled sets are showed in Table 4.
Two metrics were used to evaluate the results: the macro-
F1 and the predictive accuracy. Macro-F1 is a variation of
f-measure, which calculates the harmonic mean of precision
(fraction of examples correctly assigned to a class) and re-
call (true positive rate, which is the fraction of examples
from a class correctly classified). Macro-F1 measures the
classification effectiveness taking into account the class dis-
tribution of the dataset. Table 4 presents the average (±)
95% confidence intervals of these metrics.

In order to ensure statistical significance, the results of
KGP were compared to the two baselines using a statistical

1263

Table 3: GP Parameters
Parameter Value
Number of Generations (g) 50
Number of Individuals (ni) 100
Maximum tree depth (h) 5
Tournament size 3
Mutation rate 0.05
Crossover rate 0.85
Elitism (e) 5
K 5
Labeling rounds (τ) every 5 generations
Class threshold (t) 0.5
Pr. of using grow 0.5
Pr. of grow choosing a non-terminal 0.5

t-test with 95% confidence. The results of these tests are
presented in Table 4 through three symbols: � denotes a
significant positive variation, • a non significant variation
and � a significant negative variation. Note that these sym-
bols only appear in the column of the baselines, and refer
to how the method compares with KGP. For instance, the
macro-F1 of ionosphere in the column Self-KNN is followed
by a �, meaning that Self-KNN obtains values of macroF1

statistically worse than those obtained by KGP.
Considering the 24 experiments performed (8 datasets ×

three variations of data sample size) and the values of ac-
curacy, KGP achieves statistically better results than Self-
KNN in 8 cases, and statistically worse results in 7 cases.
Note that in the dataset ionosphere these gains were the
most expressive, being of 15% and 8.5% for samples of 10%
and 30%, respectively. For spam, KGP is also better than
Self-KNN in all three sample sizes, while for wdbc it is sta-
tistically significant for sample sizes of 50% and statistically
the same as Self-KNN for the other cases. All other results
obtained by the two methods are statistically equivalent.

There were three datasets in which statistically inferior
results were obtained by KGP: diabetes, magic and musk.
The reason why this happens might be related to the way
noise builds up as the classification process takes place. In
Self-KNN, for instance, new models are obtained at each it-
eration considering only the labeled data. KGP, on the other
hand, uses as classifiers individuals from previous genera-
tions, i.e., while Self-KNN rebuilds the whole model, KGP
updates it. We believe this may increase the rate at which
noise builds up in the set of labeled instances over time for
some datasets, and intend to investigate this issue further
in future works. This hypothesis is consistent with the fact
that the difference between KGP and the other approaches
in thoses cases increases as the unlabeled set gets bigger.
Furthermore, this hypothesis is also backed up by the fact
that magic and musk are the largest datasets used in our
experiments. Further evidence is provided by the graphs on
the second column of Figure 2, which refer to datasets iono-
sphere and spam. Spam is much larger than ionosphere and
has a much steeper curve when it comes to confidence even
with a larger percentage of labeled instances.

Regarding the macro-F1 results, they are also very similar
to accuracy ones. The only difference is that now KGP is
statistically better in 9 cases and statistically worse in 6.
Analyzing the results of KGP compared to KNN, we notice
that KGP achieves statistically better results in 12 cases,
while KNN is better than Self-KNN in six. It is important
to emphasize that the KNN run here is inductive, and learns
a model from a sample of the training data and then applies
it to the remaining example (test set).

After seeing the results and creating hypothesis that may
improve the accuracy of KGP, we investigate the reasons
behind classifier misclassifications. Is the problem the vot-
ing scheme or the models independence? Figure 3 shows
the classification of four specific instances from the dataset
spam, with 20% of labeled instances. The first two are cor-
rectly classified, and the last two are misclassified. Each
line in the histogram represents a single classifier. Heights
correspond to the product wi(�x) · y′

i(�x), that is, classifiers’
contributions to the final vote. The decision of the class of
the example is taken based on a weighted average over all
classifiers, as previously shown in Equation 6. Note that
in Figures 3 (a) and (b), it is not difficult to see that the
confidences closer to +1 or -1 dominate the graph.

An interesting case is Figure 3 (c), where, although there
is a majority of classifiers saying it should be -1, it is misclas-
sified as +1. It happens because the weights associated with
the classifiers that predicted the wrong class are higher. The
given instance is probably located in a region of space rich in
examples of class +1. One possibility to avoid such mistakes
would be to consider new approaches to compute weights.
Figure 3 (d) shows the case of a genuine error, which might
have occurred because this instance is an outlier or is too
close to the class boundaries.

KGP’s computational performance is reasonable for most
of the datasets employed in this study. For spectf, which is
the smallest one, a single execution takes less than a sec-
ond. For magic, the largest, running with 10% of labeled
instances takes 1 minute and 45 seconds. These results were
obtained on a dual quad-core machine with hyper-threading
and 16GB of main memory. Most of the execution time is
spent computing nearest neighbours and evaluating individ-
uals. Performance improvements could be easily obtained
by parallelizing individual’s evaluations and making use of
space partitioning techniques, such as KD-Trees [7].

5. CONCLUSION
This work introduced KGP, a semi-supervised genetic pro-

gramming algorithm for classification. It was conceived based
on the three assumptions on which semi-supervised learning
relies on, and combines global information of labeled data
with local information of unsupervised instances to evolve
classification models.

KGP performs transductive learning, working only with
a training set divided into labeled and unlabeled examples.
As evolution goes on, labeling rounds take place, and a com-
mittee of classifiers performs a weighted voting to decide
which unlabeled examples should be moved to the labeled
training set. Finally, instead of recreating a whole classi-
fication model from scratch after new instances are added
to the training set, it simply updates a model already being
evolved. At the end of the evolutionary process, all examples
are labeled.

Experiments with eight UCI datasets showed that KGP
is competitive with Self-KNN and KNN. It presents signifi-
cant gains in two datasets, and most of the time has a per-
formance statistically equivalent to Self-KNN. During the
analysis of the results, we identified a set of improvements
which can lead KGP to better results. They involve, for
instance, having a threshold to determine the number of un-
labeled examples to be moved to the training set, instead
of using the static approach Self-learning implements. Some
active learning could also improve the GP performance at

1264

Figure 2: Some interesting GP statistics for datasets ionosphere with 10% of labeled examples and spam
with 50% of labeled examples: first column shows values of fitness per generation, second column shows
confidences during the voting rounds, and the third columns illustrates the percentage of examples in L
correctly classified by the committee. Vertical dashes indicate 95% confidence intervals.

�0.2

0.2

0.4

0.6

(a) Correctly classified +1

�0.8

�0.6

�0.4

�0.2

0.2

(b) Correct classified -1

�0.8

�0.6

�0.4

�0.2

0.2

(c) Misclassified +1

�0.4

�0.2

0.2

0.4

0.6

(d) Misclassified -1

Figure 3: The confidences of the committee in four possible cases: correctly classifying or missclassifying and
example

the first generations, when the models are still not com-
pletely evolved.

The next step is to use KGP in a set of real world appli-
cations to corroborate the results obtained here. Potential
applications include record deduplication and the creation of
ground truth for Web databases, such as those coming from
digital libraries or social networks. Finally, the algorithm
can also be adapted to work within a inductive framework.

6. REFERENCES
[1] D. A. Augusto, H. J. C. Barbosa, and N. F. F.

Ebecken. Coevolutionary multi-population genetic
programming for data classification. In GECCO, pages
933–940, 2010.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval: The Concepts and Technology
behind Search. Addison-Wesley Professional, 2011.

[3] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic Programming – An Introduction;

On the Automatic Evolution of Computer Programs
and its Applications. Morgan Kaufmann, Jan. 1998.

[4] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proc. of the 11th
Annual Conf. on Computational Learning Theory,
pages 92–100, 1998.

[5] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-Supervised Learning. MIT Press, 2010.

[6] D. A. COHN, L. ATLAS, and R. E. LADNER.
Improving generalization with active learning.
Machine Learning, 15(2):201Ű–221, 1994.

[7] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer, 2010.

[8] J. de Freitas, G. L. Pappa, A. S. da Silva, M. A.
Gonçalves, E. S. de Moura, A. Veloso, A. H. F.
Laender, and M. G. de Carvalho. Active learning
genetic programming for record deduplication. In

1265

Table 4: Results of macro-F1 and micro-F1 obtained by KGP
Dataset Labeled MacroF1 Accuracy

(%) KGP Self-KNN KNN KGP Self-KNN KNN
diabetes 10 0.6601 ± 0.0127 0.6616 ± 0.0134 • 0.6777 ± 0.0086 � 0.7055 ± 0.0094 0.7074 ± 0.0101 • 0.7177 ± 0.0074 �

30 0.7693 ± 0.0042 0.7733 ± 0.0064 • 0.7716 ± 0.0050 • 0.7791 ± 0.0053 0.7999 ± 0.0059 � 0.7964 ± 0.0046 �
50 0.8309 ± 0.0025 0.8441 ± 0.0048 � 0.8430 ± 0.0057 � 0.8298 ± 0.0043 0.8605 ± 0.0043 � 0.8590 ± 0.0051 �

ionosphere 10 0.7655 ± 0.0199 0.6620 ± 0.0012 � 0.7270 ± 0.0310 � 0.7766 ± 0.0195 0.6766 ± 0.0011 � 0.7457 ± 0.0293 •
30 0.8918 ± 0.0062 0.8280 ± 0.0237 � 0.8562 ± 0.0146 � 0.8990 ± 0.0061 0.8364 ± 0.0237 � 0.8645 ± 0.0146 �
50 0.9410 ± 0.0038 0.9075 ± 0.0057 � 0.9097 ± 0.0045 � 0.9454 ± 0.0035 0.9135 ± 0.0055 � 0.9156 ± 0.0043 �

magic 10 0.7889 ± 0.0017 0.7830 ± 0.0019 � 0.7728 ± 0.0019 � 0.8122 ± 0.0013 0.8056 ± 0.0014 � 0.7995 ± 0.0016 �
30 0.8402 ± 0.0010 0.8436 ± 0.0010 � 0.8389 ± 0.0008 � 0.8556 ± 0.0010 0.8584 ± 0.0009 � 0.8558 ± 0.0007 •
50 0.8807 ± 0.0013 0.8910 ± 0.0006 � 0.8889 ± 0.0007 � 0.8889 ± 0.0015 0.9011 ± 0.0006 � 0.8998 ± 0.0006 �

musk 10 0.8598 ± 0.0036 0.8735 ± 0.0039 � 0.8640 ± 0.0036 • 0.9289 ± 0.0018 0.9382 ± 0.0017 � 0.9310 ± 0.0019 •
30 0.9019 ± 0.0020 0.9259 ± 0.0019 � 0.9262 ± 0.0027 � 0.9462 ± 0.0014 0.9624 ± 0.0010 � 0.9622 ± 0.0015 �
50 0.9265 ± 0.0019 0.9529 ± 0.0019 � 0.9530 ± 0.0020 � 0.9585 ± 0.0013 0.9758 ± 0.0010 � 0.9758 ± 0.0010 �

spam 10 0.7594 ± 0.0049 0.7109 ± 0.0047 � 0.7047 ± 0.0042 � 0.7677 ± 0.0058 0.7251 ± 0.0047 � 0.7190 ± 0.0041 �
30 0.8486 ± 0.0026 0.7908 ± 0.0026 � 0.7911 ± 0.0030 � 0.8500 ± 0.0028 0.8008 ± 0.0025 � 0.8004 ± 0.0029 �
50 0.8914 ± 0.0015 0.8602 ± 0.0019 � 0.8582 ± 0.0016 � 0.8898 ± 0.0020 0.8663 ± 0.0018 � 0.8643 ± 0.0015 �

spectf 10 0.6585 ± 0.0101 0.6693 ± 0.0135 • 0.6664 ± 0.0240 • 0.7932 ± 0.0182 0.7893 ± 0.0247 • 0.7812 ± 0.0122 •
30 0.7329 ± 0.0109 0.7281 ± 0.0160 • 0.7276 ± 0.0121 • 0.8387 ± 0.0090 0.8230 ± 0.0149 • 0.8174 ± 0.0105 �
50 0.8247 ± 0.0035 0.8114 ± 0.0092 � 0.8126 ± 0.0090 � 0.8923 ± 0.0017 0.8812 ± 0.0057 � 0.8801 ± 0.0066 �

survival 10 0.6544 ± 0.0135 0.6660 ± 0.0104 • 0.6386 ± 0.0146 • 0.7625 ± 0.0065 0.7620 ± 0.0037 • 0.7482 ± 0.0111 �
30 0.7476 ± 0.0123 0.7393 ± 0.0155 • 0.7295 ± 0.0107 � 0.8171 ± 0.0078 0.8096 ± 0.0120 • 0.8031 ± 0.0081 �
50 0.8227 ± 0.0040 0.8137 ± 0.0072 � 0.8040 ± 0.0091 � 0.8676 ± 0.0027 0.8620 ± 0.0053 • 0.8542 ± 0.0067 �

wdbc 10 0.9154 ± 0.0079 0.9074 ± 0.0078 • 0.9016 ± 0.0072 � 0.9197 ± 0.0080 0.9120 ± 0.0078 • 0.9075 ± 0.0069 �
30 0.9439 ± 0.0037 0.9407 ± 0.0038 • 0.9422 ± 0.0031 • 0.9471 ± 0.0036 0.9445 ± 0.0036 • 0.9460 ± 0.0029 •
50 0.9601 ± 0.0023 0.9593 ± 0.0027 • 0.9590 ± 0.0026 • 0.9625 ± 0.0022 0.9620 ± 0.0025 • 0.9616 ± 0.0024 •

IEEE Congress on Evolutionary Computation, pages
1–8, 2010.

[9] A. Demiriz, K. Bennett, K. P. Bennett, and M. J.
Embrechts. Semi-supervised clustering using genetic
algorithms ayhan demiriz. In In Artificial Neural
Networks in Engineering (ANNIE-99, pages 809–814.
ASME Press, 1999.

[10] A. A. Freitas. Data Mining and Knowledge Discovery
with Evolutionary Algorithms. Springer-Verlag, 2002.

[11] C. Ginestet. Semisupervised learning for
computational linguistics. Journal of the Royal
Statistical Society: Series A (Statistics in Society),
172(3):694–694, 2009.

[12] Y. Hong, S. Kwong, H. Xiong, and Q. Ren.
Genetic-guided semi-supervised clustering algorithm
with instance-level constraints. In GECCO ’08:
Proceedings of the 10th Annual Conf. on Genetic and
Evolutionary Computation, pages 1381–1388, 2008.

[13] C.-W. Hsu and C.-J. Lin. A comparison of methods
for multiclass support vector machines. In IEEE
Transactions on Neural Networks, 2002.

[14] T. Joachims. Transductive inference for text
classification using support vector machines. In
Proceedings of the International Conference on
Machine Learning (ICML), pages 200–209, 1999.

[15] J. Kishore, L. Patnaik, V. Mani, and V. Agrawal.
Application of genetic programming for multicategory
pattern classification. Evolutionary Computation,
IEEE Transactions on, 4(3):242 –258, Sept. 2000.

[16] J. R. Koza. Genetic Programming: on the
programming of computers by the means of natural
selection. The MIT Press, Massachusetts, 1992.

[17] B. Maeireizo, D. Litman, and R. Hwa. Co-training for
predicting emotions with spoken dialogue data. In
Proceedings of the ACL 2004 on Interactive poster and
demonstration sessions, ACLdemo ’04, 2004.

[18] D. Muni, N. Pal, and J. Das. A novel approach to
design classifier using genetic programming. IEEE

Transactions on Evolutionary Computation,
8(2):183–196, Apr. 2004.

[19] D. J. Newman, S. Hettich, C. L. Blake, and C. J.
Merz. UCI Repository of machine learning databases.
University of California, Irvine,
http://www.ics.uci.edu/∼mlearn/MLRepository.html,
1998.

[20] Z.-Y. Niu, D.-H. Ji, and C. L. Tan. Word sense
disambiguation using label propagation based
semi-supervised learning. In Proceedings of the 43rd
Annual Meeting on Association for Computational
Linguistics, ACL ’05, pages 395–402, 2005.

[21] M. Segond, C. Fonlupt, and D. Robilliard. Genetic
programming for protein related text classification. In
GECCO, pages 1099–1106, 2009.

[22] G. Tur, D. Hakkani-Tür, and R. E. Schapire.
Combining active and semi-supervised learning for
spoken language understanding. Speech
Communication, 45(2):171 – 186, 2005.

[23] J. Wang, Y. Zhao, X. Wu, and X.-S. Hua.
Transductive multi-label learning for video concept
detection. In Proceeding of the 1st ACM International
Conference on Multimedia Information Retrieval, MIR
’08, pages 298–304, 2008.

[24] X. Zhu. Semi-supervised learning literature survey.

Technical report, University of Wisconsin Ű Madison,
2008.

[25] X. Zhu and A. B. Goldberg. Introduction to
Semi-supervised Learning. Morgan and Claypool
Publishers, 2009.

1266

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

