
Towards Final Rule Set Reduction in XCS: A Fuzzy
Representation Approach

Farzaneh Shoeleh
Computer Science and

Engineering Dept.
Shiraz University, Shiraz, Iran

shoeleh@cse.shirazu.ac.ir

Ali Hamzeh
Computer Science and

Engineering Dept.
Shiraz University, Shiraz, Iran

ali@cse.shirazu.ac.ir

Sattar Hashemi
Computer Science and

Engineering Dept.
Shiraz University, Shiraz, Iran

s_hashemi@shirazu.ac.ir

ABSTRACT
Generalization is the most challenging issue in XCS research area.
One of the main components of XCS managing to remedy this
issue is knowledge representation. In this paper, a knowledge
representation based on fuzzy membership function offering
certain and vague regions is described. We extend the Michigan
learning classifier system using this approach to be improved in
terms of both performance and interpretability. The contribution
of this paper is three-folds: 1) updating main parameters of
classifiers based on their certainty factor in matching of incoming
data, 2) enhancing essential components of XCS to be compatible
with such fuzzy representation schema and 3) proposing a novel
rule set reduction method named Reduction based on Least
Reward Prediction (RLRP) to improve the interpretability of the
evolved model. Furthermore, an inference methodology which is
compatible with RLRP is suggested to maintain the similar
performance. The obtained results are promising due to the
effectiveness of proposed method in dealing with real world
problems. Furthermore, the proposed reduction method can
upgrade the interpretability of final rule set by boiling its size
down by 94% on average while slightly degrading the prediction
accuracy.

Categories and Subject Descriptors
I.2.6 [Learning]: Concept learning, Knowledge acquisition

General Terms
Algorithms

Keywords
Knowledge Representation, Learning Classifier System,
Reduction Method, XCS.

1. INTRODUCTION
Learning classifier systems (LCSs) are evolutionary learning
mechanisms that combine the general principles of Darwinian
evolution with the power of the cognitive learning paradigm [1].
LCSs are on line rule based systems which their main aim is using
internal evolutionary algorithm to evolve a population of

classifiers which are usually represented as rules named classifiers
as a solution to a given problem. The accuracy based classifier
system, namely the eXtended Classifier System (XCS) [2], is
currently considered as millstone of learning classifier systems
due to its effectiveness in data analysis and its success in applying
to varieties of learning problems. It can be concluded that the
effectiveness of XCS as a machine learning paradigm is that
”XCS was the first classifier system to be both general enough to
allow applications to several domains and simple enough to allow
duplication of the presented results” [3].

A rule based system such as XCS is able to solve a problem
efficiently if its rule set can cover the whole problem space
properly and also each rule makes an effective decision.
Therefore, it can be concluded that rule representation, i.e.
knowledge representation, has an essential role in rule based
systems. In addition, one of the most important goals in the
extensions of XCS is to achieve a compact and accurate solution
for a given problem [4]. It is obvious that achieving these goals
mainly depends on the representation method which is used to
cover the problem space.

One of the main challenging issues in proposing a knowledge
representation technique is how classifiers of population should
cover the problem space to define the problem regularities
accurately. In addition, how a classifier can match an incoming
instance is an important factor in choosing the best action. The
last few decades have seen the increasing interest in using fuzzy
logic and fuzzy theory as a powerful mechanism to create
maximally general and accurate rule set. The benefit of using
fuzzy theory is not only handling uncertainty and imprecision but
also avoiding to evolve large number of rules that may hamper the
readability of the rule set. In one of the recent researches [5], a
Michigan style learning classifier system named XCS-HT is
introduced. The main aim of that study was proposing a new
knowledge representation based on presenting two kinds of
regions, namely certain region and vague region, in the condition
part of each classifier to match the incoming instance with
different levels of certainty. It was shown that such representation
helps XCS-HT to evolve a set of classifiers which can cover
problem space in an effective manner with minimum redundancy
[5]. In other words, the evolved rule set, if small, is still accurate
and general to model the class boundaries sufficiently precisely.

In this paper, we modify and enhance the main components of
such system to have improvement in terms of performance
measured by test accuracy and the interpretability measured by
the size of evolved rule set. Although applying such modification
on XCS-HT may result in reducing the evolved rule set, the final

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-4503-0557-0/11/07…$10.00.

1211

rule set still has many additional rules which are not only
inessential in predicting the correct class label of incoming
instance but also in some cases they cause a downfall in the test
accuracy. Hence, we employ a reduction method Reduction based
on Least Reward Prediction (RLRP) and a compatible inference
methodology for the efficient compaction of the final problem
solution. This reduction method can eliminate more than 94% of
the evolved classifiers on average while hardly affecting the
accuracy. It was shown that as compared to XCSR, XCS-HT has
fine ability to model the indistinguishable class boundaries. The
last but not least motivation of this paper is to assess the
effectiveness of the proposed modification of XCS-HT on solving
the real world problems. So, several standard data sets are selected
from UCI repository database [6] and the obtained results are
promising. The results show that our method presents statistically
significant improvement in terms of the performance and the
number of rules.

The rest of this paper is organized as follows; Section 2
summarizes the important works that have been done to enhance
the knowledge representation component of XCS. Section 3
provides a short description of XCS-HT. Section 4 details the
proposed enhancement mechanisms can be applied to XCS-HT*
in terms of performance and the size of evolved rule set. Section 5
compares our learner with the primary version of XCS-HT, XCSR
and Fuzzy-UCS in terms of performance and interpretability
measured by the size of evolved rule set. This comparison is done
over a collection of real world problems which are selected from
UCI repository database [6] to highlight the effectiveness of our
method in real world problems with different characteristics.
Finally, Section 6 concludes and discusses further work.

2. RELATED WORK
The first and most commonly syntax for classifier condition is
“Ternary” representation including {0,1,#} alphabets. For
handling continuous-valued input, this traditional representation
has been substituted to the interval-based representation,
proposing an interval in condition part of classifier for each
dimension. According to definition of these intervals four
different representation techniques have been introduced; Center
Spread Representation (CSR) [7], Lower-Upper Bound
Representation or Min-Max Representation (MMR) [8],
Unordered-Bound Representation (UBR) [9], and Min-
Percentage Representation (MPR) [10]. The subspace of problem
space that can be presented by a classifier is identified by the
disjunction of intervals in condition part of the classifier. Besides,
to handle continuous-valued inputs, several valuable efforts have
been done to cover the problem space with geometric shape which
is defined in condition part of classifiers. Some of these
researches are done in [11] and [12] where each classifier presents
a hyper ellipsoidal and a convex hull respectively. Furthermore, to
make XCS more effective in complex problems, other general
purposed representations have been proposed; such as, fuzzy [13-
18], GP-like conditions [19], and neural network [20].

There are a number of approaches to use fuzzy logic as a
technique to represent fuzzy rules in Michigan style LCS [13-18].
The main motivation behind such efforts is to achieve an online
learning system with more accurate, general and well
understandable rule set by combining the generalization
capabilities of XCS with the fine interpretability of fuzzy rules.
Bonarini et al. in [14, 15] introduced the general framework of
LCS using fuzzy logic. One of the successful proposed LCS

inheriting this framework is Fuzzy-XCS [16] where the rules are
expressed in fuzzy format. Soon later, this approach was
expanded to be employable in UCS [21] and a system named
Fuzzy-UCS was introduced [17, 18]. Fuzzy-UCS tries to combine
the good capacity of UCS such as generalization with the good
interpretability of fuzzy rules to evolve a compact and
understandable rule set. Recently, XCS-HT [5] has been
introduced to reduce the size of rules set and maintain the
performance as much as possible using hyper-trapezoidal
membership function in condition part of classifier.

3. DESCRIPTION OF XCS-HT
This section provides an overall description of the modification of
XCS’s components in XCS-HT.

3.1 Representation
In XCS-HT, the condition part of each classifier presents two hyper
rectangles. One of these hyper rectangles embraces the other one
completely. The inner hyper rectangle is indeed the certain region
and the space between these two hyper rectangles is a vague region
where instances can be matched by less than 100% degree of
certainty. An asymmetric hyper trapezoidal membership function is
defined in the condition part of a classifier. Thus, there are four
genes for each dimension to present such hyper trapezoidal
membership function, that is cl.C={a1,b1,c1,d1,a2,b2, c2,d2,…,
an,bn,cn,dn} where n identifies the dimensions of given problem and
{ai,bi,ci,di} are the parameters of the defined trapezoidal
membership function in i’th dimension. For better understanding,
Figure 1 shows the structure of a classifier in a two dimensional
problem and how such classifier partitions the problem space.

(a)

(b)

(c)

Figure 1. An example of hyper trapezoidal based classifier in
an arbitrary problem space. a) Visualization of the area
covered by such classifier, including certain region shown in
black and vague region, shown in dark gray. b) The
trapezoidal membership functions defined for each dimension.
c) The genotype of the classifier presented in (a) and (b).

3.2 Matching and Covering
Each classifier has a parameter named matching degree parameter
(cl.μ) that shows the degree of certainty in matching the incoming
instance. To compute such parameter, a T-norm, like product(a,b)
or min(a,b), is used to find the conjunction of all matching
degrees obtained from the trapezoidal membership function
defined in condition part of classifier for each dimension. In our
implementation, we use product(a,b) as T-norm.

Two methods have been proposed to form [M] named Ordinary
mechanism and Roulette Wheel (RW) based mechanism. In
Ordinary mechanism, each classifier has a chance to be a member
of [M] with a probability which is equal to the value of its
matching degree parameter. But, in RW mechanism, classifiers
which match the incoming instance certainly would be a member
of [M] and the other classifiers that match the incoming instance

1212

with cl.μ(e)<1 degree of certainty participate in roulette wheel
selection method if the sum of their matching degrees are greater
than 0.5.

The covering procedure will be triggered if there is no classifier
founded by RW based mechanism to match the current instance,
the system would generate a sequence of random numbers as
a1,b1,c1,d1,a2,b2,c2,d2,…,an,bn,cn,dn in condition part of new
classifier as if it can match the incoming instance certainly.

3.3 Subsumption
Subsumption is a perspicacious technique in XCS to stress
additional generalization pressure in that a syntactically more
general classifier observed more specialized classifiers [22]. So, it
can be concluded that subsumption is a crucial factor along the
way to evolve maximally general classifiers. To achieve this goal,
we must determine whether the condition part of a classifier cl1.C
is subsumed by the condition part of another classifier cl2.C which
is both accurate (cl2.ε<ε0) and sufficiently experienced
(cl2.exp>θsub) or not. It is worth mentioning that since
subsumption applied in [A], the action part of both classifier cl1
and cl2 are the same.

In XCS-HT, to find whether cl1.C can be subsumed by cl2.C or
not, the overlapping area (Soverlap) between the two trapezoidal
membership functions defined in the condition part of each
classifiers is calculated. If in all dimensions the calculated Soverlap
is greater than a predefined percentage of total area (Scl1) of the
trapezoidal membership function of the specified classifier cl1,
(Soverlap>θoverlap×Scl1), cl1 can be subsumed by the more general
classifier cl2.

4. PROPOSED METHOD
This paper aims at improving the learning mechanism of XCS-HT
in terms of test accuracy and also proposing a novel inference
mechanism and consequently a compaction method to reduce the
final evolved rule set while changing the performance only
marginally.

Our proposed method has the same knowledge representation
technique that is using hyper trapezoidal membership function to
partition the problem space with two kinds of regions. Thus, Each
classifier has a parameter named matching degree parameter
cl.μ(e) to identify its matching degree when facing the current
incoming state e. Since this parameter has an essential role in
evolving better and more compact rule set, we modified the other
components of our system to improve its performance. As the
reported results in [5] suggested, in our modification the RW
based mechanism is chosen to form [M] due to its effectiveness in
applying more selection pressure than Ordinary mechanism and
consequently producing less number of rules.

In the following, we describe the modification of XCS-HT’s in
detail.

4.1 Subsumption
As the knowledge representation used in our system is the same as
ones in XCS-HT, we also borrow its subsumption mechanism and
in our implementation, we set θoverlap parameter to 80%.

Figure 2.a illustrates an example of such subsumption mechanism.
In this example cl2 cannot subsume cl3. On the contrary cl1 can be
subsumed by cl2 because the overlapping area between cl1 and cl2
is by 80% of total area covered by the trapezoidal membership
function defined in cl1

As shown in Figure 2, in some cases when the more general
classifier cl2 subsumes the more specialized one cl1, some portion of
problem space which is covered by the specialized classifier cl1
would be uncovered. In our example, the area between cl2.a and
cl1.a will be uncovered after observing cl1 in subsumption
procedure. On the other hand, since the subsumption occurs in
training phase, if the specialized classifier is both accurate (ε<ε0)
and sufficiently experienced (exp>θsub), subsuming such classifier
might cause an unwelcome disregard about some useful and
significant knowledge which is obtained through learning process.
Hereby, we suggest a merge mechanism which, if simple, is useful
to overcome this shortcoming. In subsumption mechanism when an
accurate and sufficiently experienced classifier is founded to be
subsumed, the parameters of trapezoidal membership function
presented in the condition part of the more general classifier,
namely the subsumer, will change in that the more specialized
classifier is completely subsumed by subsumer classifier. In other
words, as shown in Figure 2.b, by applying such merge mechanism
the cl2.a parameter changes and its value would be equal to the
value of cl1.a because cl2 is a valid subsumer and cl1 is both
accurate and sufficiently experienced. Algorithm 1 sums up the
modification of the parameters of trapezoidal membership function
presented in the condition part of subsumer.

(a)

(b)

Figure 2. An example of how subsumption mechanism works
with θoverlap=0.8 . a) cl2 can subsume cl1 (Soverlap>θoverlap×Scl1)
but cl2 cannot subsume cl3 because their membership
functions are not overlapped enough (Soverlap>θoverlap×Scl3). b)
The suggested merge mechanism. Since cl1 can be subsumed
by cl2, the cl2’s membership function can be extended as if cl1
were completely subsumed by cl2 (cl2.a=min(cl1.a,cl2.a) and
cl2.b=min(cl1.b , cl2.b)).

Algorithm 1: Subsumption operator with merge mechanism

initialize subsumer
for each classifier cl in [A]
 subsumer = Empty
 if (cl.exp>θsub && cl.ε<ε0)
 subsumer ← cl
 if (subsumer is not Empty)
 for each cl in [A]
 if (IS MORE GENERAL (subsumer , cl))
 subsumer.num ← subsumer.num + cl.num
 if (cl.exp>θsub && cl.ε<ε0)
 for each dimension i
 subsumer.ai ← min(subsumer.ai , cl.ai)
 subsumer.bi ← min(subsumer.bi , cl.bi)
 subsumer.ci ← max(subsumer.ci , cl.ci)
 subsumer.di ← max(subsumer.di , cl.di)
 remove classifier cl form set [A]
 remove classifier cl form set [P]

1213

4.2 Rule Evaluation
In each extension of XCS such as our system, each rule or namely
classifier has following main parameters and several addition
estimates.

1. Reward prediction error (cl.ε): estimates the mean absolute
deviation of cl.P with respect to the actual reward (R).

2. Reward prediction (cl.P): estimates the average reward
received if the cl.C is satisfied and cl.A is executed.

3. Fitness (cl.F): estimates the scaled, relative accuracy of cl
regarding to other classifier being in [A].

4. Experience (cl.exp): counts the number of times that cl has
belonged to an action set [A].

The parameters of all classifiers in [A] would be updated with
respect to the successive problem instance along exploration
phase or training phase.

In our system, each classifier has an additional parameter named
matching degree cl.μ. This parameter identifies that the underlying
classifier on what certainty degree can match the incoming
instance. Here, we use this information to update the
corresponding parameters of classifiers. In other words, at the end
of each learning iteration, the parameter of all the classifiers
belonging to [A] are updated with respect to their matching degree
with the input instance e.

The first parameter that must be updated is reward prediction
error. In XCS-HT, we update it as follows:

cl.ε ← cl.ε + β (|R – cl.P| × cl.μ(e) - cl.ε) (1)

And the second parameter is reward prediction that would be
updated as follows:

cl.P ← cl.P + β (R – cl.P) × cl.μ(e) (2)

It is worth mentioning that the condition part of each classifier
presents two kinds of regions, namely certain and vague region,
by defining a hyper trapezoidal membership function. Hereby, for
better modeling the regularities of environment, the parameters of
each classifier must be updated in view of the fact that the certain
region would be as accurate as possible whereas it is not
necessary that the vague region is evolved as accurately as is the
certain region. Such being the case, we suggest that the reward
prediction error and the prediction error of each classifier are
updated with respect to the matching degree parameter as
Equation 1 and 2 show. If the incoming instance e is matched by
the certain part of a classifier cl, Equation 1 and 2 will be similar
to the one in XCS since the matching degree of the corresponding
classifier is equal to one (cl.μ(e)=1). On the other hand, if e
matches by the vague region of cl with cl.μ(e) < 1 degree of
certainty, it is expected that the receiving reward R affects the
estimation of reward prediction error and prediction error less, so
we multiply (R – cl.P) by cl.μ(e).

The fitness parameter is updated as suggested in XCS. Equation 3,
4 and 5 provide a recollection of how the fitness parameter would
be updated. Since for calculating the accuracy of each classifier
the current value of its reward prediction error is used and we
update cl.ε according to cl.μ(e), the updated value of fitness
parameter cl.F is implicitly affected by the matching degree
parameter of each classifier.












otherwise

ν
)

ε

cl.ε
α(

εcl.εif1

cl.k

0

0

(3)

 




[A]cl
cl.numcl.k

cl.numcl.k
kcl.

(4)

cl.F ← cl.F + β (cl.k΄ - cl.F) (5)

The experience parameter of each classifier (cl.exp) counts the
number of times the condition part of this classifier is satisfied
and its action is applied. In other words, cl.exp shows number of
times that cl belongs to [A]. In XCS-HT, as the condition part of
each classifier is satisfied by cl.μ(e) degree of certainty, the
experience parameter cl.exp is updated as follows:

cl.exp ← cl.exp + cl.μ(e) (6)

4.3 Class Inference Methodology
Like any reinforcement learning system, XCS works in two
different modes: exploration or training and exploitation or test.
XCS is an online learning system interacting with environment
along exploration mode to evolve a maximally general rule set
containing rules with minimum prediction error. In exploitation
mode, XCS uses such evolved rule set to predict the best action or
class label in classification tasks for new incoming instance.

To select the current action, XCS firstly computes the system
prediction P(ai) for each possible action using



 






i

i

acl.A[M]cl

acl.A[M]cl

i
cl.F

cl.Pcl.F
)P(a . Then, the winner action is

chosen depending on the policy to explore or exploit. P(ai) shows
the fitness weighted average of the reward prediction estimates of
the classifier in [M] that advocates action ai.

Here, we use a similar strategy to select the winner action by
calculating P(ai). The consequent system prediction entries are
computed as follows:

 

 






i

i

acl.A[M]cl

acl.A[M]cl

i
cl.F(e)cl.

cl.Pcl.F(e)cl.
)P(a





(7)

As the incoming instance e is not matched with all classifiers in
[M] with same certainty degree, so it is fair to compute the P(ai)
by considering the matching degree of each classifiers in [M]. In
Equation 7, the fitness of each classifier is multiplied by the value
of its matching degree parameter to reduce the influence of the
reward prediction of classifiers that the vague region presented in
their condition part matches the new instance.

4.4 Rule Set Reduction
XCS is a population based learning system and consequently the
evolved classifier population codes the final solution to the given
problem. The problem solution is overrepresented with similar,
multiple, strongly overlapping classifiers. Thus, an important part
of LCS-based system is effective rule set compaction. Here, we
employ a compaction method termed Reduction based on Least
Reward Prediction (RLRP). RLRP can reduce the evolved

1214

population by 94% on average while hardly affecting the test
accuracy.

The proposed reduction method tries to minimize the rule set size
by selecting the more general classifiers which have not only
more reward prediction estimate cl.P but also less reward
prediction error cl.ε. In other words, RLRP tries to find classifiers
that maximize the least reward prediction which is estimated by
(cl.P-cl.ε) with respect to their generality namely cl.generality.
The pseudo code of this reduction method is provided in
Algorithm 2.

Algorithm 2: Rule Set Reduction

FinalRuleSet=Empty
for each train instance e
 classifier c=FinalRuleSet.getmatchingClassifier(e)
 if c==null � c.A!=e.classLabel
 max=0 , bestCl=null
 for each classifier cl in [P]
 if cl.match(e) � cl.A=e.classLabel
 cmax=(cl.P-cl.ε)×cl.generatilty
 if max<cmax
 max=cmax
 bestCl=cl
 FinalRuleSet.add(cl)

The proposed compaction method is applied at the end of the
learning process to obtain a minimum set of rules. For each
training sample, we check the classifier population to find the
classifier that maximizes (cl.P-cl.ε)×cl.generality and copy such
classifier to the final population. cl.generality shows how much cl
is general. Generality is defined as the sum of the widths of
certain region and half of the widths of vague region that are
presented in the classifier condition part, as follows:

iiii
idimension

))ii)ii
idimension

)ii
idimension

cl.acl.dcl.bcl.c
2

1

cl.c(cl.dcl.a((cl.b
2

1

cl.b(cl.citycl.general

















(8)

We try to avoid the situation that the problem space would be
uncovered by considering cl.generality in a criterion that must be
maximized for each train instance.

Since the proposed reduction method is applied at the end of
learning iteration, we suggest a new inference method in test
mode. The proposed inference method is compatible with our
reduction method to affect the test accuracy as marginally as
possible. Here, to predict the correct action or class label in
classification tasks for each incoming instance e, the compact rule
set is checked to find the winner rule cl which maximizes (cl.P-
cl.ε)×cl.μ(e). As the classifiers match the new incoming instance e
with different degrees of certainty, we multiple the least reward
that a classifier cl predicts to receive by its matching degree
cl.μ(e) that shows how much cl is successful in matching the
unseen data e. In other words, by considering the value of the
matching degree of a classifier, the influence of the reward
prediction of those classifiers that their vague region matches the
new instance is reduced.

5. EXPERIMENTAL RESULTS
To verify the basic behavior of XCS-HT* facing real valued
problems, the experiments were carried out selecting eight real
world problems with different characteristics from UCI repository
[6]: Balance-scale (bal), Glass (gls), Iris (irs), Thyroid (thy), Pima
(pim), Vehicle (veh), Wisconsin diagnose breast cancer (wbcd),
and Wine (wne).

The parameter of XCS-HT* is configured as follows:
numIter=100000, population size=6400, β=0.2, α=0.1, ν=5, χ=0.8,
τ=0.4, μ=0.04, r0=0.1, m0=0.6, θGA=48, θdel=50, θsub=50, δ=0.1
and θoverlap=80. It is worth mentioning that this parameters setting
also used on XCS-HT, Fuzzy-UCS and XCSR according to their
authors’ suggestions.

We compared the performance, as well as the interpretability of
the learners selected to be compared with each other. The
performance was measured by the test accuracy rate and the
interpretability of learners was quantified by the size of evolved
rule set. To have reliable estimations of these indicators, ten-fold
cross validation [23] was used.

5.1 Comparison among Different Versions of
XCS-HT*
This section furthers the study on the enhancement mechanisms
introduced in the proposed modification of XCS-HT which was
termed as XCS-HT*. To verify the effectiveness of XCS-HT*,
Table 1 provides a comparison between the original version of
XCS-HT and different versions of the proposed learner, XCS-
HT*, each of which uses one or some enhancement mechanisms
introduced in previous section. The learners which are compared
to each other in Table 1 are listed as follows:

XCS-HT: (presented in second column) is a simple version of
XCS-HT which was firstly introduced in [5].

XCS-HTrr: (presented in third column) is a version of XCS-HT in
that its rule set is refined by eliminating the classifiers that their
experiences cl.exp are less than θexploit, a user-set parameter. Here,
we set it to 10 as it was suggested in [18].

XCS-HT*(RE)rr: (presented in fourth column) Here, the
subsumption mechanism is modified as introduced in Section 4.1
and the rule evaluation mechanism proposed in Section 4.2 is used
to improve the performance of system.

XCS-HT*(RE+IM)rr: (presented in fifth column) likes the
previous one. In addition, its class inference methodology is
modified based on the matching degree of each classifier as
suggested in Section 4.3.

XCS-HT*(RE+RLRP)rr : (presented in sixth column) in addition
to updating the parameters of classifiers according to equations
proposed in Section 4.2, after eliminating the classifiers with
cl.exp<θexploit, it uses RLRP reduction method and its compatible
class inference methodology proposed in 4.4.

Each above learner was applied on all real world problems. Then
we examine the trade-off between the obtained performance and
the size of model created by each learner. The two last rows of
Table 1 indicate the average of the rank over independent runs on
selected UCI data sets and the position of each learner in the
ranking in terms of obtained performance and the rule set size
respectively.

1215

Table 1: The test accuracy and the number of rules of the models created by different versions of XCS-HT* and XCS-HT.

Performance Number of rules

XCS-HT XCS-HTrr
XCS-HT*

(RE)rr
XCS-HT*
(RE+IM)rr

XCS-HT*
(RE+RLRP)rr

XCS-HT XCS-HTrr
XCS-HT*

(RE)rr
XCS-HT*
(RE+IM)rr

XCS-HT*
(RE+RLRP)rr

bal 84.68% 84.26% 85.43% 85.22% 84.19% 1558 604 642 642 42

gls 70.77% 68.80% 66.67% 66.51% 64.13% 2964 1125 1170 1170 37

irs 94.94% 94.48% 95.11% 95.78% 94.89% 96 70 77 77 8

thy 92.93% 93.27% 94.60% 94.76% 93.96% 373 176 196 196 13

pim 74.18% 74.14% 75.31% 75.75% 73.77% 3675 1548 1599 1599 98

veh 72.49% 72.17% 72.94% 72.26% 67.67% 4814 1684 1780 1780 91

wdbc 96.00% 95.87% 95.77% 96.04% 93.04% 3992 1835 1825 1825 52

wne 94.73% 94.32% 94.31% 94.31% 89.02% 2870 1852 1866 1866 21

rank 2.55 3.35 2.5 2.1 4.5 4 2.1 2.9 2.9 1

pos 3 4 2 1 5 4 2 3 3 1

Table 2: Comparison of XCS-HT* and XCS-HT*(RLRP) with XCSR, primary version of XCS-HT and three versions of
FuzzyUCS in terms of performance and the size of evolved rule set.

XCSR XCS-HT XCS-HT*

XCS-HT*
(RLRP)

FuzzyUCS
(wavg)

FuzzyUCS
(awin)

FuzzyUCS
(nfit)

per pop per pop per pop per pop per pop per pop Per pop

bal 82.65% 1860 84.68% 1558 85.22% 642 84.19% 42 88.56% 1212 84.40% 114 83.40% 75

gls 71.52% 3394 70.77% 2964 66.51% 1170 64.13% 37 60.65% 2799 57.21% 62 57.43% 36

irs 94.69% 724 94.94% 96 95.78% 77 94.89% 8 95.67% 480 95.47% 18 93.73% 7

thy 95.72% 1679 92.93% 373 94.76% 196 93.96% 13 88.18% 3130 89.49% 138 91.25% 28

pim 73.23% 3320 74.18% 3675 75.75% 1599 73.77% 98 74.88% 2841 74.11% 192 74.32% 62

veh 72.84% 4830 72.49% 4814 72.26% 1780 67.67% 91 67.68% 3732 65.35% 332 65.34% 147

wdbc 94.97% 5324 96.00% 3992 96.04% 1825 93.04% 52 95.20% 5412 94.61% 276 94.51% 101

wne 97.00% 4086 94.73% 2870 94.31% 1866 89.02% 21 94.12% 3686 94.86% 95 91.82% 26

rank 3.5 6.5 2.95 5.5 2.18 4 5.31 1.25 3.4 6 4.69 3 5.69 1.75

pos 4 7 2 5 1 4 6 1 3 6 5 3 7 2

Table 3: Pairwise comparison of the performance (white cells) and the size of evolved rule set (gray cells) of XCSR, XCS-HT, XCS-
HT*, XCS-HT*(RLRP), three versions of FuzzyUCS by means of Wilcoxon signed-ranks test (α=0.05).

 XCSR XCS-HT XCS-HT*
XCS-HT*
(RLRP)

FuzzyUCS
(wavg)

FuzzyUCS
(awin)

FuzzyUCS
(nfit)

XCSR 0.8438 □ 0.9453 □ 0.1094 ○ 0.4609 □ 0.2500 ○ 0.1094 ○

XCS-HT 0.0391 ■ 0.5469 □ 0.0547 ○ 0.3125 ○ 0.1094 ○ 0.0156 ●

XCS-HT* 0.0078 ■ 0.0078 ■ 0.0078 ● 0.0781 ○ 0.0234 ● 0.0078 ●

XCS-HT*
(RLRP)

0.0078 ■ 0.0078 ■ 0.0078 ■ 0.5469 □ 0.9453 □ 0.4609 ○

FuzzyUCS (wavg) 0.2500 □ 0.6406 ○ 0.0078 ● 0.0078 ● 0.1953 ○ 0.1094 ○

FuzzyUCS (awin) 0.0078 ■ 0.0078 ■ 0.0078 ■ 0.0078 ● 0.0078 ■ 0.6406 ○

FuzzyUCS (nfit) 0.0078 ■ 0.0078 ■ 0.0078 ■ 0.2344 ○ 0.0078 ■ 0.0078 ■

1216

As shown in Table 1, eliminating classifiers with cl.exp<θexploit
(XCS-HTrr) decreased the size of rule set over 51.7% on average.
Nonetheless, it went against the performance which was fallen
down. To achieve better position in the performance ranking, in
Section 4 we suggested that the parameters of classifier would be
updated with respect to their certainty degree in matching of
incoming instance and a similar strategy was introduced to infer
the class of new example. The obtained results are promising
since XCS-HT*(RE+IM)rr got the best rank in the presented
comparison. On the other hand, our reduction method, namely
RLRP, helped XCS-HT* for considerable reduction of the rule set
while slightly degrading the performance. As shown in Table 1,
RLRP was able to boil the number of rules created by XCS-HT*
down by often more than 94% while only decreasing the
performance about 2%. So, it is obvious that there exists a trade-
off named performance- interpretability trade-off between the test
accuracy as a performance measurement and the size of the model
created by XCS-HT* as an interpretability measurement.

According to the performance-interpretability trade-off, XCS-
HT*(RE+IM)rr is the best ranked in the comparison of
performance and XCS-HT*(RE+RLRP)rr considerably improves
the interpretability due to its large reduction of the rule set. To
have fair comparison with other learners such as XCSR, XCS-HT
and three versions of Fuzzy-UCS, we selected these two versions
of the proposed system and termed them XCS-HT* and XCS-
HT*(RLRP) respectively. XCS-HT* is indeed XCS-
HT*(RE+IM)rr which was improved by enhancement mechanisms
proposed in Section 4 and have the best rank in terms of
performance. Similarly, XCS-HT*(RLRP) is the one using the
proposed reduction method and being the best ranked among
others in terms of number of rules as it was shown in Table 1.

5.2 Comparison with other learners
Table 2 detailed a comparison of the proposed learners, XCS-HT*
and XCS-HT*(RLRP), with the most common Michigan style
learner in the literature called XCSR using interval based
representation to handle real valued problems [7,8], the original
version of XCS-HT which is proposed in [5] and three versions of
Fuzzy-UCS [17,18], a Michigan style learning classifier system,
introducing a linguistic representation of the rules and reduction
methods with the aim of reducing the size of evolved rule set
while maintaining similar performance. This comparison was
done in terms of performance measured by the test accuracy rate
and interpretability measured by the number of rules of the
models created by these learners. It is worth mentioning that the
results of Fuzzy-UCS presented in Table 2 equal to the values that
have been reported in [18].

As this table shows, the obtained result is encouraging. XCS-HT*
is able to reach the maximum test accuracy among all learners. It
indicates that XCS-HT* have better ability to model the problem
regularities and surpassed the performance of XCS-HT and
XCSR, respectively the second and third best ranked learners.
Moreover, XCS-HT* results in better rank in comparison with
these two algorithms in terms of the number of rules evolved by
the underlying learner (see the pop column of the last row of
Table 2). With regard to the interpretability of the learners
measured by the number of rules created by the learner, the fine
performances of XCSR and Fuzzy-UCS with weighted average
[18], Fuzzy-UCS(wavg), were hampered by evolving the biggest
and the second biggest rule set. On the other hand, XCS-
HT*(RLRP) is the best algorithm and Fuzzy-UCS with most

numerous and fittest rules [18], Fuzzy-UCS(nfit), is the second
one in ranking. They allowed for considerable reduction of the
rule set while slightly degrading the performance.

By comparing our method, XCS-HT*, to the old version of XCS-
HT, it can be concluded that XCS-HT* can achieve better
performance with so smaller evolved rule set. With respect to
Table 2, XCS-HT* is the best ranked algorithm whereas the size
of its rule set is about half of the size of the rule set created by the
second best ranked algorithm in terms of performance (XCS-HT).
Consequently, it shows that enhancement mechanisms proposed
in Section 4 are effective to improve XCS-HT* in terms of both
performance and the number of evolved rules. Moreover, the
results of XCS-HT*(RLRP) in Table 2 show that with the
proposed reduction method (RLRP), it is possible to improve the
interpretability considerably since it reduces the size of the
models created by XCS-HT* over than 94% on average while its
performance decreases only about 2%.

In comparison with XCSR, XCS-HT* have better performance
with producing only 33% of the rules created by XSCR. In XCS-
HT*, each classifier presents two kinds of regions, namely certain
and vague region, whereas in XCSR each classifier only present
the certain one. Hereby, it is expected that XCS-HT* be able to
evolve more general classifiers while their certain region are as
accurate as possible and their vague region are as accurate as
needed. Compared to three versions of Fuzzy-UCS, Table 2
shows that our system, XCS-HT*, achieved better performance
with smaller rule set than the Fuzzy-UCS(wavg) produced.
Nevertheless, its rule set size was still extremely larger than two
other versions of Fuzzy-UCS with awin and nfit inferences.
However, the results of applying RLRP and its compatible
inference method are optimistic. As Table 2 shows, RLRP can
pave the way for decreasing the size of models created by XCS-
HT* substantially while the performance decreases marginally. In
comparison to Fuzzy-UCS(nfit), a version of Fuzzy-UCS which
can evolve rule sets that ranged from tens to few hundreds of
rules, XCS-HT*(RLRP) is able to achieve a little better
performance while evolving less number of rules.

Tables 3 illustrated the p-values resulting to a non-parametric
wilcoxon signed-ranks test [24] at α=0.05. The p-values obtained
by comparing the test performance are in upper triangular cells
which are in white. The lower triangular cells colored in gray
indicate the p-values of comparing the size of rule set created by
selected learners. The ● and ■ symbols denote that the method in
the row significantly improved/degraded the performance or the
size of rule set obtained with the learner in the column. The ○ and
□ indicate a non-significant improvement/degradation. The results
highlight the high competitiveness of XCS-HT* in terms of
performance and interpretability with respect to other selected
learners. In addition, as expected RLRP can significantly degrade
the size of model created by XCS-HT* and also provide a
compatible performance.

6. CONCLUSIONS AND FUTURE WORK
XCS-HT* is an extension of XCS-HT, a Michigan style learning
classifier system introducing a fuzzy approach to represent
knowledge. Each classifier can partition the problem space with
two kinds of regions named certain and vague regions. This
means that each classifier can match an incoming instance e with
a degree of certainty that is 0 ≤ cl.μ(e) ≤ 1. This paper has
attempted to improve this approach and assess the effectiveness of
our method named XCS-HT* on real world problems. Hence,

1217

some essential components of XCS-HT* such as subsumption
mechanism, rule evaluation, class inference methodology have
been enhanced to improve its potency and performance in dealing
with problems especially real world problems. All these suggested
enhancement mechanisms are based on how much a classifier is
successful to match the new unseen data e, namely matching
degree parameter cl.μ(e).

The main aim of this paper is not only to improve XCS-HT* in
terms of performance as much as possible but also to enhance its
interpretability by reducing the size of its rule set as less as
possible. Therefore, a novel reduction method named RLRP has
been proposed. It is based on maximizing the least reward
prediction estimated by selected classifiers. Additionally, a new
inference method which is compatible with RLRP has been
suggested to maintain the similar performance. The performance
and the size of the models created by XCS-HT* have been tested
on a collection of real world problems selected from UCI
repository. The obtained results identified that XCS-HT* tries to
evolve a promising rule set consisting more general classifiers
while their certain region are as accurate as possible and their
vague region are as accurate as needed. This research opens up
many research directions; first handling mixed attributed
problems and second improving XCS-HT* to be applicable on
multistep problems with continuous inputs.

7. REFERENCES
[1] J. H. Holland. Adaptation. In R. Rosen and F. Snell, editors,

Progress in Theoretical Biology, volume 4, pages 263–293.
New York: Academic Press, 1976.

[2] S.W. Wilson. Classifier fitness based on accuracy.
Evolutionary computation, 3(2):149-175, 1995.

[3] P.L. Lanzi. Learning classifier systems: then and now.
Evolutionary Intelligence. 1(1): 63–82, 2008.

[4] T. Kovacs. XCS classifier system reliably evolves accurate,
complete, and minimal representations for boolean functions.
In Roy, Chawdhry, and Pant, editors, Soft Computing in
Engineering Design and Manufacturing, pages 59–68, 1997.

[5] F. Shoeleh, A. Hamzeh and S. Hashemi. To Handle Real
Valued Input in XCS: Using Fuzzy Hyper-trapezoidal
Membership in Classifier Condition. Simulated Evolution
and Learning, pages 55-64, 2010.

[6] A. Asuncion and D. J. Newman. UCI Machine Learning
Repository: [http://www.ics.uci.edu/∼mlearn
/MLRepository.html]. University of California, 2007.

[7] S. W. Wilson. Get real! XCS with continuous-valued inputs.
In Learning Classifier Systems. From Foundations to
Applications, LNAI, pages 209–219, Berlin, 2000.

[8] S. W. Wilson. Mining oblique data with XCS. Advances in
Learning Classifier Systems, pages 158–176, 2001.

[9] C. Stone and L. Bull. For real! XCS with continuous-valued
inputs. Evolutionary Computation,11(3):299–336, 2003.

[10] H. H. Dam, H. A. Abbass, and C. Lokan. Be real! XCS with
continuous-valued inputs. In GECCO’05: In Proceedings of

the 2005 Genetic and Evolutionary Computation Conference
workshop program, pages 85–87, 2005.

[11] M. V. Butz, P. L. Lanzi, and S. W. Wilson. Function
approximation with XCS: Hyperellipsoidal conditions,
recursive least squares, and compaction. IEEE Transactions
on Evolutionary Computation, 12(3):355–376, 2008.

[12] P. L. Lanzi and S. W. Wilson. Using convex hulls to
represent classifier conditions. In GECCO ’06: Proceedings
of the 8th annual conference on Genetic and evolutionary
computation, pages 1481–1488, 2006.

[13] M. Valenzuela-Rend´on. The fuzzy classifier system: A
classifier system for continuously varying variables. In 4th
ICGA, pages 346–353. Morgan Kaufmann, 1991.

[14] A. Bonarini and C. Bonacina and M. Matteucci. Fuzzy and
crisp representations of real-valued input for learning
classifier systems. Learning Classifier Systems, pages 107-
124, 2000.

[15] A. Bonarini. An introduction to learning fuzzy classifier
systems. Learning Classifier Systems, pages 83-104, 2000.

[16] J. Casillas, B. Carse, and L. Bull. Fuzzy-XCS: A Michigan
genetic fuzzy system. IEEE Transactions on Fuzzy Systems,
15(4):536–550, 2007.

[17] A. Orriols-Puig, J. Casillas, and E. Bernad´o-Mansilla.
Fuzzy-UCS: Preliminary results. In GECCO’07:
Proceedings of the 2007 Genetic and Evolutionary
Computation Conference Workshop Program, volume 3,
pages 2871–2874, 2007.

[18] A. Orriols-Puig, J. Casillas, and E. Bernad´o-Mansilla.
Fuzzy-UCS: a Michigan-style learning fuzzy-classifier
system for supervised learning. IEEE Transactions on
Evolutionary Computation, 13(2): 260-283, 2009.

[19] S. W. Wilson. Classifier conditions using gene expression
programming. Technical report, IlliGAL Report No.
2008001, Urbana-Champaign IL 61801, USA, 2008.

[20] L. Bull and T. O’Hara. Accuracy-based neuro and neuro-
fuzzy classifier systems. In GECCO’02: Proceedings of the
2002 Genetic and Evolutionary Computation Conference,
pages 905–911, 2002.

[21] E. Bernad´o-Mansilla and J. M. Garrell. Accuracy-based
learning classifier systems: Models, analysis and applications
to classification tasks. Evolutionary Computation,
11(3):209–238, 2003.

[22] M. V. Butz. Rule-based evolutionary online learning
systems: A principled approach to LCS analysis and design,
volume 109 of Studies in Fuzziness and Soft Computing.
Springer, 2006.

[23] T. G. Dietterich. Approximate statistical tests for comparing
supervised classification learning algorithms. Neural
Computation, 10(7):1895–1924, 1998.

[24] F. Wilcoxon. Individual comparisons by ranking methods.
Biometrics, 1:80–83, 1945.

1218

