
How Hard should we Run?

Trading off Exploration and Exploitation in
Evolutionary Algorithms for Dynamic Optimisation Problems

Yun-Geun Lee
Seoul National University

Structural Complexity Laboratory
Building 302, Gwanangno 599,

Seoul 151744, Korea
ey9ey9@gmail.com

Bob McKay
Seoul National University

Structural Complexity Laboratory
Building 302, Gwanangno 599,

Seoul 151744, Korea
rimsnucse@gmail.com

ABSTRACT
All evolutionary algorithms trade off exploration and ex-
ploitation in optimisation problems; dynamic problems are
no exception. We investigate this trade-off, over a range of
algorithm settings, on dynamic variants of three well-known
optimisation problems (One Max, Royal Road and knap-
sack), using Yang’s XOR method to vary the scale and rate
of change. Extremely exploitative algorithm settings per-
formed best for a surprisingly wide range of problems; even
where they were not the most effective, they still performed
competitively, and even in those cases, the best performers
were still far more exploitative than most would anticipate.

Track: Genetic Algorithms

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization—Stochas-
tic programming

General Terms
Performance

Keywords
Dynamic Optimisation Problem, Evolutionary Dynamic Op-
timisation

1. INTRODUCTION
This paper originated in some preliminary experimental

work comparing selection operators in evolutionary algo-
rithms applied to dynamic optimisation problems (DOPs).
In that research, we repeatedly found that high stringency
of selection was the most important characteristic – that for
most settings over a range of tunable discrete DOP bench-
marks, the most stringent selection settings available gave
the best performance.
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Stringency of selection is an important determiner of the
exploration/exploitation trade-off in evolutionary algorithms:
the more stringent the selection, the more exploitative is the
algorithm – the less it explores. Hence the question natu-
rally arose, just how exploitative could an algorithm be, and
still perform well in these discrete DOPs? This research is
an attempt to answer this question, by comparing the per-
formance of a variety of different algorithms with differing
trade-offs of exploration and exploitation over a range of
different tunings of the discrete DOPs. To foreshadow the
somewhat surprising results, over a broad range of settings
the best performance was obtained by near-maximally ex-
ploitative algorithms. In only a very narrow range of settings
was limited exploration of value.

The remainder of this paper describes the experiments
and discusses the results. Section 2 introduces DOPs and
DOP benchmarks, provides some background in dynamic
evolutionary algorithms, and the trade-off between explo-
ration and exploitation. In section 3 and 4, we describe our
experimental methods and detailed settings, while section 5
presents the results. Section 6 draws out the implications
of these results, while section 7 delineates the assumptions
and limitations of our work, presents our overall conclusions,
and discusses how this work may be carried forward.

2. BACKGROUND
In this section, we briefly introduce dynamic optimisation,

discussing some of the special issues which arise in compar-
ing dynamic optimisation algorithms, and previous research
about the trade-off between exploration and exploitation.

2.1 Dynamic Optimisation
A dynamic optimisation problem (DOP) is an optimisa-

tion problem in which the objective function and/or the
environment change over time. A dynamic optimisation
problem can be tackled by successively solving a series of
static/stationary optimisation problems, for each of which
the objective function is kept fixed during the optimisation
process. In other words, any algorithm A for solving a static
optimisation problem P can easily be extended to solve a dy-
namic version of P by simply restarting A whenever a change
is detected (or in the case of continuous change, sufficiently
frequently). However such an approach is generally not a
good choice in practice, because it wastes information col-
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lected in previous stages of optimisation (before the change
happened), especially when the amount of change is limited.

Evolutionary algorithms (EAs), initially designed for static
optimisation problems, have been extended to handle DOPs
and demonstrated to be useful [3]. One of the main chal-
lenges in designing EAs to tackle DOPs is to maintain the
adaptability of the algorithms. To an even greater extent
than for static optimisation, a dynamic evolutionary algo-
rithm should focus not only on convergence toward the op-
timal solution, but also on adaptability to change, by main-
taining diversity in its population of candidate solutions.
However the two requirements of diversity maintenance and
convergence are in conflict, so an adaptive EA for solving
DOPs has to balance them. A comprehensive review of EAs
for solving DOPs and related problems can be found in [3].

2.2 The Trade-off between Exploration and Ex-
ploitation

Yang and Tinos [14] previously investigated the effect of
selection pressure in DOP. They tested tournament selec-
tion of diverse size in standard GA(SGA), as well as restart-
SGA(RSGA), which re-initialises the evolution whenever the
environment changes. They also compared with a number of
new mechanisms, controlling selection pressure adaptively.
These new mechanisms appear valuable for DOP. However
we found some of their results quite confusing. Specifically,
in the case of SGA with tournament selection, we see that
when the environmental change is small, in the easiest prob-
lem (OneMax), tournaments of size 2 performed best. In the
more difficult Royal Road problem, large tournaments (size
10) were best for almost all cases; finally, for the most dif-
ficult (knapsack) problem, the best performance came from
intermediate-sized tournaments (size 6). These results are
sufficiently inconsistent, both with each other and with rea-
sonable expectations (one might naively expect that a highly
exploratory setting such as tournament size 2 would not be
well matched to a simple problem such as One Max with
small environmental changes), that we felt that other fac-
tors might be at play. Our aim, in this work, is to extend
Yang and Tinos’ results by investigating other determinants
of the exploration/exploitation trade-off, in the hope of teas-
ing out these influences.

Yang further explored the trade-off between exploration
and exploitation in [13], where he introduced a number of
new DOP methods. However those comparisons made use of
roulette wheel selection, which in our experiments generally
performs poorly, being insufficiently exploitative.

3. METHODS

3.1 Benchmarking Dynamic Optimisation
The difficulty of dynamic optimisation problems may vary

in two main ways. Firstly, the difficulty of static snapshots
of the problem may vary – that is, the fitness landscape may
be smooth or rugged, low or high dimensional. Second, the
change in the fitness landscape may be slow and steady, or
rapid and abrupt. Benchmark suites need to incorporate
variation in both these aspects.

The variation in the fitness landscape may be either con-
tinuous or episodic. It might seem natural to use continuous
benchmarks, since many real-World problems exhibit contin-
uous variation in the objective. However continuous varia-
tion makes it difficult to disentangle the effects of variation

from the effects of fitness landscape roughness. So discrete
variation is generally used, as it is thought to give greater
insight into the performance of the dynamic optimisation al-
gorithm. With episodic variation, a new issue intrudes: the
change in fitness landscape now has two dimensions, the ex-
tent of change in each episode, and the frequency of change.
So benchmarking needs to study variation in both.

Yang [12, 13, 15] has recently provided a general method
for deriving suitable dynamic benchmarks suites from static
ones, that can be tuned in both the rate and the scale of
change in the objective. It provides a means to convert any
static optimisation problem using a binary chromosome into
a dynamic optimisation problem, in which both the extent
and frequency of change in the objective can be tuned. Each
snapshot of the dynamic problem corresponds to a (suitably
transformed) version of the underlying static problem (hence
may be tuned by choice of the static problem). We detail
this method further in subsection 3.3

3.2 Test Problems
Comparing static evolutionary algorithms [10] is a diffi-

cult problem. Benchmark biases in optimum location, axial
or directional structure, decomposability, rotational invari-
ance, regularity of structure, and scale can all differentially
affect the performance of different algorithms [6]. This is
unavoidable in principle [11]: there can be no universally-
applicable benchmark test. Thus it is important to allow for
the inevitable biases in specific benchmark problems, and to
study the performance of algorithms over a range of differ-
ent problem regimes, so as to delineate which algorithms are
best suited to which regimes.

For this reason, we used three test problems – not just one
– chosen to represent a range of difficulty, from relatively
easy to hard. The test problems are detailed below. All
problems used a 100-bit binary representation.

One-Max Problem.
The aim in the One-Max (or Bit-Counting) problem [9]

is to maximize the number of ones in a binary chromosome
with xi ∈ {0, 1}. The fitness of a chromosome is thus natu-
rally defined to be the number of ones in the chromosome.
In our experiment, the optimal value was 100.

f(x) =
100∑

i=1

xi (1)

Royal-Road Problem.
The Royal-Road problem [7] is one of the most popular

GA test functions. Its fitness landscape is reasonably diffi-
cult, but easy to comprehend, so that GA performance on
it can be relatively easily understood. The problem rep-
resentation consists of a bit-string which is divided into N
non-overlapping blocks, each with K bits. Its total length
is therefore NK bits. In this study, the problem consisted
of 25 contiguous 4-bit building blocks (i.e. N=25, K=4).
Each building block contributed 4 to the fitness if all of its
four bits were set to one; otherwise, it contributed 0. Thus
the optimum value was 100.

f(x) =
25∑

i=1

4∧

j=1

xi∗j (2)
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Knapsack Problem.
In a knapsack problem [1], the task is to pack items into

a knapsack. The items must be chosen from a pre-defined
pool, the weight and profit value for each item being pre-
specified. The maximum weight the knapsack can hold is
also specified. The aim is to fill the knapsack in such a way
as to maximise the profit.

In our version, there were 100 items, with the weight and
profit of each item being randomly created in the range
[1 . . . 32]. The capacity of the knapsack was set to 1

2
of the

total weight of all items. The fitness of a chromosome was
the sum of the profits of the selected items, so long as the
weight was within range. However if a chromosome overfilled
the knapsack, its fitness was set to the difference between
the total weight of all items and the weight of the selected
items, multiplied by a small factor 10−5, as a penalty.

3.3 Testing the Effect of Dynamism
If benchmarking is difficult for static optimisation, it is

even more complex for dynamic. To variations in function
landscape complexity we must now add variations in the
rate and scale of change of the optimisation objective [4].
To date, there is little in the way of formal analysis – or
even definition [8] – of dynamic optimisation, and even less
of its benchmarking. Nevertheless Yang’s recent method [13]
has rapidly gained acceptance as a benchmarking method,
and we follow it here.

Briefly, Yang’s benchmark works by using a binary geno-
type representation. Before the representation is transformed
to the final phenotype, it is first XORed with a mask. That
is, f(x, k) = f(x⊕M(k)). The mask is changed every τ gen-
eration. At a particular epoch k, the previous mask M(k)
is updated using a new randomly generated mask T (k), in
which ρ ∗ length(M(k)) of the bits are set to 1. The initial
mask, M(1) = 0̄, being the zero matrix, does not change the
underlying bitstring. As a result, the first problem is just
the underlying static optimisation problem. The subsequent
problems are generated by

M(k + 1) = M(k)⊕ T (k + 1) (3)

Thus at each epoch, of the bits in the genotypic repre-
sentation of the phenotype, a fraction ρ change sign. This
happens every τ generations.

In this formulation, parameter τ controls the rate of change
– the number of generations per epoch. Parameter ρ con-
trols the distance moved in the function domain, and thus is
a surrogate for the extent of change in the fitness landscape.
The precise effect of ρ will also depend on the relationship
between the objective and the domain – symmetries in the
objective may reduce the effect of changes in M(k).

4. EXPERIMENTS

4.1 Experimental Methodology
Our primary objective was to investigate the impact of dif-

ferent exploration/exploitation trade-offs on the behaviour
of evolutionary algorithms in dynamic optimisation (and in
light of our earlier experience, to focus on the more ex-
ploitative end of the spectrum). In our experiments, we first
compared different selection mechanisms in the context of a
baseline – the ”Standard” Genetic Algorithm (SGA). How-
ever SGA is believed to perform rather poorly on dynamic
problems, so we also studied the Random Immigrant GA

(RIGA) [2], the elitism-based immigrants GA (EIGA) [13]
and the hybrid immigrants GA (HIGA) [13].

We followed the approach of Yang et al. [12, 13, 15] for
comparing dynamic optimisation methods and parameter
settings, as summarised in subsection 3.3. Like them, we
based our tests on a range of static problems of different
degrees of difficulty, as described in subsection 3.2, and in
sweeping the ρ and τ parameters (subsection 3.3) across
a range of possible combinations, to determine the ‘sweet
spots’ for the different combinations of specific GAs with dif-
ferent exploration/exploitation trade-offs. We also followed
them in using slight variants of a classic (P, P ) algorithm, in
which P parents generate exactly P children, by first apply-
ing crossover at the specified rate, then applying mutation
to the potentially crossed-over children. However we varied
the selection operator used in choosing the parents, and the
immigration policy (random and/or elite) as determiners of
the extent and kind of exploration. Algorithm 1 shows a
generic pseudo-code for all these algorithms.

Algorithm 1 Pseudocode for GA of Experiments

t← 0
ImmigrantSize ← RandomImmigrantSize + EliteSize

� Population Initialisation
for i← 1 to PopSize do

Pop[0, i]← RandomIndividual()
end for
Sort Pop[0] by Fitness
while t < tmax do

t← t+ 1
� Main GA Update Loop

for i← 1 to PopSize do
parent[1] ← Selection(Pop[t − 1])
parent[2] ← Selection(Pop[t − 1])
if Random() < CrossoverProbability then

Cross(parent[1],parent[2],Pop[t, i])
else

Pop[t, i] ← parent[1]
end if
Mutate(Pop[t, i], MutationProbability)

end for
Sort Pop[t] by Fitness

� Import Elite Immigrants (if any)
� Elite Immigrants replace Least Fit

for i← 1 to EliteSize do
Pop[t,Popsize − i+ 1]
← Mutate(Pop[t− 1, i], MutationProbabiity)

end for
� Import Random Immigrants (if any)

� Random Immigrants replace Least Fit
for i← 1 to RandomImmigrantSize do

Pop[t,Popsize − EliteSize − i+ 1]
← RandomIndividual()

end for
Sort Pop[t] by Fitness

end while

The total number of evaluations per generation is PopSize
+ RandomImmigrantSize + EliteSize, so we held it constant
for the different algorithms (SGA, RIGA, EIGA, HIGA).

To summarise the experiments, we varied a number of
components of the algorithm to trade off exploration and
exploitation at different stages

1189



Table 1: Experimental Parameters
Immigrant SGA RIGA EIGA HIGA
Rate†:
Random 0 0.2 0 0.1
Elite 0 0 0.2 0.1
†Expressed as a proportion of the non-immigrants
Exploratory:

Population 120 100 100 100
τ 10, 25, 50

Exploitative:
Population 12 10 10 10
τ 100, 250, 500

ρ (disruption) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0
Epochs 200
Chromosome 100 bits
Crossover Uniform (pc = 0.6; pc = 0.0)
Mutation Bit-wise Flip (pm = 0.01)
Selection

Roulette
Tournament Size 2,3,4,5,6,7,8,9,10,11,12
Truncation Ratio 0.1,0.2,0.3,0.4

Runs 50

1. Immigration policy (SGA, RIGA, EIGA, HIGA)

2. Selection (Roulette, Tournament, Truncation)

3. Parameters of the selection mechanism (Tournament
Size, Truncation Ratio1)

4. Population size and length of epoch τ (chosen to guar-
antee a fixed number of fitness evaluations – 1,200,
3,000 or 6,000 – for short, intermediate or long epochs)

The combinations of parameter settings used in these ex-
periments are shown in table 1. We conducted experiments
for all combinations of these settings. To meet space require-
ments, we have limited the presentation of results to those
most pertinent to the themes of the paper – these settings
were determined post-facto, and are shown in bold in the
table. Since the most interesting results relate to the most
complex problem (i.e. the Knapsack problem), further com-
binations of settings are presented for this problem alone;
these settings are shown in italic.

The major issue in this work is the level of exploration. At
one extreme, with a population of 120, roulette selection and
random immigrants, we have a highly exploratory (120,120)
algorithm. It could be made even more exploratory by in-
creasing population or incorporating diversity metrics, but
as we shall see in the results, there may be little point in
looking further in this direction, at least for these problems.
At the other extreme, we have a population of 12 with trun-
cation selection of the fittest in an elitist algorithm – i.e.
a (1+12) algorithm, a very eager hillclimbing search with
virtually no resilience to trapping in local optima.

A key issue is how to measure the performance of a dy-
namic optimisation algorithm. Should we measure the fit-
ness of the fittest individual at each generation, or average
over the population? Should we measure only after the pop-
ulation has adapted to the new optimum, or should our met-
ric include some indication of the performance immediately

1The combination of crossover with truncation to the best
individual is pointless, and so was not used.

after the change? Here, the choice ultimately depends on
the exact way in which the algorithm will be practically ap-
plied, so there is no universal ‘right’ answer. As a practical
expedient, we adopted Greffenstette’s offline performance
measure [2], known as the best-of-generation (BOG) fitness
FBOG, averaged over the N runs, and over the data gather-
ing period, as defined below:

FBOG =
1

G

G∑

i=1

(
1

N

N∑

j=1

FBOGij ) (4)

where G = 200 ∗ τ is the total number of generation for
each run, N = 50 is the total number of runs, and FBOGij

is the best-of-generation fitness of generation i of run j. It
is important to note that the offline performance measure
FBOG is averaged over all generations. Thus it differs from
typical performance measures used for static optimisation,
which generally use the best fitness of the final generation
as a performance measure.

5. RESULTS
In all tables in this section, for ease of interpretation, the

best-performing treatment for a particular problem setting
(i.e. in a specific column) is printed in large font, and the sec-
ond best in bold. The column headed XO denotes whether
crossover was used (X if it was, - if not).

Table 2: Mean BOG Fitness, One-Max Problem,
τ = 10

GA Eval Selection XO ρ
Type /Gen Type Size 0.1 0.2 0.5 1.0

(Ratio)

SGA 120 wheel X 72.8 68.9 64.4 62.5
120 tourn 2 X 87.8 79.1 66.2 58.2
120 tourn 5 X 93.1 84.3 67.7 55.8
120 tourn 12 X 94.9 86.5 68.2 54.6
120 trunc 0.1 X 95.0 86.8 68.2 54.3
120 trunc 0.1 - 89.8 78.9 63.0 52.6
12 tourn 2 X 93.6 90.5 81.3 67.0
12 tourn 5 X 97.6 95.1 86.5 71.2

12 tourn 12 X 98.1 95.9 88.0 73.1
12 tourn 2 - 89.1 86.0 76.9 63.7
12 tourn 5 - 96.1 92.9 83.3 67.7
12 tourn 12 - 97.4 94.7 85.9 70.4
12 trunc 0.2 X 97.7 95.4 87.3 72.3
12 trunc 0.3 X 97.6 95.1 86.7 71.6
12 trunc 0.1 - 97.6 95.2 87.1 72.0
12 trunc 0.3 - 96.6 93.5 83.8 68.1

RIGA 120 wheel X 73.9 70.8 66.7 64.8
120 tourn 2 X 87.0 78.4 69.7 67.3
120 tourn 5 X 92.6 83.6 73.2 72.4
120 tourn 12 X 94.5 85.8 75.5 75.3
120 trunc 0.1 X 94.6 86.0 75.6 75.9
120 trunc 0.1 - 89.5 78.6 67.5 67.1
12 tourn 2 X 91.8 88.6 82.4 82.0
12 tourn 5 X 96.9 94.1 87.3 87.0

12 tourn 12 X 97.6 95.1 88.5 88.3
12 tourn 2 - 88.3 85.1 78.1 77.8
12 tourn 5 - 95.3 92.0 84.0 83.7
12 tourn 12 - 96.8 93.9 86.4 86.1
12 trunc 0.2 X 97.1 94.4 87.6 87.4
12 trunc 0.3 X 96.7 93.9 87.0 86.7
12 trunc 0.1 - 97.1 94.4 87.3 87.1
12 trunc 0.3 - 95.2 91.9 83.8 83.4

Results from the One-Max problem are presented in ta-
bles 2 (τ = 10) and 3 (τ = 50). The most obvious point is
that low-intensity selection (small tournaments and roulette
wheel selection) performed very poorly relative to the other
settings. Given the smoothness of the fitness function, this
is not surprising - the task is essentially one of chasing a ball
across a billiard table as it tilts first one way, then another
- little exploration is required. The best performing treat-
ment always used size 12 tournaments and small popula-
tions, whatever the setting. In these small populations, size
12 tournaments will be very close to truncation selection (in
a population of 12, a size 12 tournament will fail to generate
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Table 3: Mean BOG Fitness, One-Max Problem,
τ = 50

GA Eval Selection XO ρ
Type /Gen Type Size 0.1 0.2 0.5 1.0

(Ratio)

SGA 120 wheel X 79.3 76.9 71.4 65.4
120 tourn 2 X 97.3 94.1 83.2 65.3
120 tourn 5 X 98.8 96.8 88.5 70.4
120 tourn 12 X 99.1 97.4 90.3 74.1
120 trunc 0.1 X 99.1 97.5 90.6 74.8
120 trunc 0.1 - 98.4 95.7 83.8 62.5
12 tourn 2 X 96.1 95.4 93.4 89.9
12 tourn 5 X 99.4 98.9 97.2 93.9

12 tourn 12 X 99.6 99.2 97.6 94.5
12 tourn 2 - 91.7 91.1 89.0 85.5
12 tourn 5 - 98.5 97.9 95.8 92.1
12 tourn 12 - 99.4 98.9 97.1 93.7
12 trunc 0.2 X 99.5 99.1 97.4 94.2
12 trunc 0.3 X 99.5 99.0 97.2 94.0
12 trunc 0.1 - 99.5 99.0 97.3 94.1
12 trunc 0.3 - 99.0 98.3 96.3 92.6

RIGA 120 wheel X 79.1 77.3 74.3 73.4
120 tourn 2 X 97.0 93.7 87.5 87.1
120 tourn 5 X 98.7 96.6 92.7 92.8
120 tourn 12 X 99.0 97.3 94.0 94.1
120 trunc 0.1 X 99.0 97.4 94.1 94.3
120 trunc 0.1 - 98.4 95.6 86.9 86.7
12 tourn 2 X 94.4 93.7 92.3 92.2
12 tourn 5 X 99.0 98.5 97.0 97.0

12 tourn 12 X 99.5 99.0 97.6 97.6
12 tourn 2 - 90.9 90.2 88.6 88.5
12 tourn 5 - 97.9 97.2 95.5 95.4
12 tourn 12 - 99.1 98.5 96.9 96.8
12 trunc 0.2 X 99.2 98.6 97.2 97.2
12 trunc 0.3 X 98.9 98.3 96.9 96.8
12 trunc 0.1 - 99.2 98.7 97.2 97.1
12 trunc 0.3 - 97.9 97.2 95.4 95.4

one of the two fittest individuals less than 1% of the time)
– yet even this tiny amount of extra stochasticity slightly
improved the performance. It also always used crossover,
though again the differences between treatments with and
without crossover were tiny – but consistent. The other
major theme we can see in these results is that for small
disruption (ρ < 0.3), random immigrants were very slightly
deleterious, whereas they were beneficial when ρ ≥ 0.5, and
substantially so for ρ = 1.0. Interestingly, while the actual
performance differed greatly between rapid and slow change
(τ = 10 vs τ = 50), the relative performance of the different
algorithm settings varied little.

Table 4: Mean BOG Fitness, Royal Road Problem,
τ = 10

GA Eval Selection XO ρ
Type /Gen Type Size 0.1 0.2 0.5 1.0

(Ratio)

SGA 120 wheel X 44.7 35.9 27.2 38.9
120 tourn 2 X 55.3 39.2 26.8 47.4

120 tourn 5 X 69.0 47.4 28.8 49.3
120 tourn 12 X 73.8 50.8 29.9 49.3
120 trunc 0.1 X 73.5 50.9 29.5 48.6
120 trunc 0.1 - 58.9 39.2 24.3 45.0
12 tourn 2 X 68.7 59.5 42.5 35.1
12 tourn 5 X 81.2 68.8 46.5 36.6

12 tourn 12 X 82.8 70.1 47.0 36.6
12 tourn 2 - 58.3 50.8 37.4 31.9
12 tourn 5 - 75.0 63.0 42.6 34.3
12 tourn 12 - 78.7 65.8 43.8 34.8
12 trunc 0.2 X 79.4 66.2 43.6 34.6
12 trunc 0.3 X 79.8 66.8 44.2 35.0
12 trunc 0.1 - 77.6 64.6 42.3 33.9
12 trunc 0.3 - 75.8 63.0 42.1 33.9

RIGA 120 wheel X 47.1 37.1 29.1 40.0
120 tourn 2 X 53.3 39.2 29.1 46.2
120 tourn 5 X 67.0 46.4 33.5 48.9
120 tourn 12 X 71.5 49.6 36.4 48.9
120 trunc 0.1 X 71.2 49.4 36.3 47.9
120 trunc 0.1 - 57.8 38.8 29.7 43.6
12 tourn 2 X 63.6 54.9 44.4 42.9
12 tourn 5 X 77.9 65.3 48.7 46.8

12 tourn 12 X 79.8 66.6 48.8 47.3
12 tourn 2 - 55.9 48.6 39.4 38.7
12 tourn 5 - 71.8 59.9 44.6 43.7
12 tourn 12 - 75.7 62.5 45.7 44.7
12 trunc 0.2 X 76.5 63.1 45.9 44.2
12 trunc 0.3 X 76.0 63.4 46.5 44.4
12 trunc 0.1 - 74.8 61.6 44.6 43.3
12 trunc 0.3 - 71.4 59.3 43.7 42.7

For the Royal Road problem, please see tables 4 (τ = 10)
and 5 (τ = 50). Here, the scale of change was much more

Table 5: Mean BOG Fitness, Royal Road Problem,
τ = 50

GA Eval Selection XO ρ
Type /Gen Type Size 0.1 0.2 0.5 1.0

(Ratio)

SGA 120 wheel X 63.4 56.0 43.8 40.1
120 tourn 2 X 86.8 74.0 49.2 44.2
120 tourn 5 X 94.3 84.8 57.6 45.7
120 tourn 12 X 95.3 86.6 59.0 45.5
120 trunc 0.1 X 94.4 84.6 57.1 44.6
120 trunc 0.1 - 90.1 76.2 49.1 42.0
12 tourn 2 X 78.4 75.9 69.5 61.7
12 tourn 5 X 94.2 90.4 80.2 68.3

12 tourn 12 X 95.7 91.8 81.1 68.9
12 tourn 2 - 66.1 64.1 59.4 54.2
12 tourn 5 - 88.7 85.1 75.4 64.3
12 tourn 12 - 93.5 89.2 78.0 65.8
12 trunc 0.2 X 94.1 89.6 77.6 64.5
12 trunc 0.3 X 93.8 89.7 78.3 65.4
12 trunc 0.1 - 93.4 88.6 76.2 63.0
12 trunc 0.3 - 90.8 86.7 75.7 63.6

RIGA 120 wheel X 72.9 61.8 49.2 47.9
120 tourn 2 X 85.1 71.9 54.4 52.7
120 tourn 5 X 93.8 83.5 65.7 65.2
120 tourn 12 X 94.7 85.2 66.6 66.0
120 trunc 0.1 X 93.6 82.9 65.0 64.0
120 trunc 0.1 - 89.1 74.7 53.7 52.7
12 tourn 2 X 72.5 70.3 66.1 65.8
12 tourn 5 X 91.5 87.6 79.2 79.0
12 tourn 12 X 94.2 89.8 80.5 80.4
12 tourn 2 - 63.5 61.6 58.2 58.1
12 tourn 5 - 85.3 81.6 74.0 73.9
12 tourn 12 - 91.0 86.6 77.1 77.1
12 trunc 0.2 X 91.6 87.2 77.3 77.1
12 trunc 0.3 X 90.1 86.1 77.1 77.1
12 trunc 0.1 - 91.2 86.5 75.9 75.8
12 trunc 0.3 - 85.5 81.7 73.5 73.5

important, with ρ = 1.0 behaving very differently from the
other settings for τ = 10. In this case only, large populations
were beneficial and random immigrants detrimental, though
the results still slightly favoured more stringent selection.
For less disruptive or slower change, though, the preceding
results carried through: large tournaments (or other forms of
stringent selection) were highly beneficial, and crossover was
generally mildly beneficial. Random immigrants were mildly
detrimental except in the case of large change (ρ = 1.0),
when they were quite beneficial. Typical examples of the
dynamic behaviour are illustrated in figure 1; we see clearly
that small population settings recovered much more rapidly
after disruption, with larger tournaments dominating after
the first few epochs.

The situation with the knapsack problem (tables 6 (τ =
10) and 7 (τ = 50)) was somewhat more complex. For
the first time, we saw intermediate-level selection (tourna-
ment size 5 rather than 12) out-performing the most ex-
treme stringency in selection, though not by huge margins.
Weak selection (roulette wheel or small tournaments) still
performed dramatically worse. The best performers always
used crossover, though again the differences were always
small. Random immigrants were generally deleterious when
other settings were well chosen, except for the most disrup-
tive change, though they were beneficial when the other set-
tings were poorly chosen. Figure 2 shows a typical example
of the dynamic behaviour; while the differences with pop-
ulation size were much less, we nevertheless see small pop-
ulations combined with size-5 tournaments performing best
overall, with size-12 tournaments still giving respectable re-
sults.

6. DISCUSSION
The first and most important point in all these results is

how little benefit arose from exploration by large popula-
tions. In almost all settings, the best performance resulted
from small populations (12) with stringent (tournament 5)
or extremely stringent (tournament 12) selection. In the
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Table 6: Mean BOG Fitness, Knapsack Problem, τ = 10
GA Eval Selection XO ρ

Type /Gen Type Size 0.05 0.1 0.2 0.3 0.4 0.5 1.0
(Ratio)

SGA 120 wheel X 1051.5 1022.2 990.3 972.8 961.4 952.6 920.9
120 tourn 2 X 1187.6 1132.0 1059.0 1014.5 984.5 962.7 909.1

120 tourn 5 X 1239.9 1185.3 1102.0 1043.2 999.6 966.0 883.2
120 tourn 12 X 1237.3 1187.6 1105.8 1045.2 998.2 961.4 874.0
120 trunc 0.1 X 1235.4 1186.8 1106.6 1045.0 997.9 960.2 871.3
120 trunc 0.1 - 1205.8 1139.6 1046.4 986.9 944.0 914.0 863.6
12 tourn 2 X 1180.8 1164.4 1132.2 1103.3 1077.3 1051.7 949.5

12 tourn 5 X 1229.3 1202.8 1163.5 1131.0 1102.2 1076.8 970.3
12 tourn 12 X 1223.2 1192.3 1150.0 1116.3 1087.9 1063.9 965.4
12 tourn 2 - 1158.7 1139.5 1105.9 1076.7 1051.2 1026.5 932.3
12 tourn 5 - 1219.1 1191.4 1148.1 1114.1 1085.2 1058.9 954.5
12 tourn 12 - 1219.1 1188.0 1144.7 1110.6 1081.8 1056.9 957.7
12 trunc 0.2 X 1220.1 1189.7 1147.5 1114.0 1085.7 1061.9 965.1
12 trunc 0.3 X 1221.2 1192.8 1151.7 1118.8 1091.4 1065.8 966.8
12 trunc 0.1 - 1217.2 1186.7 1141.3 1108.6 1081.3 1055.3 959.9
12 trunc 0.3 - 1217.3 1186.2 1142.2 1106.6 1078.4 1052.2 952.1

RIGA 120 wheel X 1050.7 1028.9 1004.8 989.3 980.1 972.5 958.1
120 tourn 2 X 1174.9 1122.5 1060.6 1027.1 1006.3 992.1 966.3
120 tourn 5 X 1233.3 1179.3 1101.8 1059.3 1035.5 1022.9 1011.0
120 tourn 12 X 1230.4 1181.4 1111.3 1069.3 1049.3 1040.4 1036.8
120 trunc 0.1 X 1217.5 1172.5 1106.9 1068.2 1049.5 1042.8 1041.0
120 trunc 0.1 - 1179.2 1122.0 1053.6 1018.0 1002.0 993.8 989.4
12 tourn 2 X 1144.6 1128.6 1103.0 1085.5 1072.1 1065.7 1059.8

12 tourn 5 X 1206.3 1180.0 1143.1 1118.5 1101.2 1092.0 1088.0
12 tourn 12 X 1192.9 1164.8 1128.4 1103.9 1088.5 1079.7 1076.7
12 tourn 2 - 1137.8 1118.4 1088.8 1066.8 1053.2 1045.8 1041.5
12 tourn 5 - 1193.4 1164.4 1127.0 1102.3 1085.8 1076.1 1072.7
12 tourn 12 - 1187.4 1157.7 1121.1 1097.7 1081.2 1074.0 1070.4
12 trunc 0.2 X 1191.5 1162.9 1127.1 1103.5 1088.8 1080.0 1077.2
12 trunc 0.3 X 1201.0 1173.9 1136.7 1112.9 1095.5 1087.4 1083.3
12 trunc 0.1 - 1178.8 1150.0 1116.8 1094.0 1080.0 1071.3 1068.7
12 trunc 0.3 - 1190.0 1160.5 1123.1 1097.9 1080.4 1072.0 1068.9

Table 7: Mean BOG Fitness, Knapsack Problem, τ = 50
GA Eval Selection XO ρ

Type /Gen Type Size 0.05 0.1 0.2 0.3 0.4 0.5 1.0
(Ratio)

SGA 120 wheel X 1091.4 1079.6 1058.6 1040.6 1024.5 1010.0 947.1
120 tourn 2 X 1249.5 1230.6 1194.7 1159.8 1126.6 1094.7 957.3

120 tourn 5 X 1283.4 1267.8 1238.3 1208.1 1177.7 1147.5 1000.9
120 tourn 12 X 1279.2 1264.6 1237.8 1212.3 1185.6 1159.0 1028.4
120 trunc 0.1 X 1278.3 1263.8 1237.5 1212.3 1187.2 1161.5 1034.1
120 trunc 0.1 - 1269.0 1248.0 1211.0 1176.5 1143.0 1110.4 967.5
12 tourn 2 X 1195.8 1192.1 1185.4 1178.8 1172.5 1166.2 1136.6

12 tourn 5 X 1262.1 1254.2 1241.9 1231.9 1222.6 1214.2 1177.1
12 tourn 12 X 1267.2 1255.9 1239.4 1227.0 1216.4 1207.0 1168.6
12 tourn 2 - 1176.1 1171.7 1164.2 1157.4 1150.6 1144.0 1114.2
12 tourn 5 - 1255.6 1247.1 1233.6 1222.6 1212.7 1203.6 1164.0
12 tourn 12 - 1265.2 1253.6 1236.9 1224.1 1213.0 1203.6 1163.7
12 trunc 0.2 X 1265.0 1253.5 1236.8 1224.2 1213.8 1203.9 1165.4
12 trunc 0.3 X 1261.7 1251.5 1236.6 1225.1 1215.4 1206.3 1168.1
12 trunc 0.1 - 1264.7 1252.7 1235.5 1222.6 1211.4 1201.6 1162.6
12 trunc 0.3 - 1259.6 1249.0 1233.2 1220.4 1209.7 1199.6 1159.0

RIGA 120 wheel X 1080.5 1071.9 1058.0 1048.0 1040.0 1033.5 1027.0
120 tourn 2 X 1241.0 1221.1 1185.7 1156.2 1136.9 1126.9 1119.1
120 tourn 5 X 1280.5 1265.0 1236.8 1212.2 1196.8 1193.1 1192.7
120 tourn 12 X 1275.0 1259.7 1235.1 1214.2 1202.0 1199.4 1199.0
120 trunc 0.1 X 1269.7 1253.4 1230.4 1212.6 1201.6 1199.7 1200.8
120 trunc 0.1 - 1257.2 1233.1 1199.7 1172.9 1152.9 1144.6 1143.6
12 tourn 2 X 1160.2 1156.6 1150.8 1146.5 1143.4 1141.6 1140.2

12 tourn 5 X 1245.5 1237.6 1226.8 1218.1 1211.9 1208.8 1207.5
12 tourn 12 X 1251.6 1240.3 1225.3 1215.3 1207.8 1204.1 1203.2
12 tourn 2 - 1158.2 1153.9 1147.1 1141.3 1137.3 1135.3 1134.3
12 tourn 5 - 1238.1 1229.7 1217.9 1209.0 1202.3 1199.0 1197.8
12 tourn 12 - 1247.3 1236.4 1222.0 1211.4 1204.1 1200.5 1200.0
12 trunc 0.2 X 1248.7 1237.2 1222.7 1212.8 1205.8 1202.3 1201.5
12 trunc 0.3 X 1243.0 1234.2 1222.3 1213.4 1206.8 1203.9 1203.0
12 trunc 0.1 - 1246.0 1233.7 1219.3 1209.4 1202.4 1198.8 1198.0
12 trunc 0.3 - 1237.7 1228.2 1215.4 1205.8 1199.2 1195.8 1194.8
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Figure 1: Dynamic Behaviour for Royal Road, ρ = 0.1, τ = 10 (left: SGA, right: RIGA)
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Figure 2: Dynamic Behaviour for Knapsack Problem, ρ = 0.1, τ = 10 (left: SGA, right: RIGA)

sole exception, Royal Road with ρ = 1.0 and τ = 10, it
is worth noting that the change is so extreme and so rapid
that it is hard to view it as a dynamic optimisation problem
at all – we obtained better performance still by treating it
as a series of static problems, restarting the GA after each
epoch (Yang’s restart GA), with a population of 12 and any
tournament size larger than 3.

Even more surprising, in all experiments, the most ex-
ploitative setting – population 12, truncation selection to
the fittest individual, no crossover – was quite competi-
tive, generally ranking in the top few settings, and always
out-performing a ’classical’ GA setting of population 120
with roulette wheel selection. This bears out a point made
some years ago by Kang [4] in the context of dynamic trav-
elling salesman problems. He noted that there is a com-
mon intuition that dynamic optimisation problems are gen-
erally tougher than the corresponding static problem – and
that it may be wrong. Specifically, the dynamic change
in the fitness landscape may permit an exploitative algo-

rithm to escape local optima that would trap it in the cor-
responding static problem. Preliminary experiments on the
tougher problems from the 2009 CEC Dynamic Optimisa-
tion Contest [5] have yielded mixed results – small popu-
lations yielded better results on the rotated 50-peak and
Ackley’s functions, but larger populations performed better
on the rotated 10-peak and Griewank functions.

Closely related to this is the universally poor performance
of roulette wheel selection, which is clearly ill-suited to all
of the scenarios examined in these experiments.

Space prevented our inclusion of the detailed EIGA and
HIGA results in this paper; it’s reasonable to say that they
generally followed the same structure as above. EIGA and
HIGA did sometimes give the best results overall, but it
was always by very small margins over the best settings for
SGA and RIGA. We did see more substantial improvements
from EIGA and HIGA in other settings – that is, EIGA and
HIGA seemed not to lead so much to better performance as
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to more robust performance, less sensitive to finding exactly
the best parameter settings.

Finally, in all problems, crossover was worth including –
adding crossover almost universally improved performance.
But the improvement was almost always small.

7. CONCLUSIONS

7.1 Assumptions and Limitations
In this work, we assume that the mean best of genera-

tion fitness is a suitable metric for comparing the overall
performance of evolutionary algorithms. In the absence of
any other obvious candidates, we see this as a reasonable
assumption.

Our conclusions are preliminary in the sense that they are
based on a limited set of problems and only a single form
of dynamic change. Clearly, our investigations need to be
extended to other problems and other forms of dynamism.
However even what has been done to date required many
thousands of runs and huge amounts of computer time; such
extensions will take time.

7.2 Further Work
The main direction for further work is to investigate how

these results extend, both to other underlying problems, and
to other forms of dynamism. The earlier results of Kang on
continuously dynamic travelling salesman problems suggest
that they may extend to some quite different domains.

7.3 Summary
The underlying, and to us surprising, message from these

results is that exploitation is not something to be feared
in dynamic evolutionary problems. Highly exploitative set-
tings give surprisingly good results, and at least for these
problems, a population of 12, combined with tournaments
of size 12 and crossover, gave highly competitive results for
all problem settings. To answer our original question, ‘How
hard should we run?’, the answer seems generally to be ‘Very
hard indeed.’
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