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ABSTRACT
Clustering is a fundamental and hence widely studied prob-
lem in data analysis. In a multi-objective perspective, this
paper combines principles from two different clustering para-
digms: the connectivity principle from density-based meth-
ods is integrated into the partitional clustering approach.
The standard k-Means algorithm is hybridized with Parti-
cle Swarm Optimization. The new method (PSO-kMeans)
benefits from both a local and a global view on data and
alleviates some drawbacks of the k-Means algorithm; thus,
it is able to spot types of clusters which are otherwise diffi-
cult to obtain (elongated shapes, non-similar volumes). Our
experimental results show that PSO-kMeans improves the
performance of standard k-Means in all test cases and per-
forms at least comparable to state-of-the-art methods in the
worst case. PSO-kMeans is robust to outliers. This comes at
a cost: the preprocessing step for finding the nearest neigh-
bors for each data item is required, which increases the initial
linear complexity of k-Means to quadratic complexity.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Algorithms, Design, Experimentation

Keywords
multi-criteria clustering, k-Means, PSO, hybridization

1. INTRODUCTION
Clustering is a fundamental exploratory analysis problem

akin to discovering natural groupings in data 1. It is known
to be a hard optimization problem mainly in its unsuper-
vised version. The lack of any knowledge, except the data

1Where no other explicit statement is made, we imply the
partition version of clustering.
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themselves, poses important challenges at different stages
in clustering analysis: choosing the right distance function
and the relevant features, defining the clustering criteria,
validating the solution.

Clustering has a huge search space and a vaguely defined
optimum; these characteristics of the problem are addressed
in the existing literature by means of various heuristics and
experimental studies.

Different paradigms optimize different criteria and thus
deliver different partitions in data. Algorithms like K-Means
or hierarchical forms (such as Ward’s algorithm and average
link) account for the global structure/distribution in data.
There are also algorithms which exploit only local properties
and stipulate that neighboring data items should share the
same cluster. This approach to clustering is called the con-
nectivity principle and is implemented in the single-link hi-
erarchical algorithm and in density-based methods like DB-
SCAN.

Each of the algorithms mentioned above has advantages
and disadvantages with regard to the computational time
and parameters tuning. More importantly, they deliver dif-
ferent solutions. Each algorithm is appropriate to a specific
distribution in data. The k-Means algorithm is very effective
with regard to the computational time or parameter tuning
but is applicable to gaussian clusters of equal volumes. The
connectivity principle yields clusters of various shapes but
the methods implementing it may suffer from the ’chaining
effect’ that causes undesirable elongated clusters, or are very
sensitive to parameters.

Soft computing techniques were proposed to alleviate some
of the drawbacks of the traditional clustering algorithms.
Most of them minimize the within-cluster variance, being
inspired by the k-Means algorithm.

There are a few strategies designed for clustering that
optimize simultaneously several criteria. The use of multi-
objective evolutionary algorithms is one of the most impor-
tant contributions in this regard: the solution is evolved
considering several criteria [8].

The current paper proposes a hybridization of k-Means
with a Swarm Intelligence technique, aiming at enhancing
the performance of the traditional clustering algorithm. Our
method is consistently different from existing approaches
for clustering based on Swarm Intelligence. Particle Swarm
Optimization is used to introduce the connectivity princi-
ple into the centroid-based clustering algorithm; the new
method thus takes into account both the local and global
distribution of data.

Section 2 summarizes the use of Evolutionary Compu-

1227



tation techniques for clustering with emphasis on Particle
Swarm Optimization (PSO). Section 3 presents the hybridiza-
tion we propose. The experiments are described in sections
4 and 5, and conclusions are drawn in Section 6.

2. EVOLUTIONARY AND SWARM
INTELLIGENCE TECHNIQUES IN
CLUSTERING

In general, in Evolutionary Computation (EC), a popu-
lation of complete solutions evolves during an iterative pro-
cess, and consequently most approaches to clustering based
on EC techniques are relocation methods, that improve
initially generated partitions. Several encodings were pro-
posed to represent partitions: the straightforward group-
encoding representation [14], permutations [12], boolean
k×n matrices [2]. One of he most popular encoding is the
string of cluster representatives introduced in [15]. The
criteria optimized in these approaches are generally based on
the intra-cluster variance and the between-cluster variance.

Unlike the above-mentioned methods, multi-modal evolu-
tionary algorithms were used to search for cluster centers
that lie in dense regions in the feature space [7, 16, 21].
Gaussian functions are used to measure the fit of cluster
centroids. A complete clustering solution (partition) is then
constructed based on all the individuals in the population.

Sarafis et al. [19] use a grid-based approach and a ge-
netic algorithm to search for a partition of the feature space
that implicitly provides a partition of the data set. The al-
gorithm evolves rules which build a grid in the feature space.
Each individual consists of a set of k clustering rules, each
rule corresponding to one cluster. Each rule is encoded in m
genes and each gene corresponds to an interval involving one
feature. The authors attempt to alleviate certain drawbacks
related to the classical minimization of square-error criterion
by suggesting a fitness function that takes into consideration
cluster asymmetry, density, coverage and homogeneity. The
method is able to discover clusters of various shapes, sizes
and densities. This comes at a high computational cost due
to the form of the fitness function.

A notable contribution the field of Evolutionary Compu-
tation made to clustering is the use of multi-objective algo-
rithms, which allow for simultaneous optimization of several
criteria. Handl et al. [8] optimize both intra-cluster variance
and connectivity. The encoding they use is the locus-based
adjacency representation. A value j assigned to the ith
gene, is interpreted as a link between data items i and j: in
the resulting clustering solution they will be in the same clus-
ter. The decoding of this representation requires the identi-
fication of all connected components. All data items belong-
ing to the same connected component are then assigned to
one cluster. The representation is well-suited for standard
crossover operators. Moreover, in conjunction with an ob-
jective function based on connectivity, this encoding allows
for discovering clusters of various shapes. The method im-
proves substantially over traditional methods like k-Means
and hierarchical versions, methods which optimize a single
objective out of the two under consideration.

Inspired by dimensionality reduction techniques, Swarm
Intelligence algorithms were designed to embed the origi-
nal data set into a lower-dimensional feature space which
preserves the topological relationships among data items.
ACO was used to arrange data items within the cells of a

two-dimensional grid, a representation well-known from Self
Organizing Maps (Kohonen, 1995); a rigorous study on the
performance of this approach can be found in [10].

Mostly because of its design for continuous optimization,
most approaches to clustering based on PSO use the centroid-
based encoding presented in [15] and search for cluster rep-
resentatives [17]. The performance of these approaches is
compared to the standard k-Means algorithm (with the real
number of clusters) and is reported to be significantly bet-
ter - or equal in performance in case k-Means is supplied
the best initial configuration. The improved performance
is due to the increased exploration capabilities, eliminating
one important drawback: strong dependency on initializa-
tion. However, other drawbacks may still be present: the
result is dependent on the metric used and clusters with
similar shapes and volumes tend to be formed. A survey on
Swarm Intelligence techniques applied to clustering can be
found in [1].

A mapping of the original data set into a two-dimensional
Euclidean space is performed using simple PSO rules in [20];
although a metric space is employed, the approach is not
aimed at generating an embedding of the original data which
faithfully preserves the original pairwise distances among
data items (as in Multidimensional Scaling approaches); the
focus is on identifying clusters through species separation
metaphor. Breaban et al. [3] use a similar technique to find
communities in social networks.

The method we propose in the next section is distinct from
the existing approaches: inspired by the multi-objective per-
spective, k-Means is used to enforce clustering from the
global distribution in data, whereas PSO is used to enforce
the connectivity principle.

3. INTRODUCING CONNECTIVITY IN K-
MEANS

K-Means is the most popular clustering algorithm due to
its simple implementation, low run-time and space complex-
ity and simple usage since no parameters (except the number
of clusters) are involved. However, these advantages come at
a cost: due to the local search, the performance is highly de-
pendent on initialization. Moreover, k-Means best fits data
sets with spherical clusters of almost-equal volumes.

The first drawback is partially alleviated if smarter ini-
tialization schemes are used. The initial centroids should be
placed far apart, or a hierarchical clustering method may be
used to return an initial partition over a small sample of the
data set. The most comfortable (if time-consuming) way
to deal with sensitivity to initialization is to run k-Means
repeatedly with random initializations and choose the one
with the lowest intra-cluster variance.

The second drawback, appropriateness only for particu-
lar types of clusters, is present in all clustering algorithms
based on representatives: under the Euclidean metric spher-
ical clusters are generated. Even if the centroids-based clus-
tering methods based on Genetic Algorithms or Swarm Al-
gorithms tackle dependency on initialization, they cannot
generate clusters of various shapes.

In order to deal with clusters of various shapes, a local-
ity concern may be used: ”neighboring” data items should
share the same cluster. We propose a Swarm algorithm
called PSO-kMeans which implements this simple connec-
tivity principle and introduces it within k-Means, taking
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thus into account simultaneously the local and the global
distribution in data.

3.1 Basic PSO
Particle Swarm Optimization (PSO) [13] is a meta-heuristic

mainly used for numeric optimization. Its use in combina-
torial optimization necessitates rather complex adaptations,
such as the redefinition of its operators. Initially, PSO was
intended to simulate the social behavior of flocks but its
authors observed the optimization capability of the agents
involved in the simulation.

PSO maintains a population of particles, each one char-
acterized by a position vector x in the search space and a
velocity vector v which determines its motion. The velocity
vector is computed following the rules:

• each particle tends to keep its current direction (an
inertia term);

• each particle is attracted to the best position p it has
achieved so far (personal best);

• each particle is attracted to the best particle g in popu-
lation (the particle having the best fitness value); there
are versions of the algorithm in which the best particle
g is chosen from a topological neighborhood.

The velocity vector is computed as a weighted sum of three
terms corresponding to the rules above. Two random multi-
pliers r1, r2 are used to gain stochastic exploration capability
while w, c1, c2 are weights usually empirically determined.
The formulae used to update each individual in the popula-
tion at iteration t are:

vti = w·vt−1
i +c1 ·r1 ·(pt−1

i −xt−1
i )+c2 ·r2 ·(gt−1

i −xt−1
i ) (1a)

xti = xt−1
i + vti (1b)

3.2 Hybridization
The connectivity principle was introduced in different forms

in clustering algorithms. In density-based approaches it
works towards putting in the same cluster neighboring data
items that form dense regions. Handl et al. [9] formulate
and maximize explicitly by means of GAs, a connectivity
objective defined as the number of neighboring data items
which reside in the same cluster.

We propose another approach for implementing the con-
nectivity principle, mainly inspired from metric learning. In
supervised metric learning, a metric is learned so that the
distance between similar data items is as small as possible
under the new metric. In our unsupervised context, similar-
ity is defined with respect to the Euclidean distance: neigh-
boring data items in the Euclidean space are considered
to be similar. Consequently, in PSO-kMeans the distance
between neighboring data items is shortened by modifying
their representation in the fraim of the PSO paradigm.

Generally, in solving optimization problems with PSO, the
position vectors x correspond to complete candidate solu-
tions and the particles p and g which dictate the particles’
motion are chosen from the population with regard to a fit-
ness/objective function from the population.

In our approach, particles are used to link data items to
clusters. Each data item is assigned to a particle in the
swarm. The feature space defined by the data set provides

the environment for the swarm of particles. The position
vector x of each particle is initialized with the feature vec-
tor of the corresponding data item. The original PSO rules
that dictate the motion of each particle are used to change
the representation of the corresponding data item. No ob-
jective function is explicitly formulated, but through an ap-
propriate definition of the vectors p and g in equation 1a the
connectivity is maximized.

Each particle updates its position to match its nearest
neighbors. With this aim, each particle xi should move it-
eratively towards each of its neighbors. In order to reduce
the run time, a centroid over the neighbors is computed and
the particle moves towards it. This centroid plays the role
of ”pi” in formula 1a. Its use accounts for local distribution
in data.

To take into account the global distribution in data, ”gi” is
defined to be the centroid closest to particle i in the partition
returned by k-Means.

Our clustering algorithm is presented in pseudocode 1.

Algorithm 1 PSO-kMeans

Require: The set of data items D = {x1, x2, ..., xn}, the
number of clusters k.

Ensure: a hard partition C = {C1, C2, ..., Ck},
⋃k

i=1 Ci =
D and Ci

⋂
Cj = ∅∀i, j = 1..n.

// preprocessing step:
for all data item xi do
NNi ← the ns nearest neighbors for xi

end for

// initialization phase:
apply k-Means until convergence and store:
C ← {C1, C2, ..., Ck}, the hard k-Means partition;
cj ← 1

|Cj |
∑

xi∈Cj
xi the centroid of cluster j, ∀j = 1..k;

di ← dist(xi, cj), ∀i = 1..n, where cj is the centroid of
cluster Cj ∈ C and xi ∈ Cj , dist is the Euclidean distance;
σ2 ← 1

n

∑n
i=1 d

2
i (approximates the variance within clus-

ters)

//the PSO-kMeans iterations:
while C has not changed for itr iterations do

//run one PSO iteration:
for i← 1 to n do
pi ← 1

|NNi|
∑

xj∈NNi
xj

gi ← cj s.t. xi ∈ Cj

update xi applying formulae 2
end for

//run one k-Means iteration:
for i← 1 to n do

reassign xi to Cj , where Cj =
argmincl,l=1..k{dist(xi, cl)}

end for
for j ← 1 to k do
cj ← 1

|Cj |
∑

xi∈Cj
xi

end for
end while

A pre-processing step is required to find the ns nearest
neighbors of each particle. This set of neighbors is computed
only once, at the beginning, and is not modified throughout
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the run. In this way, subsequent changes of the positions of
the data items, resulting from changes in the representation
of the data items to be clustered, preserve much of the initial
topology.

The batch version of the k-Means algorithm is run until
convergence. The centroids retrieved with k-Means serve
further as gi in the first iteration of PSO.

Then, an iterative process begins that alternates iterations
of PSO and k-Means until a stable partition is reached. The
PSO iteration consists of recomputing pi and applying for-
mulae 2 which modify each data item xi in the data set.
The particle pi is updated using the set of neighboring data
items computed in the pre-processing step; because all par-
ticles/data items are subject to the PSO updating rules, the
configuration of the neighborhood changes implicitly.

The k-Means iteration reconstructs the partition and re-
assigns the modified data items to the previously found cen-
troids. The centroids gi are updated.

The initial velocity is set to 0 for all particles. The random
multipliers in formula 1a of the basic PSO are not needed.
The weights for the inertia term and for the pi term are set
to 1. Preliminary experiments showed that the inertia term
has an important influence on the speed of convergence: the
number of iterations in PSO-kMeans reduces to almost a
half for some data sets in its presence, compared to the case
when it is not used at all.

If a unit weight is assigned as well to the third term in
equation 1a, the impact of our hybridization is much re-
duced: almost all particles will end up in the centroids iden-
tified with k-Means on the original representation of the
data set. Generally in k-Means, for any given cluster the
data items situated closer to the centroid are more likely
to belong to the corresponding cluster than the data items
situated farther (fuzzy k-Means originates from this princi-
ple). This is why we apply the third update rule in equation
1a (the move towards the cluster centroid) on only 10% of
the data items situated closest to the centroid. For clus-
ters obeying the normal distribution, 10% of the data items
are supposed to lie within a distance of 0.125 standard de-
viations from the centroid. To reduce the computational
cost, we adopt the hypotheses of normal distribution and
apply the third updating rule on the data items satisfying
the property above. Obviously, this does not imply that our
method could not be used on other types of distributions.
The average within-cluster variance σ2 is computed in the
k-Means iteration when data items are assigned to clusters.
A vector of length n (the number of data items) is used to
store at this step the distances between each data item i and
its closest centroid gi. Using the average over all clusters of
the within-cluster variance instead of the exact values for
each cluster, brings some advantages. Well-initialized clus-
ter centroids will ”consume” most of this rule compared to
wrongly placed centroids. The particles on the boundary of
the clusters are attracted to their neighbors situated closer
to the centroids and migrate together to the center of the
cluster, leading to more stable clusters.

vti = vt−1
i + (pi − xt−1

i ) + w(i) · (gi − xt−1
i ) (2a)

xti = xt−1
i + vti (2b)

w(i) =

{
1, dist(xt−1

i , gi) < 0.125 · σ
0, otherwise

(2c)

4. EXPERIMENTS
We conducted experiments with PSO-kMeans on both

synthetic and real-world data sets.
In a first scenario the number of clusters is part of the

input; this setting corresponds to supervised clustering. In a
second scenario some internal clustering validation indexes
are used to decide on the optimal number of clusters - sce-
nario denoted as unsupervised clustering.

4.1 Data Sets
In order to test the technique we propose, some complex

data sets made available by Julia Handl 2 are used:

• a standard cluster model using multivariate normal
distributions. Different combinations number of at-
tributes / number of clusters are considered. In low
dimensions (2 features), the clusters generated are fre-
quently elongated and of arbitrary orientation but in
high dimensions (10 features) they tend to become
spherical. The clusters have various volumes/densities.

• data sets of high dimensionality consisting of ellip-
soidal clusters with the major axis of arbitrary ori-
entation.

For each combination number of attributes / number of clus-
ters 10 different problem instances were generated and re-
ferred to as the group of problems (#attributes)d-(#clusters)c.
A total of 90 synthetic data sets are thus used in this part
of experiments.

The real-world data sets used are Iris, Soybean, and Breast
Cancer from UCI Repository 3.

4.2 Experimental Setup
In order to test the performance of PSO-kMeans in the

supervised context of clustering, 50 runs of the algorithm
were performed for each dataset. Random initialization was
used at each run, each cluster centroid being initialized with
a randomly chosen data item from the dataset.

A comparison between PSO-kMeans and the batch version
of the standard k-Means is presented. The Adjusted Rand
Index [11] was computed for the partition derived with k-
Means in the initialization phase of PSO-kMeans and then
for the partition obtained after running PSO-kMeans. Both
the number of iterations required for standard k-Means to
reach convergence and the additional number of iterations
performed in PSO-kMeans until convergence was reached
are reported.

If one would be willing to substitute the standard k-Means
with PSO-kMeans, an important concern arises with regard
to the optimum number of clusters. Because PSO-kMeans
modifies the representation of data items and consequently
the distances between them, there exists the risk of break-
ing one initial cluster into smaller dense clusters; this would
mislead the unsupervised clustering analysis. Therefore, ex-
perimental analysis is required for the unsupervised scenario.

In the unsupervised context (the number of clusters is not
known in advance), the optimal partition can be obtained as
follows: k-Means is run iteratively with k in a large range of
values and the resulted partitions having different numbers
of clusters are evaluated using an unsupervised clustering

2http://dbkgroup.org/handl/generators/
3http://archive.ics.uci.edu/ml/
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criterion. The winning partition and consequently the opti-
mum number of clusters is considered to be the one with the
best score.We adopt this scenario to study PSO-kMeans in
the unsupervised context: an unsupervised clustering crite-
rion is computed on the modified representation of the data
items for the partition provided by the algorithm.

In the unsupervised context, we run PSO-kMeans succes-
sively with the number of clusters ranging between 2 and
30. Because the performance of PSO-kMeans is dependent
on initialization (as in standard k-Means), for each number
of clusters, 10 runs of the algorithm with random initial-
izations were performed; from the 10 partitions resulted,
the one with the lowest intra-cluster variance was selected.
Eventually, 29 partitions with different numbers of clusters
were obtained. From these 29 partitions, the best one was
extracted according to unsupervised clustering criteria. For
each problem instance the above steps of analysis were re-
peated 10 times and averages were computed. We report
the results obtained under Silhouette Width(SW) [18] and
a recently proposed criterion CritC [4] for which experimen-
tal studies showed to outperform the well-known Davies-
Bouldin Index [6].

There remains to be discussed the neighborhood size -
the only parameter of the algorithm not discussed yet To
eliminate the need of fine-tuning under costly experimental
studies, we base the choice of the value of this parameter on
the working assumptions that the size of the smallest clus-
ter in the partition is at least 10% of the average size of all
clusters and, moreover, that each cluster contains at least 10
data items (a study on data not obeying these assumptions
is ongoing). The size of the neighborhood is therefore com-
puted for each data set automatically to be ns = 10%·(n/k).
If ns is less than 10, then the neighborhood size is set to 10.

The partitions returned by the clustering algorithms un-
der test are evaluated against the optimal clustering using
the Adjusted Rand Index (ARI).

4.3 Results
Figure 1 illustrates the comparative performance of the

standard k-Means and PSO-kMeans. For each problem in-
stance 50 runs of the algorithms were performed. For the
synthetic data sets the box plots present the results over all
10 problem instances of each class of problems, summarizing
a total of 500 values of the Adjusted Rand Index.

One can observe that the performance of PSO-kMeans is
still dependent on the initialization but it improves in most
cases the results delivered by standard k-Means. The gain
in performance is more obvious in the case of ellipsoidal
clusters (data sets 50d-*c).

Table 1 presents the number of iterations required by
PSO-kMeans to improve the solution returned by the stan-
dard k-Means. Generally, the stronger the difference in per-
formance is between k-Means and PSO-kMeans, the higher
the number of iterations required to converge for PSO-kMeans
is.

Table 2 presents the results obtained in the unsupervised
scenario. In this scenario we address the risk of a bad initial-
ization by running the standard k-Means, in the initializa-
tion phase of PSO-kMeans, for 10 times with random initial-
izations. The solution with the lowest intra-cluster variance
is chosen and constitutes the basis for further PSO-kMeans
iterations. The table presents averages over 10 complete

Figure 1: Comparative results for supervised clus-
tering: the first box plot in each group corresponds
to the standard k-Means and the second box plot
in each group corresponds to PSO-kMeans. Each
box plot from the groups *d-*c corresponds to 10
problem instances × 50 runs of the algorithm with
random initializations (a total of 500 values of the
Adjusted Rand Index). For real-world data sets, the
box plots present the values over 50 runs of the al-
gorithms with random initializations.
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Table 1: The number of iterations for standard k-
Means and the number of additional iterations per-
formed by PSO-kMeans, computed as averages over
50 runs of the algorithm.

Problem k-Means PSO-kMeans
2d-4c 18 17
2d-10c 28 71
2d-20c 22 24

10d-4c 19 7
10d-10c 28 39
10d-20c 18 54

50d-4c 19 37
50d-10c 25 80
50d-20c 23 65

Iris 13 9
Soybean 11 2
BCancer 13 3

runs of the algorithm (each run benefiting from 10 different
initialization).

The first 4 columns present the results when the best par-
tition is identified in a supervised manner: the optimal num-
ber of clusters is identified by maximizing the value of the
Adjusted Rand Index (which is an external validation cri-
terion). It illustrates once again the significant gain in per-
formance if PSO-kMeans is used. It is worth noticing that,
compared against standard k- Means, PSO-kMeans provided
partitions with slightly higher numbers of clusters.

Even when the partition is chosen using unsupervised cri-
teria, PSO-kMeans still wins the competition with standard
k-Means. The Wilcoxon Signed-Rank non-parametric test
was applied for all pairs of ARI scores corresponding to (k-
Means, PSO-kMeans) under the same criterion. Where dif-
ferences are significant (at the level 1%) the winner is marked
in bold.

Experimental results suggest that PSO-kMeans improves
the performance over standard k-Means on all test cases; it
achieves this by integrating the connectivity principle in the
standard algorithm (neighboring data items should reside
in the same cluster). Moreover, the standard k-Means algo-
rithm is sensitive to outliers: the cluster centroids are biased
if isolated data items exist because generally the mean is not
a stable statistic and extreme values affects it. PSO-kMeans
is more robust to outliers which are attracted towards dense
regions and do not bias the position of the cluster centroids.

The complexity of a PSO-kMeans iteration is still linear
in the number of data items. However, the pre-processing
time complexity is O(n2) as it is necessary to compute the
pairwise distances between data items.

As the experiments show, our algorithm does not require
parameter tuning in order to increase its performance when
dealing with different datasets.

5. COMPARATIVE STUDY
The experimental section suggests the superiority of our

method over its main ingredient, standard k-Means. How-
ever, we would like to place our method in the wide context
of clustering; a comparative analysis with other state-of-the-
art clustering methods is in order.

In conducting experiments for such a comparison, we used
problem instances presenting various challenges for cluster-

ing algorithms: elongated clusters (2 a), data with noise(2
b), spherical clusters of different volumes (2 c) and over-
lapped clusters (2 d). Table 5 presents the results obtained
by various algorithms.

Figure 2: Data sets presenting various clustering
challenges

5.1 Centroids-based Methods
The standard k-Means and an existing hybridization of

k-Means with PSO [5] are used to study the behavior of
centroids-based clustering methods relative to PSO-kMeans
which integrates the connectivity principle into the representative-
based approaches for clustering.

Figure 3 presents the best partitions obtained with stan-
dard k-Means in multiple runs. These partitions are iden-
tical to those obtained by the PSO algorithm presented in
([5]) which performs a global search in the space of possible
initializations for k-Means.

Figure 3: Results obtained by standard k-Means

The main drawback of the centroids-based methods is well
illustrated: if clusters of elongated shape or of various vol-
umes are involved, these methods fail to provide the optimal
partition.

In case outliers are present in data and no pre-processing
step was used to eliminate them, the centroids were biased
and erroneous partitions were delivered.

For datasets containing overlapped spherical clusters, the
centroids-based methods outperform other strategies.

1232



Table 2: Results for unsupervised clustering. For each data set and each algorithm, the ARI and the number
of clusters are reported for three partitions: the partition with the highest Adjusted Rand Index (ARI) score,
the best partition under Silhouette Width (SW) and the best partition under criterion CritC.

Problem Best ARI SW CritC
k-Means PSO-kMeans k-Means PSO-kMeans k-Means PSO-kMeans

ARI k ARI k ARI k ARI k ARI k ARI k

2d-4c 0.92 4.02 0.98 4.60 0.87 3.70 0.95 5.88 0.85 4.01 0.94 5.34
2d-10c 0.83 10.93 0.94 10.11 0.78 11.24 0.91 12.34 0.79 10.39 0.90 11.40
2d-20c 0.91 19.63 0.93 21.24 0.87 16.71 0.90 20.70 0.89 17.45 0.90 20.10
10d-4c 0.97 3.99 0.99 4.56 0.90 3.59 0.99 4.50 0.93 3.5 0.95 6.06
10d-10c 0.92 9.21 0.97 11.32 0.91 9.03 0.94 9.72 0.89 8.36 0.95 12.44
10d-20c 0.97 20.23 0.99 21.76 0.94 18.05 0.99 21.7 0.96 20.44 0.99 21.40

Table 3: The ARI computed for the datasets presented in Figure 2: our method(PSO-kMeans), standard
k-Means, the clustering method proposed in[5](PSO), 4 hierarchical algorithms and a density-based method.

Problem PSO-kMeans k-Means PSO Single Average Complete Ward DBSCAN
Link Link Link

elongated 1 0.00 0.00 1 0.00 0.01 1 1
noise 1 0.80 0.93 1 1 1 1 1
unequal 1 0.84 0.86 1 1 0.10 1 1
overlapped 0.90 0.90 0.90 0.00 0.00 0 0.00 0.00

5.2 Hierarchical Methods
Usually, clusters having different shapes are not a major

challenge for hierarchical methods; however, the outcome
is highly dependent on the metric used for measuring (di)-
similarity between clusters.

For the dataset with elongated clusters, Single link and
Ward’s method identify correctly the two clusters. Average
link and complete link deliver erroneous results as shown in
Figure 4.

Figure 4: Results for hierarchical algorithms on
elongated data

In case of the dataset with clusters of various volumes, all
hierarchical methods performed well, except for the Com-
plete link variant.

All hierarchical algorithms identified the noise in case of
the data set in figure 2 a (noise).

In case of overlapped clusters, no hierarchical method was
able to identify the clusters.

5.3 Density-based Methods
After fine-tuning efforts, DBSCAN identified the clusters

in datasets 2a,b,c. It failed to identify the overlapped clus-
ters.

5.4 Discussion
Because our method takes into account the local structure

in data implementing the connectivity principle, it is able to
identify clusters of different volumes and shapes. There-
fore, it identified correctly the clusters for the datasets in
figure 2 a and b,having a performance as good as that of
Single link, Ward’s method and DBSCAN and outperform-
ing all other tested techniques. Experiments showed that
PSO-kMeans can outperform its basic ingredient, the stan-
dard k-Means algorithm, but also other state-of-the-art al-
gorithms. Tests were performed using a centroid method
proposed in [5] which is also based on PSO. As explained
in section 2, the existing methods based on PSO or Genetic
Algorithms behave like an upper bound for the standard k-
Means: they deliver (in the best case) the partition retrieved
by a k-Means algorithm if the latter is supplied with the best
initialization.

Our method was still able to properly identify the clusters
when outliers were present in data (the dataset in figure 2 c).
This behavior is due to the change in representation, which
causes outlier data items to be attracted towards denser re-
gions. Again, the performance of PSO-kMeans was com-
parable to hierarchical methods and density based methods
and better than that of centroids-based methods.

For the data set with overlapped clusters, the performance
of our method was comparable to that of the standard k-
Means and significantly superior to that of hierarchical meth-
ods and density-based methods. In contrast with the other
test-cases, the dataset in figure 2 d illustrates the positive
effect of the centroid approach incorporated in our method.
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Due to the global view over the data in addition to the con-
nectivity principle, the experiments show that our method
is able to outperform state-of-the-art clustering methods or
behaves equally-well in the worst case.

6. CONCLUDING REMARKS AND FUTURE
WORK

We propose a hybridization of the standard k-Means al-
gorithm with a technique from Swarm Intelligence, with the
aim of enhancing the performance of the traditional clus-
tering method. The new algorithm modifies the represen-
tation of the data items in order to implement the connec-
tivity principle for clustering. The changes in representation
lead to changes in the distribution of distances between data
items. Therefore, the new algorithm can be easily tuned to
perform semi-supervised clustering. The additional informa-
tion available in the form of similarity/dissimilarity pairwise
constraints should be easily incorporated in the PSO itera-
tions to simulate metric learning along with the clustering
process; this idea will be studied in our future work.
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