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ABSTRACT 
Generalization is the most challenging issue in XCS research area. 
One of the main components of XCS managing to remedy this 
issue is knowledge representation. In this paper, a knowledge 
representation based on fuzzy membership function offering 
certain and vague regions is described. We extend the Michigan 
learning classifier system using this approach to be improved in 
terms of both performance and interpretability. The contribution 
of this paper is three-folds: 1) updating main parameters of 
classifiers based on their certainty factor in matching of incoming 
data, 2) enhancing essential components of XCS to be compatible 
with such fuzzy representation schema and 3) proposing a novel 
rule set reduction method named Reduction based on Least 
Reward Prediction (RLRP) to improve the interpretability of the 
evolved model. Furthermore, an inference methodology which is 
compatible with RLRP is suggested to maintain the similar 
performance. The obtained results are promising due to the 
effectiveness of proposed method in dealing with real world 
problems. Furthermore, the proposed reduction method can 
upgrade the interpretability of final rule set by boiling its size 
down by 94% on average while slightly degrading the prediction 
accuracy.  

Categories and Subject Descriptors 
I.2.6 [Learning]: Concept learning, Knowledge acquisition 

General Terms 
Algorithms 

Keywords 
Knowledge Representation, Learning Classifier System, 
Reduction Method, XCS. 

1. INTRODUCTION 
Learning classifier systems (LCSs) are evolutionary learning 
mechanisms that combine the general principles of Darwinian 
evolution with the power of the cognitive learning paradigm [1]. 
LCSs are on line rule based systems which their main aim is using 
internal evolutionary algorithm to evolve a population of 

classifiers which are usually represented as rules named classifiers 
as a solution to a given problem. The accuracy based classifier 
system, namely the eXtended Classifier System (XCS) [2], is 
currently considered as millstone of learning classifier systems 
due to its effectiveness in data analysis and its success in applying 
to varieties of learning problems. It can be concluded that the 
effectiveness of XCS as a machine learning paradigm is that  
”XCS was the first classifier system to be both general enough to 
allow applications to several domains and simple enough to allow 
duplication of the presented results” [3].  

A rule based system such as XCS is able to solve a problem 
efficiently if its rule set can cover the whole problem space 
properly and also each rule makes an effective decision. 
Therefore, it can be concluded that rule representation, i.e. 
knowledge representation, has an essential role in rule based 
systems. In addition, one of the most important goals in the 
extensions of XCS is to achieve a compact and accurate solution 
for a given problem [4]. It is obvious that achieving these goals 
mainly depends on the representation method which is used to 
cover the problem space. 

One of the main challenging issues in proposing a knowledge 
representation technique is how classifiers of population should 
cover the problem space to define the problem regularities 
accurately. In addition, how a classifier can match an incoming 
instance is an important factor in choosing the best action. The 
last few decades have seen the increasing interest in using fuzzy 
logic and fuzzy theory as a powerful mechanism to create 
maximally general and accurate rule set. The benefit of using 
fuzzy theory is not only handling uncertainty and imprecision but 
also avoiding to evolve large number of rules that may hamper the 
readability of the rule set. In one of the recent researches [5], a 
Michigan style learning classifier system named XCS-HT is 
introduced. The main aim of that study was proposing a new 
knowledge representation based on presenting two kinds of 
regions, namely certain region and vague region, in the condition 
part of each classifier to match the incoming instance with 
different levels of certainty. It was shown that such representation 
helps XCS-HT to evolve a set of classifiers which can cover 
problem space in an effective manner with minimum redundancy 
[5]. In other words, the evolved rule set, if small, is still accurate 
and general to model the class boundaries sufficiently precisely. 

In this paper, we modify and enhance the main components of 
such system to have improvement in terms of performance 
measured by test accuracy and the interpretability measured by 
the size of evolved rule set. Although applying such modification 
on XCS-HT may result in reducing the evolved rule set, the final 
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rule set still has many additional rules which are not only 
inessential in predicting the correct class label of incoming 
instance but also in some cases they cause a downfall in the test 
accuracy. Hence, we employ a reduction method Reduction based 
on Least Reward Prediction (RLRP) and a compatible inference 
methodology for the efficient compaction of the final problem 
solution. This reduction method can eliminate more than 94% of 
the evolved classifiers on average while hardly affecting the 
accuracy. It was shown that as compared to XCSR, XCS-HT has 
fine ability to model the indistinguishable class boundaries. The 
last but not least motivation of this paper is to assess the 
effectiveness of the proposed modification of XCS-HT on solving 
the real world problems. So, several standard data sets are selected 
from UCI repository database [6] and the obtained results are 
promising. The results show that our method presents statistically 
significant improvement in terms of the performance and the 
number of rules. 

The rest of this paper is organized as follows; Section 2 
summarizes the important works that have been done to enhance 
the knowledge representation component of XCS. Section 3 
provides a short description of XCS-HT. Section 4 details the 
proposed enhancement mechanisms can be applied to XCS-HT* 
in terms of performance and the size of evolved rule set. Section 5 
compares our learner with the primary version of XCS-HT, XCSR 
and Fuzzy-UCS in terms of performance and interpretability 
measured by the size of evolved rule set. This comparison is done 
over a collection of real world problems which are selected from 
UCI repository database [6] to highlight the effectiveness of our 
method in real world problems with different characteristics. 
Finally, Section 6 concludes and discusses further work. 

2. RELATED WORK 
The first and most commonly syntax for classifier condition is 
“Ternary” representation including {0,1,#} alphabets. For 
handling continuous-valued input, this traditional representation 
has been substituted to the interval-based representation, 
proposing an interval in condition part of classifier for each 
dimension. According to definition of these intervals four 
different representation techniques have been introduced; Center 
Spread Representation (CSR) [7], Lower-Upper Bound 
Representation or Min-Max Representation (MMR) [8], 
Unordered-Bound Representation (UBR) [9], and Min- 
Percentage Representation (MPR) [10]. The subspace of problem 
space that can be presented by a classifier is identified by the 
disjunction of intervals in condition part of the classifier. Besides, 
to handle continuous-valued inputs, several valuable efforts have 
been done to cover the problem space with geometric shape which 
is defined in condition part of classifiers. Some of these 
researches are done in [11] and [12] where each classifier presents 
a hyper ellipsoidal and a convex hull respectively. Furthermore, to 
make XCS more effective in complex problems, other general 
purposed representations have been proposed; such as, fuzzy [13-
18], GP-like conditions [19], and neural network [20].  

There are a number of approaches to use fuzzy logic as a 
technique to represent fuzzy rules in Michigan style LCS [13-18]. 
The main motivation behind such efforts is to achieve an online 
learning system with more accurate, general and well 
understandable rule set by combining the generalization 
capabilities of XCS with the fine interpretability of fuzzy rules. 
Bonarini et al. in [14, 15] introduced the general framework of 
LCS using fuzzy logic. One of the successful proposed LCS 

inheriting this framework is Fuzzy-XCS [16] where the rules are 
expressed in fuzzy format. Soon later, this approach was 
expanded to be employable in UCS [21] and a system named 
Fuzzy-UCS was introduced [17, 18]. Fuzzy-UCS tries to combine 
the good capacity of UCS such as generalization with the good 
interpretability of fuzzy rules to evolve a compact and 
understandable rule set. Recently, XCS-HT [5] has been 
introduced to reduce the size of rules set and maintain the 
performance as much as possible using hyper-trapezoidal 
membership function in condition part of classifier. 

3. DESCRIPTION OF XCS-HT 
This section provides an overall description of the modification of 
XCS’s components in XCS-HT. 

3.1  Representation 
In XCS-HT, the condition part of each classifier presents two hyper 
rectangles. One of these hyper rectangles embraces the other one 
completely. The inner hyper rectangle is indeed the certain region 
and the space between these two hyper rectangles is a vague region 
where instances can be matched by less than 100% degree of 
certainty. An asymmetric hyper trapezoidal membership function is 
defined in the condition part of a classifier. Thus, there are four 
genes for each dimension to present such hyper trapezoidal 
membership function, that is cl.C={a1,b1,c1,d1,a2,b2, c2,d2,…, 
an,bn,cn,dn} where n identifies the dimensions of given problem and 
{ai,bi,ci,di} are the parameters of the defined trapezoidal 
membership function in i’th dimension. For better understanding, 
Figure 1 shows the structure of a classifier in a two dimensional 
problem and how such classifier partitions the problem space. 

(a) 

 
(b) 

(c) 

Figure 1. An example of hyper trapezoidal based classifier in 
an arbitrary problem space. a) Visualization of the area 
covered by such classifier, including certain region shown in 
black and vague region, shown in dark gray. b) The 
trapezoidal membership functions defined for each dimension. 
c) The genotype of the classifier presented in (a) and (b). 

3.2 Matching and Covering 
Each classifier has a parameter named matching degree parameter 
(cl.μ) that shows the degree of certainty in matching the incoming 
instance. To compute such parameter, a T-norm, like product(a,b) 
or min(a,b), is used to find the conjunction of all matching 
degrees obtained from the trapezoidal membership function 
defined in condition part of classifier for each dimension. In our 
implementation, we use product(a,b) as T-norm. 

Two methods have been proposed to form [M] named Ordinary 
mechanism and Roulette Wheel (RW) based mechanism. In 
Ordinary mechanism, each classifier has a chance to be a member 
of [M] with a probability which is equal to the value of its 
matching degree parameter. But, in RW mechanism, classifiers 
which match the incoming instance certainly would be a member 
of [M] and the other classifiers that match the incoming instance 
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with cl.μ(e)<1 degree of certainty participate in roulette wheel 
selection method if the sum of their matching degrees are greater 
than 0.5. 

The covering procedure will be triggered if there is no classifier 
founded by RW based mechanism to match the current instance, 
the system would generate a sequence of random numbers as 
a1,b1,c1,d1,a2,b2,c2,d2,…,an,bn,cn,dn in condition part of new 
classifier as if it can match the incoming instance certainly. 

3.3 Subsumption 
Subsumption is a perspicacious technique in XCS to stress 
additional generalization pressure in that a syntactically more 
general classifier observed more specialized classifiers [22]. So, it 
can be concluded that subsumption is a crucial factor along the 
way to evolve maximally general classifiers. To achieve this goal, 
we must determine whether the condition part of a classifier cl1.C 
is subsumed by the condition part of another classifier cl2.C which 
is both accurate (cl2.ε<ε0) and sufficiently experienced 
(cl2.exp>θsub) or not. It is worth mentioning that since 
subsumption applied in [A], the action part of both classifier cl1 
and cl2 are the same. 

In XCS-HT, to find whether cl1.C can be subsumed by cl2.C or 
not, the overlapping area (Soverlap) between the two trapezoidal 
membership functions defined in the condition part of each 
classifiers is calculated. If in all dimensions the calculated Soverlap 
is greater than a predefined percentage of total area (Scl1) of the 
trapezoidal membership function of the specified classifier cl1, 
(Soverlap>θoverlap×Scl1), cl1 can be subsumed by the more general 
classifier cl2.  

4. PROPOSED METHOD 
This paper aims at improving the learning mechanism of XCS-HT 
in terms of test accuracy and also proposing a novel inference 
mechanism and consequently a compaction method to reduce the 
final evolved rule set while changing the performance only 
marginally.  

Our proposed method has the same knowledge representation 
technique that is using hyper trapezoidal membership function to 
partition the problem space with two kinds of regions. Thus, Each 
classifier has a parameter named matching degree parameter 
cl.μ(e) to identify its matching degree when facing the current 
incoming state e. Since this parameter has an essential role in 
evolving better and more compact rule set, we modified the other 
components of our system to improve its performance. As the 
reported results in [5] suggested, in our modification the RW 
based mechanism is chosen to form [M] due to its effectiveness in 
applying more selection pressure than Ordinary mechanism and 
consequently producing less number of rules. 

In the following, we describe the modification of XCS-HT’s in 
detail.  

4.1 Subsumption 
As the knowledge representation used in our system is the same as 
ones in XCS-HT, we also borrow its subsumption mechanism and 
in our implementation, we set θoverlap parameter to 80%.  

Figure 2.a illustrates an example of such subsumption mechanism. 
In this example cl2 cannot subsume cl3. On the contrary cl1 can be 
subsumed by cl2 because the overlapping area between cl1 and cl2 
is by 80% of total area covered by the trapezoidal membership 
function defined in cl1  

As shown in Figure 2, in some cases when the more general 
classifier cl2 subsumes the more specialized one cl1, some portion of 
problem space which is covered by the specialized classifier cl1 
would be uncovered. In our example, the area between cl2.a and 
cl1.a will be uncovered after observing cl1 in subsumption 
procedure. On the other hand, since the subsumption occurs in 
training phase, if the specialized classifier is both accurate (ε<ε0) 
and sufficiently experienced (exp>θsub), subsuming such classifier 
might cause an unwelcome disregard about some useful and 
significant knowledge which is obtained through learning process. 
Hereby, we suggest a merge mechanism which, if simple, is useful 
to overcome this shortcoming. In subsumption mechanism when an 
accurate and sufficiently experienced classifier is founded to be 
subsumed, the parameters of trapezoidal membership function 
presented in the condition part of the more general classifier, 
namely the subsumer, will change in that the more specialized 
classifier is completely subsumed by subsumer classifier. In other 
words, as shown in Figure 2.b, by applying such merge mechanism 
the cl2.a parameter changes and its value would be equal to the 
value of cl1.a because cl2 is a valid subsumer and cl1 is both 
accurate and sufficiently experienced. Algorithm 1 sums up the 
modification of the parameters of trapezoidal membership function 
presented in the condition part of subsumer.  

(a) 

(b) 

Figure 2. An example of how subsumption mechanism works 
with θoverlap=0.8 . a) cl2 can subsume cl1 (Soverlap>θoverlap×Scl1) 
but cl2 cannot subsume cl3 because their membership 
functions are not overlapped enough (Soverlap>θoverlap×Scl3). b) 
The suggested merge mechanism. Since cl1 can be subsumed 
by cl2, the cl2’s membership function can be extended as if cl1 
were completely subsumed by cl2 (cl2.a=min(cl1.a,cl2.a) and 
cl2.b=min(cl1.b , cl2.b)). 

Algorithm 1: Subsumption operator with merge mechanism 

initialize subsumer 
for each classifier cl in [A] 
       subsumer = Empty 
       if (cl.exp>θsub && cl.ε<ε0) 
              subsumer ← cl 
       if (subsumer is not Empty) 
              for each cl in [A] 
                     if (IS MORE GENERAL (subsumer , cl ) ) 
                            subsumer.num ← subsumer.num  + cl.num 
                            if (cl.exp>θsub && cl.ε<ε0) 
                                   for each dimension i 
                                          subsumer.ai ← min(subsumer.ai , cl.ai ) 
                                          subsumer.bi ← min(subsumer.bi , cl.bi ) 
                                          subsumer.ci ← max(subsumer.ci , cl.ci ) 
                                          subsumer.di ← max(subsumer.di , cl.di ) 
                            remove classifier cl form set [A] 
                            remove classifier cl form set [P] 
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4.2 Rule Evaluation 
In each extension of XCS such as our system, each rule or namely 
classifier has following main parameters and several addition 
estimates. 

1. Reward prediction error (cl.ε): estimates the mean absolute 
deviation of cl.P with respect to the actual reward (R). 

2. Reward prediction (cl.P): estimates the average reward 
received if the cl.C is satisfied and cl.A is executed. 

3. Fitness (cl.F): estimates the scaled, relative accuracy of cl 
regarding to other classifier being in [A]. 

4. Experience (cl.exp): counts the number of times that cl has 
belonged to an action set [A]. 

The parameters of all classifiers in [A] would be updated with 
respect to the successive problem instance along exploration 
phase or training phase.  

In our system, each classifier has an additional parameter named 
matching degree cl.μ. This parameter identifies that the underlying 
classifier on what certainty degree can match the incoming 
instance. Here, we use this information to update the 
corresponding parameters of classifiers. In other words, at the end 
of each learning iteration, the parameter of all the classifiers 
belonging to [A] are updated with respect to their matching degree 
with the input instance e. 

The first parameter that must be updated is reward prediction 
error. In XCS-HT, we update it as follows: 

cl.ε ← cl.ε + β ( |R – cl.P| × cl.μ(e) - cl.ε ) (1) 

And the second parameter is reward prediction that would be 
updated as follows: 

cl.P ← cl.P + β ( R – cl.P ) × cl.μ(e) (2) 

It is worth mentioning that the condition part of each classifier 
presents two kinds of regions, namely certain and vague region, 
by defining a hyper trapezoidal membership function. Hereby, for 
better modeling the regularities of environment, the parameters of 
each classifier must be updated in view of the fact that the certain 
region would be as accurate as possible whereas it is not 
necessary that the vague region is evolved as accurately as is the 
certain region.  Such being the case, we suggest that the reward 
prediction error and the prediction error of each classifier are 
updated with respect to the matching degree parameter as 
Equation 1 and 2 show. If the incoming instance e is matched by 
the certain part of a classifier cl, Equation 1 and 2 will be similar 
to the one in XCS since the matching degree of the corresponding 
classifier is equal to one (cl.μ(e)=1). On the other hand, if e 
matches by the vague region of cl with cl.μ(e) < 1 degree of 
certainty, it is expected that the receiving reward R affects the 
estimation of reward prediction error and prediction error less, so 
we multiply ( R – cl.P ) by cl.μ(e). 

The fitness parameter is updated as suggested in XCS. Equation 3, 
4 and 5 provide a recollection of how the fitness parameter would 
be updated. Since for calculating the accuracy of each classifier 
the current value of its reward prediction error is used and we 
update cl.ε according to cl.μ(e), the updated value of fitness 
parameter cl.F is implicitly affected by the matching degree 
parameter of each classifier. 












otherwise

ν
)

ε

cl.ε
α(

εcl.εif1

cl.k

0

0

 

 

(3) 

 




[A]cl
cl.numcl.k

cl.numcl.k
kcl.  

 

(4) 

cl.F ← cl.F + β ( cl.k΄ - cl.F ) (5) 

The experience parameter of each classifier (cl.exp) counts the 
number of times the condition part of this classifier is satisfied 
and its action is applied. In other words, cl.exp shows number of 
times that cl belongs to [A]. In XCS-HT, as the condition part of 
each classifier is satisfied by cl.μ(e) degree of certainty, the 
experience parameter cl.exp is updated as follows: 

cl.exp ← cl.exp + cl.μ(e) (6) 

4.3 Class Inference Methodology 
Like any reinforcement learning system, XCS works in two 
different modes: exploration or training and exploitation or test. 
XCS is an online learning system interacting with environment 
along exploration mode to evolve a maximally general rule set 
containing rules with minimum prediction error. In exploitation 
mode, XCS uses such evolved rule set to predict the best action or 
class label in classification tasks for new incoming instance. 

To select the current action, XCS firstly computes the system 
prediction P(ai) for each possible action using 



 






i

i

acl.A[M]cl

acl.A[M]cl

i
cl.F

cl.Pcl.F
)P(a . Then, the winner action is 

chosen depending on the policy to explore or exploit. P(ai) shows 
the fitness weighted average of the reward prediction estimates of 
the classifier in [M] that advocates action ai. 

Here, we use a similar strategy to select the winner action by 
calculating P(ai). The consequent system prediction entries are 
computed as follows:  

 

 






i

i

acl.A[M]cl

acl.A[M]cl

i
cl.F(e)cl.

cl.Pcl.F(e)cl.
)P(a




 

 

(7) 

As the incoming instance e is not matched with all classifiers in 
[M] with same certainty degree, so it is fair to compute the P(ai) 
by considering the matching degree of each classifiers in [M]. In 
Equation 7, the fitness of each classifier is multiplied by the value 
of its matching degree parameter to reduce the influence of the 
reward prediction of classifiers that the vague region presented in 
their condition part matches the new instance.    

4.4 Rule Set Reduction 
XCS is a population based learning system and consequently the 
evolved classifier population codes the final solution to the given 
problem. The problem solution is overrepresented with similar, 
multiple, strongly overlapping classifiers. Thus, an important part 
of LCS-based system is effective rule set compaction. Here, we 
employ a compaction method termed Reduction based on Least 
Reward Prediction (RLRP). RLRP can reduce the evolved 
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population by 94% on average while hardly affecting the test 
accuracy.  

The proposed reduction method tries to minimize the rule set size 
by selecting the more general classifiers which have not only 
more reward prediction estimate cl.P but also less reward 
prediction error cl.ε. In other words, RLRP tries to find classifiers 
that maximize the least reward prediction which is estimated by 
(cl.P-cl.ε) with respect to their generality namely cl.generality. 
The pseudo code of this reduction method is provided in 
Algorithm 2.  

 

Algorithm 2: Rule Set Reduction 

FinalRuleSet=Empty 
for each train instance e 
       classifier c=FinalRuleSet.getmatchingClassifier(e) 
       if c==null � c.A!=e.classLabel 
              max=0 ,  bestCl=null 
              for each classifier cl in [P] 
                     if cl.match(e) � cl.A=e.classLabel  
                            cmax=(cl.P-cl.ε)×cl.generatilty 
                            if max<cmax 
                                   max=cmax 
                                   bestCl=cl 
                     FinalRuleSet.add(cl) 

The proposed compaction method is applied at the end of the 
learning process to obtain a minimum set of rules. For each 
training sample, we check the classifier population to find the 
classifier that maximizes (cl.P-cl.ε)×cl.generality and copy such 
classifier to the final population. cl.generality shows how much cl 
is general. Generality is defined as the sum of the widths of 
certain region and half of the widths of vague region that are 
presented in the classifier condition part, as follows: 

iiii
idimension

))ii)ii
idimension

)ii
idimension

cl.acl.dcl.bcl.c
2

1
                      

cl.c(cl.dcl.a((cl.b
2

1

cl.b(cl.citycl.general

                  

















 

 

 

 

 

(8) 

We try to avoid the situation that the problem space would be 
uncovered by considering cl.generality in a criterion that must be 
maximized for each train instance. 

Since the proposed reduction method is applied at the end of 
learning iteration, we suggest a new inference method in test 
mode. The proposed inference method is compatible with our 
reduction method to affect the test accuracy as marginally as 
possible. Here, to predict the correct action or class label in 
classification tasks for each incoming instance e, the compact rule 
set is checked to find the winner rule cl which maximizes (cl.P-
cl.ε)×cl.μ(e). As the classifiers match the new incoming instance e 
with different degrees of certainty, we multiple the least reward 
that a classifier cl predicts to receive by its matching degree 
cl.μ(e) that shows how much cl is successful in matching the 
unseen data e. In other words, by considering the value of the 
matching degree of a classifier, the influence of the reward 
prediction of those classifiers that their vague region matches the 
new instance is reduced.  

5. EXPERIMENTAL RESULTS  
To verify the basic behavior of XCS-HT* facing real valued 
problems, the experiments were carried out selecting eight real 
world problems with different characteristics from UCI repository 
[6]: Balance-scale (bal), Glass (gls), Iris (irs), Thyroid (thy), Pima 
(pim), Vehicle (veh), Wisconsin diagnose breast cancer (wbcd), 
and Wine (wne).  

The parameter of XCS-HT* is configured as follows: 
numIter=100000, population size=6400, β=0.2, α=0.1, ν=5, χ=0.8, 
τ=0.4, μ=0.04, r0=0.1, m0=0.6, θGA=48, θdel=50, θsub=50, δ=0.1 
and θoverlap=80. It is worth mentioning that this parameters setting 
also used on XCS-HT, Fuzzy-UCS and XCSR according to their 
authors’ suggestions. 

We compared the performance, as well as the interpretability of 
the learners selected to be compared with each other. The 
performance was measured by the test accuracy rate and the 
interpretability of learners was quantified by the size of evolved 
rule set. To have reliable estimations of these indicators, ten-fold 
cross validation [23] was used. 

5.1 Comparison among Different Versions of 
XCS-HT*  
This section furthers the study on the enhancement mechanisms 
introduced in the proposed modification of XCS-HT which was 
termed as XCS-HT*. To verify the effectiveness of XCS-HT*, 
Table 1 provides a comparison between the original version of 
XCS-HT and different versions of the proposed learner, XCS-
HT*, each of which uses one or some enhancement mechanisms 
introduced in previous section. The learners which are compared 
to each other in Table 1 are listed as follows: 

XCS-HT: (presented in second column) is a simple version of 
XCS-HT which was firstly introduced in [5].  

XCS-HTrr: (presented in third column) is a version of XCS-HT in 
that its rule set is refined by eliminating the classifiers that their 
experiences cl.exp are less than  θexploit, a user-set parameter. Here, 
we set it to 10 as it was suggested in [18].  

XCS-HT*(RE)rr: (presented in fourth column) Here, the 
subsumption mechanism is modified as introduced in Section 4.1 
and the rule evaluation mechanism proposed in Section 4.2 is used 
to improve the performance of system. 

XCS-HT*(RE+IM)rr: (presented in fifth column) likes the 
previous one. In addition, its class inference methodology is 
modified based on the matching degree of each classifier as 
suggested in Section 4.3. 

XCS-HT*(RE+RLRP)rr : (presented in sixth column) in addition 
to updating the parameters of classifiers according to equations 
proposed in Section 4.2, after eliminating the classifiers with 
cl.exp<θexploit, it uses RLRP reduction method and its compatible 
class inference methodology proposed in 4.4. 

Each above learner was applied on all real world problems. Then 
we examine the trade-off between the obtained performance and 
the size of model created by each learner. The two last rows of 
Table 1 indicate the average of the rank over independent runs on 
selected UCI data sets and the position of each learner in the 
ranking in terms of obtained performance and the rule set size 
respectively. 
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Table 1: The test accuracy and the number of rules of the models created by different versions of XCS-HT* and XCS-HT. 

 

Performance Number of rules 

XCS-HT XCS-HTrr 
XCS-HT* 

(RE)rr 
XCS-HT* 
(RE+IM)rr

XCS-HT* 
(RE+RLRP)rr

XCS-HT XCS-HTrr
XCS-HT* 

(RE)rr 
XCS-HT* 
(RE+IM)rr

XCS-HT* 
(RE+RLRP)rr

bal 84.68% 84.26% 85.43% 85.22% 84.19% 1558 604 642 642 42 

gls 70.77% 68.80% 66.67% 66.51% 64.13% 2964 1125 1170 1170 37 

irs 94.94% 94.48% 95.11% 95.78% 94.89% 96 70 77 77 8 

thy 92.93% 93.27% 94.60% 94.76% 93.96% 373 176 196 196 13 

pim 74.18% 74.14% 75.31% 75.75% 73.77% 3675 1548 1599 1599 98 

veh 72.49% 72.17% 72.94% 72.26% 67.67% 4814 1684 1780 1780 91 

wdbc 96.00% 95.87% 95.77% 96.04% 93.04% 3992 1835 1825 1825 52 

wne 94.73% 94.32% 94.31% 94.31% 89.02% 2870 1852 1866 1866 21 

rank 2.55 3.35 2.5 2.1 4.5 4 2.1 2.9 2.9 1 

pos 3 4 2 1 5 4 2 3 3 1 

Table 2: Comparison of XCS-HT* and XCS-HT*(RLRP) with XCSR, primary version of XCS-HT and three versions of 
FuzzyUCS in terms of performance and the size of evolved rule set. 

 
XCSR XCS-HT XCS-HT* 

XCS-HT* 
(RLRP) 

FuzzyUCS 
(wavg) 

FuzzyUCS 
(awin) 

FuzzyUCS 
(nfit) 

per pop per pop per pop per pop per pop per pop Per pop 

bal 82.65% 1860 84.68% 1558 85.22% 642 84.19% 42 88.56% 1212 84.40% 114 83.40% 75 

gls 71.52% 3394 70.77% 2964 66.51% 1170 64.13% 37 60.65% 2799 57.21% 62 57.43% 36 

irs 94.69% 724 94.94% 96 95.78% 77 94.89% 8 95.67% 480 95.47% 18 93.73% 7 

thy 95.72% 1679 92.93% 373 94.76% 196 93.96% 13 88.18% 3130 89.49% 138 91.25% 28 

pim 73.23% 3320 74.18% 3675 75.75% 1599 73.77% 98 74.88% 2841 74.11% 192 74.32% 62 

veh 72.84% 4830 72.49% 4814 72.26% 1780 67.67% 91 67.68% 3732 65.35% 332 65.34% 147 

wdbc 94.97% 5324 96.00% 3992 96.04% 1825 93.04% 52 95.20% 5412 94.61% 276 94.51% 101 

wne 97.00% 4086 94.73% 2870 94.31% 1866 89.02% 21 94.12% 3686 94.86% 95 91.82% 26 

rank 3.5 6.5 2.95 5.5 2.18 4 5.31 1.25 3.4 6 4.69 3 5.69 1.75

pos 4 7 2 5 1 4 6 1 3 6 5 3 7 2 

Table 3: Pairwise comparison of the performance (white cells) and the size of evolved rule set (gray cells) of XCSR, XCS-HT, XCS-
HT*, XCS-HT*(RLRP), three versions of FuzzyUCS by means of Wilcoxon signed-ranks test (α=0.05). 

 XCSR XCS-HT XCS-HT* 
XCS-HT* 
(RLRP) 

FuzzyUCS 
(wavg) 

FuzzyUCS 
(awin) 

FuzzyUCS
(nfit) 

XCSR  0.8438 □ 0.9453 □ 0.1094 ○ 0.4609 □ 0.2500 ○ 0.1094 ○ 

XCS-HT 0.0391 ■  0.5469 □ 0.0547 ○ 0.3125 ○ 0.1094 ○ 0.0156 ● 

XCS-HT* 0.0078 ■ 0.0078 ■  0.0078 ● 0.0781 ○ 0.0234 ● 0.0078 ● 

XCS-HT* 
(RLRP) 

0.0078 ■ 0.0078 ■ 0.0078 ■  0.5469 □ 0.9453 □ 0.4609 ○ 

FuzzyUCS (wavg) 0.2500 □ 0.6406 ○ 0.0078 ● 0.0078 ●  0.1953 ○ 0.1094 ○ 

FuzzyUCS (awin) 0.0078 ■ 0.0078 ■ 0.0078 ■ 0.0078 ● 0.0078 ■  0.6406 ○ 

FuzzyUCS (nfit) 0.0078 ■ 0.0078 ■ 0.0078 ■ 0.2344 ○ 0.0078 ■ 0.0078 ■  
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As shown in Table 1, eliminating classifiers with cl.exp<θexploit 
(XCS-HTrr) decreased the size of rule set over 51.7% on average. 
Nonetheless, it went against the performance which was fallen 
down. To achieve better position in the performance ranking, in 
Section 4 we suggested that the parameters of classifier would be 
updated with respect to their certainty degree in matching of 
incoming instance and a similar strategy was introduced to infer 
the class of new example. The obtained results are promising 
since XCS-HT*(RE+IM)rr got the best rank in the presented 
comparison. On the other hand, our reduction method, namely 
RLRP, helped XCS-HT* for considerable reduction of the rule set 
while slightly degrading the performance. As shown in Table 1, 
RLRP was able to boil the number of rules created by XCS-HT* 
down by often more than 94% while only decreasing the 
performance about 2%. So, it is obvious that there exists a trade-
off named performance- interpretability trade-off between the test 
accuracy as a performance measurement and the size of the model 
created by XCS-HT* as an interpretability measurement.  

According to the performance-interpretability trade-off, XCS-
HT*(RE+IM)rr is the best ranked in the comparison of 
performance and XCS-HT*(RE+RLRP)rr considerably improves 
the interpretability due to its large reduction of the rule set. To 
have fair comparison with other learners such as XCSR, XCS-HT 
and three versions of Fuzzy-UCS, we selected these two versions 
of the proposed system and termed them XCS-HT* and XCS-
HT*(RLRP) respectively. XCS-HT* is indeed XCS-
HT*(RE+IM)rr which was improved by enhancement mechanisms 
proposed in Section 4 and have the best rank in terms of 
performance. Similarly, XCS-HT*(RLRP) is the one using the 
proposed reduction method and being the best ranked among 
others in terms of number of rules as it was shown in Table 1. 

5.2 Comparison with other learners  
Table 2 detailed a comparison of the proposed learners, XCS-HT* 
and XCS-HT*(RLRP), with the most common Michigan style 
learner in the literature called XCSR using interval based 
representation to handle real valued problems [7,8], the original 
version of XCS-HT which is proposed in [5] and three versions of 
Fuzzy-UCS [17,18], a Michigan style learning classifier system, 
introducing a linguistic representation of the rules and reduction 
methods with the aim of reducing the size of evolved rule set 
while maintaining similar performance. This comparison was 
done in terms of performance measured by the test accuracy rate 
and interpretability measured by the number of rules of the 
models created by these learners. It is worth mentioning that the 
results of Fuzzy-UCS presented in Table 2 equal to the values that 
have been reported in [18]. 

As this table shows, the obtained result is encouraging. XCS-HT* 
is able to reach the maximum test accuracy among all learners. It 
indicates that XCS-HT* have better ability to model the problem 
regularities and surpassed the performance of XCS-HT and 
XCSR, respectively the second and third best ranked learners. 
Moreover, XCS-HT* results in better rank in comparison with 
these two algorithms in terms of the number of rules evolved by 
the underlying learner (see the pop column of the last row of 
Table 2). With regard to the interpretability of the learners 
measured by the number of rules created by the learner, the fine 
performances of XCSR and Fuzzy-UCS with weighted average 
[18], Fuzzy-UCS(wavg), were hampered by evolving the biggest 
and the second biggest rule set. On the other hand, XCS-
HT*(RLRP) is the best algorithm and Fuzzy-UCS with most 

numerous and fittest rules [18], Fuzzy-UCS(nfit),  is the second 
one in ranking. They allowed for considerable reduction of the 
rule set while slightly degrading the performance.  

By comparing our method, XCS-HT*, to the old version of XCS-
HT, it can be concluded that XCS-HT* can achieve better 
performance with so smaller evolved rule set. With respect to 
Table 2, XCS-HT* is the best ranked algorithm whereas the size 
of its rule set is about half of the size of the rule set created by the 
second best ranked algorithm in terms of performance (XCS-HT). 
Consequently, it shows that enhancement mechanisms proposed 
in Section 4 are effective to improve XCS-HT* in terms of both 
performance and the number of evolved rules. Moreover, the 
results of XCS-HT*(RLRP) in Table 2 show that with the 
proposed reduction method (RLRP), it is possible to improve the 
interpretability considerably since it reduces the size of the 
models created by XCS-HT* over than 94% on average while its 
performance decreases only about 2%. 

In comparison with XCSR, XCS-HT* have better performance 
with producing only 33% of the rules created by XSCR. In XCS-
HT*, each classifier presents two kinds of regions, namely certain 
and vague region, whereas in XCSR each classifier only present 
the certain one. Hereby, it is expected that XCS-HT* be able to 
evolve more general classifiers while their certain region are as 
accurate as possible and their vague region are as accurate as 
needed. Compared to three versions of Fuzzy-UCS, Table 2 
shows that our system, XCS-HT*, achieved better performance 
with smaller rule set than the Fuzzy-UCS(wavg) produced. 
Nevertheless, its rule set size was still extremely larger than two 
other versions of Fuzzy-UCS with awin and nfit inferences. 
However, the results of applying RLRP and its compatible 
inference method are optimistic. As Table 2 shows, RLRP can 
pave the way for decreasing the size of models created by XCS-
HT* substantially while the performance decreases marginally. In 
comparison to Fuzzy-UCS(nfit), a version of Fuzzy-UCS which 
can evolve rule sets that ranged from tens to few hundreds of 
rules, XCS-HT*(RLRP) is able to achieve a little better 
performance while evolving less number of rules. 

Tables 3 illustrated the p-values resulting to a non-parametric 
wilcoxon signed-ranks test [24] at α=0.05. The p-values obtained 
by comparing the test performance are in upper triangular cells 
which are in white. The lower triangular cells colored in gray 
indicate the p-values of comparing the size of rule set created by 
selected learners. The ● and ■ symbols denote that the method in 
the row significantly improved/degraded the performance or the 
size of rule set obtained with the learner in the column. The ○ and 
□ indicate a non-significant improvement/degradation. The results 
highlight the high competitiveness of XCS-HT* in terms of 
performance and interpretability with respect to other selected 
learners. In addition, as expected RLRP can significantly degrade 
the size of model created by XCS-HT* and also provide a 
compatible performance. 

6. CONCLUSIONS AND FUTURE WORK 
XCS-HT* is an extension of XCS-HT, a Michigan style learning 
classifier system introducing a fuzzy approach to represent 
knowledge. Each classifier can partition the problem space with 
two kinds of regions named certain and vague regions. This 
means that each classifier can match an incoming instance e with 
a degree of certainty that is 0 ≤ cl.μ(e) ≤ 1. This paper has 
attempted to improve this approach and assess the effectiveness of 
our method named XCS-HT* on real world problems. Hence, 
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some essential components of XCS-HT* such as subsumption 
mechanism, rule evaluation, class inference methodology have 
been enhanced to improve its potency and performance in dealing 
with problems especially real world problems. All these suggested 
enhancement mechanisms are based on how much a classifier is 
successful to match the new unseen data e, namely matching 
degree parameter cl.μ(e).  

The main aim of this paper is not only to improve XCS-HT* in 
terms of performance as much as possible but also to enhance its 
interpretability by reducing the size of its rule set as less as 
possible. Therefore, a novel reduction method named RLRP has 
been proposed. It is based on maximizing the least reward 
prediction estimated by selected classifiers. Additionally, a new 
inference method which is compatible with RLRP has been 
suggested to maintain the similar performance. The performance 
and the size of the models created by XCS-HT* have been tested 
on a collection of real world problems selected from UCI 
repository. The obtained results identified that XCS-HT* tries to 
evolve a promising rule set consisting more general classifiers 
while their certain region are as accurate as possible and their 
vague region are as accurate as needed. This research opens up 
many research directions; first handling mixed attributed 
problems and second improving XCS-HT* to be applicable on 
multistep problems with continuous inputs. 
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