
Learning Cost-Efficient Control Policies with XCSF:
Generalization Capabilities and Further Improvement

Didier Marin, Jérémie Decock, Lionel Rigoux, and Olivier Sigaud
Institut des Systèmes Intelligents et de Robotique

Paris, France
marin@isir.upmc.fr, jeremie.decock@gmail.com, rigoux@isir.upmc.fr,

olivier.sigaud@upmc.fr

ABSTRACT
In this paper we present a method based on the “learning
from demonstration” paradigm to get a cost-efficient control
policy in a continuous state and action space. The controlled
plant is a two degrees-of-freedom planar arm actuated by
six muscles. We learn a parametric control policy with xcsf
from a few near-optimal trajectories, and we study its ca-
pability to generalize over the whole reachable space. Fur-
thermore, we show that an additional Cross-Entropy Policy
Search method can improve the global performance of the
parametric controller.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Theory, Algorithms

Keywords
XCSF, Reinforcement Learning, Cross-Entropy, Control

1. INTRODUCTION
The design of adaptive systems able to deal with sequen-

tial decision problems in continuous state and action spaces
is a difficult matter. The straightforward approach to this
problem consists in adapting the conceptual tools of the dis-
crete Reinforcement Learning (RL) framework to the con-
tinuous case. This generates intensive research and, in par-
ticular, the direct Policy Search methods are providing more
and more interesting results (e.g. [9, 10]). But these meth-
ods are complex, require a lot of tuning and are plagued
with local minima problems. In particular, they include no
generalization mechanism. In [11], Lanzi presented Learn-
ing Classifier Systems (lcss) as RL systems endowed with a
generalization property. In the recent lcs literature, some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

preliminary attempts have addressed the continuous action
case, but along one dimension only and with limited results
[23, 28].

Meanwhile, lcs research has significantly shifted towards
supervised learning problems, either classification or regres-
sion (e.g. [1]). In that context, solving single-step problems
has received more and more attention in the community by
contrast with multi-step, sequential decision problems. One
of the most celebrated lcs in the literature, xcsf, can be
seen as the ultimate representative of this tendency. Indeed,
it is a competitive general purpose function approximation
tool based on regression mechanisms, from which all sequen-
tial decision mechanisms and the notion of action have been
removed.

However, one can solve sequential decision or control prob-
lems with classification or regression tools by learning from
demonstration. This approach provides a more indirect, but
also easier way towards adaptive control or continuous state
and action decision making, provided a pre-existing non-
adaptive solution. In this paper, we present an instantiation
of such an approach, where the excellent regression capabil-
ities of xcsf are combined with a stochastic optimization
process so as to learn a policy from demonstration and then
optimize it by tuning its parameters.

The broader context of the study is the design of a compu-
tational model of skill consolidation in reaching movements
based on a previous model of human motor control. In [14],
the authors presented a model of reaching movements based
on a computationally expensive variational calculus process.
A crucial feature of their model is that the generated move-
ments do not depend on time. This results in the possibility
to learn stationary policies from the model. Here, we focus
on the capability of xcsf to learn such continuous state and
action policies from a set of trajectories generated by this
planning system. In particular, we show that the propen-
sity of xcsf to generalize based on learning from only a
few planned movements can result in the generation of an
efficient controller for the whole state space of the plant.

However, the resulting policy is generally suboptimal. Thus,
in a second step, we show that the policy represented by
xcsf classifiers can be improved by a stochastic optimiza-
tion process that acts on the population parameters. This
additional process can be seen as a way of reintroducing an
RL process into xcsf. We study experimentally the capa-
bility of this additional process to improve the performance
of the resulting policy.

The paper is organized as follows. In Section 2, we present
all the methods used in the paper to realize the skill consol-

1235

idation model. In Section 3, we present the model itself and
the design of the experiments. Results are given in Section 4
and discussed in Section 5. Finally, Section 6 concludes and
presents the perspectives of this work.

2. METHODS
In this section, we describe the methods used in our work.

We start with the background necessary to understand the
optimal control method used in [14] and the Cross-Entropy
Policy Search (ceps) algorithm used to optimize a paramet-
ric policy. Then, we give an overview of xcsf and its use
for learning the controller optimized by ceps.

2.1 Optimal control of reaching movements

2.1.1 Optimal control and MDPs
Optimal control and Markov Decision Processes (MDPs)

with continuous state and actions are two similar frame-
works for solving problems where a plant must perform a
task while optimizing an objective function [2]. At a time
step t, the state of the plant is a vector xt ∈ X and the
action it performs is a vector ut ∈ U . The objective func-
tion r : X × U → R indicates how interesting it is to be
in a given state and to perform a given action, relatively
to the problem at hand. In the optimal control literature,
the objective function is expressed as a cost function to be
minimized. In the RL framework, it is called the “reward
function” and must generally be maximized.

The quality of a policy π for a given state x is expressed by
its value function, which is the expectation of the discounted
sum of costs/rewards over time

V π(x) = E

[∞∑
t=0

γtr(xt,ut)|x0 = x

]

where γ is the discount factor which is related to the uncer-
tainty about the future. In optimal control, the equivalent
of the value function is called the cost-to-go.

2.1.2 A model of reaching movements
In [14], the authors proposed a model of human reach-

ing movement based on the now prominent optimal control
paradigm in the human motor control literature [7, 22]. The
model is based on the assumption that motor control is gov-
erned by an optimal feedback policy computed at each vis-
ited state with respect to the value function V , for a reward
function that involves a trade-off between muscular effort
and goal-related reward

r(xt,ut) = α‖ut‖2 − βg(xt) (1)

where α is a weight on the effort term, g is a function which
is null everywhere except for the target state where it is 1,
and β is a weight on the reward term.

The corresponding near optimal deterministic policy is ob-
tained through a computationally expensive variation calcu-
lus method. The feedback controller, resulting from the cou-
pling of this policy with an optimal state estimator, drives
the plant towards the rewarded state. Given that the policy
does not take the presence of noise in the model into ac-
count, the actions must be computed again at each time step
depending on the new state reached by the plant. Overall,
generating a trajectory with this method is extremely costly.
Hereafter, this controller is called Quasi-Optimal Planning

System (qops). Indeed, the trajectories are not optimal in
the strict sense, given the presence of non-modeled noise.

2.2 Policy Search methods
In the control approach described above, the controls are

computed only along the current trajectory of the system.
By contrast, in the MDP framework, the choice of an action
according to a state is determined by a stationary policy
π : X → Π(U), which maps each state to a distribution over
actions: π(ut|xt) = P (ut|xt, π). In this paper, we consider
only deterministic policies written ut = π(xt) for simplicity.
Since the number of states and actions is infinite, one cannot
represent exactly a non-trivial policy in this context. This
is why we call upon parametric policies.

2.2.1 Parametric policies
A parametric policy spans a family of policies defined by

a function π : Θ × X → Π(U) chosen a priori. Different
policies are obtained by spanning a set of vectors Θ. We
notate πθ the policy parametrized by θ ∈ Θ and we simply
write it θ when πθ is used as a parameter.

Given a distribution P0 of the initial state of a plant, the
global performance of the controller can be expressed as the
objective function

J(θ) = E

[
V θ(x) | x ∼ P0

]
.

The optimal policy is therefore the one that maximizes
the objective function. Since we only consider the subset of
policies parametrized by a real vector, we can only find the
best policy within this subset

θ∗ = argmaxθ J(θ)

where θ∗ denotes an optimal set of policy parameters. The
problem at hand can thus be considered as a continuous and
stochastic optimization problem.

2.2.2 Gradient Policy Search methods
A standard way to optimize a parametric policy given an

objective function consists in performing a gradient descent
over the space of parameters. This class of problems has
attracted a lot of attention in RL (see [13] for an overview).
The approach that makes the fewest assumption is called
the Finite Differences methods. It simply consists in com-
puting the performance of the policy for different values
of the parameters and ascending the gradient of the per-
formance through these values. More powerful methods
assume that the derivative of the objective function with
respect to parameters is known, which makes the compu-
tation of the gradient more efficient. This is the case of
Episodic REINFORCE [24], Natural Policy Gradient meth-
ods [13] or the PoWER algorithm [9]. The latter corresponds
to a recent approach of continuous RL problem based on
Expectation-Maximization algorithms that, among other in-
teresting properties, can be used to combine nicely RL and
some learning from demonstration methods. However, de-
spite convincing results in robotics [9, 10], such methods are
complex, sensitive to many hyper-parameters, and still diffi-
cult to apply to large continuous state and action problems.

2.2.3 The Cross-Entropy method
The Cross-Entropy method [15] is a general Monte-Carlo

approach which can be used for continuous optimization

1236

Algorithm 1 Cross-Entropy Policy Search

Require: (μ0,σ
2
0): initial mean and standard deviation of

the parameters distribution
ρ: proportion of the best samples to use for the update
σ̄2: additional noise term
T : number of iterations
N : number of parameters samples to draw
M : number of trials for each policy evaluation
H : time horizon of the simulations

for t = 1 · · ·T − 1 do
θ(1),θ(2), · · · ,θ(N) ← N (μt,σ

2
t)

for i = 1 · · ·N do
Perform M simulations using policy πθ(i) up to H
Compute an estimated performance of policy πθ(i)

J(i) = 1
M

∑M
j=1

∑H−1
h=0 γhrj,h where rj,h is the reward

at time h for the jth episode
end for
Sort the parameter samples θ(i) according to J(i) and
compute the set Sρ of the ρ-best parameter samples
μt+1 ← mean(Sρ)
σ2

t+1 ← std(Sρ) + σ̄2

end for
return optimized policy parameters θ = μT

[16]. As opposed to the gradient descent methods described
above, it does not assume that the objective function is dif-
ferentiable or even continuous.

Given a problem and looking for a solution w that op-
timizes an objective function S, instead of using a single
solution that is updated over iterations, it consists in im-
proving a distribution f ∈ F over solutions w ∈ W in terms
of their value.

At iteration t, it computes a new distribution ft+1 by
bringing the current distribution ft as close as possible to
the distribution gt = {∀w|S(w) > γt} of solutions which
evaluation is over a threshold γt. The distance between dis-
tributions is expressed in terms of cross-entropy i.e., it min-
imizes H(ft+1, gt) = Eft+1 [− log gt]. This computation is
performed by evaluating N samples from ft, which provides
an estimation of H(ft+1, gt) by importance sampling. Each
threshold γt is computed using these samples, by selecting
a proportion ρ ∈]0, 1[of the best samples.

By choosing the normal law as family of distributions F ,
we get ft+1 simply by computing the mean μt and the stan-
dard deviation σ2

t from the ρ-best samples of ft. Moreover,
[6] suggests to add a small noise σ̄2 to the standard devia-
tion to avoid premature convergence. This general method
is illustrated in Fig. 1 (borrowed from [21]).

2.2.4 Cross-Entropy Policy Search
We apply this technique to policy search, using the policy

parameters θ as the solutions w and the performance crite-
rion J as the objective function S. The complete algorithm,
named Cross-Entropy Policy Search (ceps) is described in
Algorithm 1.

This approach was already suggested in [20] to learn an
optimal policy for the game Tetris but, despite its surprising
efficiency and simplicity compared to competitive direct Pol-
icy Search in RL, it has not been applied yet to continuous
state and action problems.

1.Start with the normal distribution

N (μ,σ²)

2. Generate N vectors with this

distribution

3. Evaluate each vector and select a

proportion ρ of the best ones. These

vectors are represented in grey

4. Compute the mean and standard

deviation of the best vectors

5. Add a noise term to the standard

deviation, to avoid premature

convergence to a local optimum

6. This mean and standard deviation

define the normal distribution of

next iteration

Figure 1: Schematic view of the Cross-Entropy
method.

2.3 XCSF
The xcs Learning Classifier System [3, 25] is an efficient

accuracy-based lcs designed to solve classification problems
and sequential decision problems. The eXtended Classifier
System for Function approximation (xcsf) algorithm [26,
27] is an evolution of xcs towards function approximation.

As any lcs, xcsf manages a population of rules, called
classifiers. These classifiers contain a condition part and a
prediction part. In xcsf, the condition part defines the re-
gion of validity of a local model whereas the prediction part
contains the local model itself. xcsf is a generic framework
that can use different kinds of prediction models (linear,
quadratic, etc.) and can pave the input space with different
families of regions (Gaussian, hyper-rectangular, etc.). In
the context of this paper, we only consider the case of linear
prediction models and Gaussian regions.

A classifier defines a domain φi(z) and uses a correspond-
ing linear model βi to predict a local output vector yi rel-
ative to an input vector xi. The linear model is updated
using the Recursive Least Squares (rls) algorithm, the in-
cremental version of the Least Squares method.

The classifiers in xcsf form a population P that clus-
ters the condition space into a set of overlapping prediction
models. xcsf uses only a subset of the classifiers to generate
an approximation. Indeed, at each learning iteration, xcsf
generates a match set M that contains all reliable classifiers

1237

Figure 2: Arm model. (a) Schematic view of the arm mechanics. (b) Schematic view of the muscular
actuation of the arm, where each number represents a muscle whose name is in the box.

in the population P whose condition space Z matches the
input data z i.e., for which φi(z) is above a threshold φ0

1.
In xcsf, the output ŷ is given for a (x,z) pair as the sum

of the linear models of each matching classifier i weighted
by its fitness Fi

ŷ (x,z) =
1

F (z)

nM∑
i=1

Fi (z) ŷi (x) (2)

where F (z) =

nM∑
i=1

Fi (z) and nM is the number of classifiers

in the match set M . In all other respect, the mechanism
that drive the evolution of the population of classifiers are
directly inherited from xcs. In sum, xcsf is designed to
evolve partitions in which linear approximations are maxi-
mally accurate. A more complete description of xcsf can
be found in [4, 5].

2.4 General architecture

Figure 3: General architecture of the experiments.

Fig. 3 describes the global architecture used for our ex-
periments. A set of near-optimal state-action trajectories
generated by the qops (Fig. 3 (a)) provide supervised learn-
ing samples, using the state of the plant as the condition
1This threshold is named θm in [4]

and prediction space input and the action as the output on
which regression is performed.

By feeding xcsf with such samples (Fig. 3 (b)), we gener-
ate an action for any state within the range of the population
of classifiers. Using a default action udefault for states that
are not covered by the population (that is for which xcsf
does not predict anything), we get a mapping from states
to actions i.e., a deterministic policy. We call it the “xcsf
policy”. It is parametric since each classifier has parameters
in its condition and prediction parts.

This xcsf policy is then adapted using ceps (Fig. 3 (c)).
We generate a set of xcsf policies by slightly changing the
parameters of the initial policy. Each policy in this set cor-
responds to a dot in Fig. 1. In practice, we only tune the
prediction part parameters of the classifiers: the shape and
fitness of each classifier are not adapted. In other words,
policy parameters (i.e., ceps samples) θ are large vectors
composed of the weights of each local model.

3. EXPERIMENTAL DESIGN
We now illustrate the use of xcsf for learning to control

an arm to reach a given point with its end-effector.

3.1 Arm model
The plant is a two degrees-of-freedom planar arm con-

trolled by 6 muscles, illustrated in Fig. 2. It is a simplified
version of the one described in [12]. All the angles are ex-
pressed in radians. The equations of its dynamics can be
found in Appendix A.

The state-space consists of the target articular position
q∗, the current articular position q of the arm and its cur-
rent articular speed q̇. The state s = (q∗, q, q̇) has a total of
6 dimensions. The initial state is defined by q = [0.5, 0.59],
null speed and a variable target position. The positions
are bounded to represent the reachable space of a standard
human arm, with q1 ∈ [−0.6, 2.6] and q2 ∈ [−0.2, 3.0], as
shown in Fig. 4. The action-space consists of an activation
signal for each muscle, which also makes a total of 6 dimen-
sions. The action is perturbed by a multiplicative noise of
standard deviation σ2

u = .02. The simulator uses the Euler
method with a time step of Δt = 2 ms and is stopped after
H = 1000 time steps. Reaching is successful when the Eu-
clidean distance from the end-effector to the target is under
d = 0.01m. There is no explicit condition on velocity, but
the method used in [14] makes so that the velocity is very
low close to the goal. The reward function (see Equation

1238

Figure 5: Trajectories obtained with QOPS for the learning targets (a), testing targets (b) and of the XCSF-
based policy for the testing targets (c). The starting position is represented by a dot. The targets are
represented by a cross. In (b) and (c), the dots represents the learning targets.

Figure 4: The arm workspace. The reachable space
is delimited by a spiral-shaped envelope. The two
segments of the arm are represented by two bold
lines. The initial configuration is the one repre-
sented. Learning targets are indicated by dots and
testing targets by crosses.

(1)) is parametrized by α = 200Δt and β = 40γ with the
discount factor γ set to e−Δt.

3.2 Experimental setup
The qops is implemented in C++ with the Eigen library.

It writes the computed trajectories into text files. We use
the JavaXCSF [19] implementation of xcsf, and the main
code for the experiments as well as the ceps algorithm are
also implemented in Java. For plotting the results, we use
Python with the Matplotlib library [8]. The experiments are
run on a Intel Core 2 Duo E8400 @ 3 GHz with 4 GB RAM.
We perform two experiments.

3.2.1 Generalization with XCSF
First, we create two sets of target positions, one for learn-

ing and the other for testing. 100 learning targets are drawn
according to a normal law centered on the center of the
reachable space (mean (x = −0.059, y = 0.44) and stan-
dard deviation 0.1). The testing targets correspond to an
11 × 11 grid covering the reachable space. All trajectories
in all experiments are starting from the same point in the
upper-right part of the reachable space (see Fig. 4).

The qops is used to generate one trajectory for each learn-
ing target and each testing target. Then, xcsf learns to pre-
dict the actions of the qops for the learning targets, using
the generated trajectories, and is tested as a policy on the
testing targets. The condition and prediction space contain
states s. The performance and the trajectories obtained
with the xcsf policy are compared to those generated by
the qops, to see how good the xcsf policy generalizes to a
broader range of targets.

3.2.2 Adaptation with CEPS
Second, the xcsf policy obtained in the previous experi-

ment is optimized using ceps. Each policy is evaluated on
the full set of testing targets: the global performance of a
policy is the mean of the performance for each testing tar-
get. We only run one episode to evaluate the performance
for a target.

3.3 Parameters
xcsf is tuned as follows. The number of iterations is

set to 100, 000 and the maximum size of the population to
6, 400. The input are normalized: the target and current
positions are bounded by the reachable space and the speed
is bounded by [−100,+100] rad.s−1. The default action
udefault is set to a vector of zeros i.e., no muscular activa-
tion. After tuning empirically the parameters, the learning
rate α (named beta in JavaXCSF) is set to 1.0, and com-
paction is disabled2. Multithreading is disabled to improve
reproducibility.

For ceps, the number of iterations T is set to 40, each
consisting in the evaluation of N = 100 policies. Each target
being evaluated only once, the number of trials M is 121 i.e.,
the number of testing targets. The proportion of selected
episodes ρ is set to 0.01: only the best over the 100 policies
is selected (and thus becomes the new mean of the policy
parameters distribution). An additional noise σ̄2 = 0.01
is used as the new variance σ2 of the policy parameters
distribution, which is also initialized to 0.01.

4. RESULTS
In this section, we present the results obtained with the

experimental setup described in the previous section. In the
first part, we study whether the policy learned with xcsf is

2startCompaction=resetRLSPredictionsAfterSteps=2

1239

Figure 6: Performance of the QOPS (a), the XCSF policy (b) and the XCSF policy optimized by CEPS (c)
given the target position, obtained by interpolating the performances for the testing targets (small dots).
The learning target positions are indicated by big dots, and the starting position by a star. The performance
is computed according to Equation (1) and represented as a color according to the right-hand side scale.

similar to the one obtained with the optimal control process
for the same targets and how well xcsf generalizes over dif-
ferent targets. In the second part, we study whether ceps is
able to improve the performance of the learned policy where
generalization resulted in a poor performance.

4.1 Performance of XCSF policy and general-
ization

The average running time to get one trajectory from the
qops is ∼ 10 min. From the xcsf policy, it is ∼ 2.0 s.
Optimizing the xcsf policy with ceps does not increase the
time necessary to generate one trajectory.

Fig. 5(a) shows the set of trajectories used for learning
the xcsf policy. Fig. 5(b) shows a set of trajectories ob-
tained from the qops for a few targets selected in the testing
set. Fig. 5(c) shows the trajectories generated with the xcsf
policy for the same targets. The general shape of these tra-
jectories is similar, even though the qops generates slightly
more curved trajectories for the furthest targets.

Fig. 6(a) shows the performance of the qops as a function
of the target position, obtained by interpolating the perfor-
mance of the qops trajectories for the testing set of targets.
Fig. 6(b) shows the performance of one representative xcsf
policy, which is very close to the qops performance for tar-
gets located near the learning set. One can also see that
the performance for more distant targets is generally lower,
but is equivalent to that of the qops on some targets. The
discontinuity in the performance of the upper part of the
learning targets region can be explained by the bifurcation
in the learning trajectories (see Fig. 5(a)).

4.2 Performance after CEPS optimization
Fig. 6(c) shows the performance of the xcsf policy after

applying ceps to optimize its parameters.
One can see that the performance has been globally im-

proved over the whole reachable space. Actually, this global
improvement is always statistically significant since ceps
cannot decrease the global performance. In particular, the
region around (x = 0.4, y = 0.35) where the performance
of the xcsf policy was very poor has been brought much
closer to the optimal performance. The results in Table 1

Table 1: Performance (see Equation (1)) on test-
ing targets. The first two columns show the perfor-
mance and standard deviation over targets as well
as the percentage of performance with respect to
QOPS for the full workspace. The last two columns
show the same for a reduced space (crosses on Fig. 5
(b) and (c)).

full set %qops reduced set %qops
qops 25.85 ± 7.5 100% 27.27± 1.8 100%
xcsf −3.59± 45.8 12% 26.95± 1.9 99%
+ceps 9.32± 22.0 32% 24.06 ± 10.6 88%

confirm quantitatively this visual feeling. By comparing col-
umn 2 with column 4, one can see that the large difference
in performance over the whole reachable space between the
qops and the xcsf policy is mainly due to small areas where
the performance is very low. Indeed, when considering only
points in the regions where all learning points are lying (re-
duced set in Table 1), one can see that the performance is
closer to the optimum. But, interestingly, this performance
decreases in this region after applying ceps. These points
are discussed below.

5. DISCUSSION
The first and most obvious outcome of using the xcsf pol-

icy as controller is that it is about 300 times faster than the
qops. As a result, the model may account for the real-time
execution of a movement, which is far from being the case
with the qops. In this context, the generalization capability
of xcsf matters a lot, too. Indeed, training xcsf with qops
would be very long if many trajectories were necessary to
obtain a satisfactory performance of the learned policy. As
shown in Fig. 6(b), a few trajectories are enough. However,
as highlighted in Section 4.2, even if the performance is sat-
isfactory in a region that is larger than the one where xcsf

1240

was trained, it can drop dramatically outside the training
region and its variance is high.

The fact that the performance is lower and that the vari-
ance is high outside the training region is not surprising.
Indeed, xcsf has to extrapolate from its local knowledge,
which may be difficult in regions where the behavior of the
plant differs from what was learned in the training region. In
that respect, using ceps in order to further improve the per-
formance has interesting effects. First, to perform parameter
optimization, ceps generates additional trajectories in the
whole reachable space, thus it incorporates some knowledge
of the behavior of the plant that was not accessible to xcsf
during training. It does so based on the xcsf policy, thus
the additional cost is limited with respect to using further
qops trajectories. However, since ceps optimizes a global
criterion over the whole space, one can also see that the
resulting averaging of performance induces a local loss of
performance in the training region where xcsf produced a
very efficient policy.

To circumvent this effect, we should train our system us-
ing one target at a time and design a more local criterion
that would improve the performance only with respect to the
current target. Furthermore, it would be interesting to de-
rive a more local method that would act preferentially on the
classifiers that most need it, without disrupting the whole
population. The most appealing way of performing this new
derivation would be to introduce the stochastic optimization
process within the mechanisms of xcsf. This latter option
is in our immediate research agenda.

6. CONCLUSION
In this paper, we have shown that xcsf could be used

to learn a cost-efficient continuous state and action policy
based on a costly quasi-optimal planning system. The re-
sulting controller is fast and the generalization capability of
xcsf makes the learning process reasonably easy in practice.
Furthermore, we have shown that, on top of xcsf, one could
use a stochastic optimization algorithm to further improve
the policy, endowing the global system with RL capabilities
that are hard to obtain in a continuous state and action con-
text. However, from our empirical results, one can see that
the global system is not close enough to the performance
one gets with the qops. In order to further improve it, the
most immediate options are the following:
•One may consider other prediction models (e.g. quadratic

instead of linear) or definition of regions (e.g. hyper-rectangu-
lar instead of Gaussian).
• One may apply ceps to a larger set of parameters from

the xcsf population. For instance, the condition part could
be exploited i.e., the classifiers shape could also be opti-
mized. Furthermore, the population itself could be improved
by additional parameters i.e., adding or deleting classifiers
could be considered as changing parameters. The counter-
part of optimizing over a larger set of parameters is that
optimization would take more time.
• Like genetic algorithms, ceps does not use the gradient

of the performance with respect to the policy parameters
to improve them. However, since the xcsf model is differ-
entiable, we could apply some sophisticated gradient-based
RL methods such as [10, 13]. Based on the results of [21],
though they benefit from more relevant information, it is not
clear that such methods would necessarily perform better.
• Finally, to get a significant improvement, ceps needs to

generate a lot of trajectories. Instead of actually generating
them which is time consuming when the plant is complex,
one may rather try to learn a model of the plant, as presented
in [17, 18] for instance, and use this model to improve the
policy with virtual experiments based on that learnt model.

Acknowledgements
This work was supported by the Ambient Assisted Living
Joint Programme of the European Union and the National
Innovation Office (DOMEO-AAL-2008-1-159), more at
http://www.aal-domeo.eu.

7. REFERENCES
[1] E. Bernadó-Mansilla, X. Llorà, and J. M. Garrel. XCS

and GALE : a comparative study of two Learning
Classifer Systems with six other learning algorithms
on classification tasks. In P.-L. Lanzi, W. Stolzmann,
and S. W. Wilson, editors, Proceedings of the fourth
international workshop on Learning Classifer Systems,
2001.

[2] D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, Belmont, MA, 1995.

[3] M. V. Butz, D. Goldberg, and P. Lanzi.
Computational Complexity of the XCS Classifier
System. Foundations of Learning Classifier Systems,
51:91–125, 2005.

[4] M. V. Butz and O. Herbort. Context-dependent
predictions and cognitive arm control with XCSF. In
Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pages 1357–1364. ACM
New York, NY, USA, 2008.

[5] M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson.
Toward a theory of generalization and learning in xcs.
IEEE Transactions on Evolutionary Computation,
8(1):28–46, 2004.

[6] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y.
Rubinstein. A Tutorial on the Cross-Entropy Method.
Annals of Operations Research, 134(1):19–67, 2005.

[7] E. Guigon, P. Baraduc, and M. Desmurget.
Optimality, stochasticity and variability in motor
behavior. Journal of Computational Neuroscience,
24(1):57–68, 2008.

[8] J. Hunter. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, pages 90–95,
2007.

[9] J. Kober and J. Peters. Policy search for motor
primitives in robotics. Advances in Neural Information
Processing Systems (NIPS), pages 1–8, 2008.

[10] P. Kormushev, S. Calinon, and D. G. Caldwell. Robot
Motor Skill Coordination with EM-based
Reinforcement Learning. In Proc. of IEEE/RSJ Intl
Conf. on Intelligent Robots and Systems (IROS-2010),
2010.

[11] P.-L. Lanzi. Learning Classifier Systems from a
Reinforcement Learning Perspective. Journal of Soft
Computing, 6(3-4):162–170, 2002.

[12] W. Li. Optimal control for biological movement
systems. PhD thesis, University of California, San
Diego, 2006.

[13] J. Peters and S. Schaal. Reinforcement learning of
motor skills with policy gradients. Neural networks :

1241

the official journal of the International Neural
Network Society, 21(4):682–97, 2008.

[14] L. Rigoux, O. Sigaud, A. Terekhov, and E. Guigon.
Movement duration as an emergent property of reward
directed motor control. In Proceedings of the Annual
Symposium Advances in Computational Motor
Control, 2010.

[15] R. Y. Rubinstein. Optimization of computer
simulation models with rare events. European Journal
of Operational Research, 99(1):89–112, 1997.

[16] R. Y. Rubinstein. The cross-entropy method for
combinatorial and continuous optimization.
Methodology and Computing in Applied Probability,
1(2):127–190, 1999.

[17] C. Salaün, V. Padois, and O. Sigaud. Control of
redundant robots using learned models: an
operational space control approach. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 878–885, 2009.

[18] P. Stalph, J. Rubinsztajn, O. Sigaud, and M. Butz. A
Comparative Study: Function Approximation with
LWPR and XCSF. In Proceedings of the 13th
International Workshop on Advances in Learning
Classifier Systems, 2010.

[19] P. O. Stalph and M. V. Butz. Documentation of
JavaXCSF. Technical report, COBOSLAB, 2009.

[20] I. Szita and A. Lörincz. Learning Tetris using the
noisy cross-entropy method. Neural computation,
18(12):2936–41, 2006.

[21] C. Thiéry. Itération sur les Politiques Optimiste et
Apprentissage du Jeu de Tetris. PhD thesis, Université
Henri Poincaré - Nancy 1, 2010.

[22] E. Todorov and M. I. Jordan. Optimal feedback
control as a theory of motor coordination. Nature
Neurosciences, 5(11):1226–1235, 2002.

[23] T. H. Tran, C. Sanza, Y. Duthen, and D. T. Nguyen.
XCSF with computed continuous action. In
Proceedings of the 9th annual Conference on Genetic
and Evolutionary Computation (GECCO’07), pages
1861–1869. ACM New York, NY, USA, 2007.

[24] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine Learning, 8(3-4):229–256, 1992.

[25] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.

[26] S. W. Wilson. Function approximation with a
classifier system. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2001), pages 974–981, San Francisco,
California, USA, 2001. Morgan Kaufmann.

[27] S. W. Wilson. Classifiers that Approximate Functions.
Natural Computing, 1(2-3):211–234, 2002.

[28] S. W. Wilson. Three architectures for continuous
action. Technical report, No. 2006019, Illinois Genetic
Algorithms Laboratory, University of Illinois at
Urbana-Champaign, 2006.

APPENDIX

A. ARM DYNAMICS
Table 2 gives a nomenclature of the parameters and variables

of the arm model. The arm dynamics is computed as follows,

Table 2: Parameters of the arm model.
mi mass of segment i (kg)
li length of segment i (m)
si inertia of segment i (kg.m2)
di distance between the center of

segment i and its center of mass (m)
κ Heaviside filter parameter
A moment arm matrix
T muscular tension
M inertia matrix
J Jacobian matrix
C Coriolis force
τ segments torque (N.m)
B damping
u raw muscular activation (action)
σ2
u multiplicative muscular noise
ũ filtered noisy muscular activation
q∗ target articular position (rad)
q current articular position (rad)
q̇ current articular speed (rad.s−1)

given the current state xt = (q∗,q, q̇) and action ut:

m1 = 1.4, m2 = 1.1, l1 = .30, l2 = .35
s1 = .11, s2 = .16, d1 = .025, d2 = .045, κ = 25
k1 = d1 + d2 +m2l21, k2 = m2l1s2, k3 = d2

A =

[
.04 −.04 0 0 .028 −.035
0 0 .025 −.025 .028 −0.35

]�

T =
[
700 382 572 445 159 318

]

M =

[
k1 + 2k2 cos(q2) k3 + k2 cos(q2)
k3 + k2 cos(q2) k3

]

J =

[−l1 sin(q1)− l2 sin(q1 + q2) −l2 sin(q1 + q2)
l1 cos(q1) + l2 cos(q1 + q2) l2 cos(q1 + q2)

]

C =
[−q̇2(2q̇1 + q̇2)k2 sin(q2) q̇21k2 sin(q2)

]

B =

[
.05 .025
.025 .05

]
q̇t

ũ = log(exp(κ× ut × (1 +N (0, Iσ2
u))) + 1)/κ

τ = A�(T × ũ)

∂q∗/∂t = 0
∂q̇/∂t = M−1(τ −C −B) xt+1 = xt + ∂xt/∂t ×Δt
∂q/∂t = q̇

where × refers to the element-wise multiplication and I is a

6× 6 identity matrix.

1242

