
An Algorithm for Deciding Minimal Cache Sizes in
Real-Time Systems

Antonio Martí Campoy
Computer Engineering

Department
Universitat Politècnica de

València
46022 València, Spain

amarti@disca.upv.es

Francisco
Rodríguez-Ballester
Computer Engineering

Department
Universitat Politècnica de

València
València, Spain

prodrig@disca.upv.es

Eugenio Tamura
Grupo de Automática y

Robótica
Pontificia Universidad

Javeriana - Cali
Calle 18 118-250
Cali, Colombia

tek@javerianacali.edu.co

Rafael Ors
Computer Engineering

Department
Universitat Politècnica de

València
València, Spain

rors@disca.upv.es

ABSTRACT

When designing real-time systems, predictability is of ut-
most importance. A locking cache is a cache memory that
allows loading and locking instructions, thus avoiding their
replacement. This way, regarding memory accesses, execu-
tion time of instructions is constant since it does not depend
on the sequence of memory references. With a predictable
behaviour, locking cache memories are a practical alterna-
tive to conventional caches for real-time systems. Offering
similar performance to conventional caches, locking caches
allow an accurate yet simple schedulability analysis.

Locking caches may also help to reduce the size of a sys-
tem, by means of reducing cache size. When reducing cache
size, also cost and power consumption may be reduced. This
way, both predictability and cost saving is provided by means
of locking cache.

This work presents a set of algorithms, aimed to select
the contents of a locking cache that provides the minimum
locking cache size, while the system remains schedulable.
Compared to a previous approach, the algorithms presented
in this paper are able to select a set of main memory blocks
that result in a smaller cache size

Categories and Subject Descriptors

B.3.2 [Memory Structures]: Design Styles—Cache mem-
ories; B.3.2 [Memory Structures]: Performance Analy-
sis and Design Aids—Worst-case analysis; C.3 [Special-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

Purpose and Application-Based Systems]: Real-Time
and Embedded Systems; I.2.8 [Computing Methodolo-
gies]: Artificial Intelligence—Problem Solving, Control Meth-
ods, and Search - Heuristic methods

General Terms

Algorithms, Performance, Design.

Keywords

Real-Time Systems, Locking-Cache Memory, Schedulability,
Genetic Algorithms, Greedy Algorithms.

1. INTRODUCTION
Locking cache memories have been proposed as an alter-

native to conventional cache memories in order to obtain
predictable behaviour and higher performance in real-time
systems [5] [6] [7] [11] [17]. The major drawback of a conven-
tional cache memory lies in its intrinsic dynamic and adap-
tive behaviour, which makes estimating tasks execution and
response times complex.

When a locking cache memory is used, a set of blocks
of main memory containing instructions is selected, loaded
in cache memory and then locked. Since the contents of
the cache memory is known, it is possible to apply simple,
well-known techniques and methods to estimate execution
and response times: [14] to calculate the tasks Worst Case
Execution Time (WCET) and [1] for computing the tasks
response time and analysing the system schedulability tak-
ing into account the Cache Refill Penalty, CRTA (Cache
Response Time Analysis).

The major goal of using a locking cache is thus to ease the
estimation of execution and response times and the schedu-
lability analysis. Furthermore, in some cases, it makes this
analysis feasible.

Nonetheless, locking caches can also be useful for other
purposes. In [4] a new application of locking cache memo-

1163

ries in the area of real-time systems is presented. It targets
application-specific optimised systems and the purpose is to
reduce the cache memory size to a minimum, thus diminish-
ing the total system cost by lowering the hardware cost and
allowing integrating the cache in a System-on-a-Chip. The
result: energy savings and increased computing efficiency
while satisfying real-time requirements.

The approach used is termed Static Locking and works
as follows [5]: before the system starts executing, a lock-
ing instruction cache memory is loaded with the selected
instructions; the contents remain without modifications nor
replacements while the system is operating. The loaded and
then locked instructions may belong to any task in the sys-
tem. That is, the available cache lines can be shared by all
of the tasks in the system.

The main benefit from using a locking cache is to get a pre-
dictable system regarding memory accesses, which allows to
use simple techniques to perform the schedulability analysis.
On the other hand, the performance offered by the system
should be at least close to that offered when using a conven-
tional cache memory. Thus, in order to improve the resulting
performance, the instructions to be loaded and locked into
cache memory must be chosen very carefully since this se-
lection directly affects the execution and response times of
the system tasks.

This problem has been solved with two different kinds of
algorithms. The first one [2] is a genetic algorithm [9] whose
goal is to minimise the system utilisation. In the second
algorithm, to minimise execution times, a greedy algorithm
[13] is used; in it, the selected instructions are those which
are executed more frequently.

The output of both algorithms is a subset of the instruc-
tions in every system task; those instructions constitute the
set of instructions that must be loaded and then locked into
cache memory. In [3] it is shown that the solution qual-
ity, measured as the performance obtained when locking the
chosen set in a cache memory, is very similar for both algo-
rithms; in some cases however, the genetic algorithm offers
better results than its counterpart. Nonetheless, the execu-
tion time of the genetic algorithm is higher than that of the
greedy one.

2. THE PROBLEM
In [4] the genetic algorithm, as described in [2], was used

to select the contents of the locking cache. This algorithm
has as one of its input parameters the size of the locking
cache memory. However, the problem now is to determine
the size of the locking cache. Thus, the genetic algorithm
was executed as many times as necessary, using different
cache sizes, to find the minimum size that keeps the system
schedulable.

Although this approach shed light on both its feasibility
and suitability, it exhibits two main drawbacks: The first one
is the temporal cost. Even when using a dicotomic search,
the number of executions can be very high. In the reported
experiments [4], the number of executions of the genetic al-
gorithm took into account line sizes between 1 and 4096,
which leads to 12 executions in the worst case.

The second problem is that the goal of the genetic al-
gorithm was to obtain the best possible performance; that
is, to make the system schedulable minimising the system
utilisation at the same time. However, as the cache mem-
ory size diminishes, the system utilisation increases, which

may cause individuals to become unschedulable (i.e., util-
isation is higher than 100%). When performing selection
and crossover operations, non-schedulable individuals with
smaller cache sizes have a low probability of being chosen.
Even so, as the cache size approaches the minimum, the algo-
rithm exhibits some problems finding valid (that is, schedu-
lable) individuals.

3. THE PROPOSAL
This paper presents four different algorithms whose goal

is to obtain the minimum cache size required for a real-time
system to be schedulable. For each algorithm an assessment
on both response time and solution quality is done. The
algorithms are:
• Prag-Down,
• Prag-Up,
• GA,
• Prag-GA.

A description of each is given in following subsections.

3.1 Prag-Down
This algorithm does not seek for the minimum cache size.

Instead, it repeatedly executes a sub-optimal locking cache
contents selection algorithm. The algorithm is the prag-
matic one as described in [13]. Originally, this algorithm
was designed to accept the cache size as a parameter input.
Nevertheless, its small execution time (about one minute in
most of the cases) allows its integration into a descending
sequential search.

The iterations start using the maximum cache size and
then each new execution uses one cache line less than the
previous one; when the system becomes non-schedulable, the
iterations finish.

3.2 Prag-Up
Prag-up uses the same algorithm and approach described

in Prag-down. This time however, the search goes up instead
of going down: the first iteration starts with one cache line,
and for every new execution one more line is added. The
iterations stop when the system becomes schedulable.

The rationale behind this approach is to make sure that
there are no discontinuities on the cache size that make the
system schedulable. That is, assuming that a given system
using N cache lines is schedulable but non-schedulable when
using N − 1 cache lines, it is necessary to ascertain whether
the system is non-schedulable for any size lower than N −1.

3.3 GA
This is the sequential version of the genetic algorithm pre-

sented in [15]. Eight different versions have been evaluated.
All of them have in common the problem representation, the
fitness function and the crossover operation; they differ in
the procedure used to create the initial population, and both
the selection and mutation operations. In the following the
operators and different variants are described:

3.3.1 Problem Representation

A tri-dimensional matrix stores the status of main mem-
ory blocks in order to determine whether they are selected
or not to be loaded into the locking cache. The first index
identifies to which task the memory block belongs. The sec-
ond index identifies the set or cache memory line in which
the block is mapped. The third dimension is used to store

1164

the list of blocks that are mapped to that set together with
their corresponding status.

This kind of structure, rather complex in appearance, al-
lows crossing two individuals and mutating the resulting in-
dividuals guaranteeing that they will not use more blocks
than the available ones. Furthermore, the cache mapping
function [10] will not be violated; as a way of example, as-
suming that the mapping function is direct, once the crossover
and mutation operations are done, it is guaranteed that any
two different blocks that map to the same cache line will not
be selected simultaneously.

3.3.2 Initial Population

Two different ways of creating the initial population will
be evaluated. The first one, termed i1, creates identical
individuals; each individual has all of the blocks for every
task marked as selected for being loaded and locked in cache
memory. From this population, as the GA evolves it elimi-
nates selected blocks to reduce cache size.

The second initialisation policy, termed i2, creates a single
individual with all the blocks of all tasks marked as selected
for being loaded and locked in cache memory; the rest of
the individuals are created by selecting a pseudo-random
number of blocks. The purpose of including the special in-
dividual is to broaden the initial search space and ensure the
algorithm starts with some schedulable individuals.

3.3.3 Fitness function

The fitness function, which is common for every variant
of the GA, results from the combination of the result of the
schedulability test, the number of used cache lines, and the
system global utilisation. In this work the fitness value for
an individual is estimated by means of a 3-tuple (S,L, U),
where S is the boolean result from the schedulability test;
L is the cache size, in lines, that the individual needs; and
U is the global utilisation of the system.

An individual i with fitness (Si, Li, Ui) is better than any
individual j with fitness (Sj, Lj, Uj) if: (Si and not(Sj))
or (Si and Sj and (Li < Lj)) or (Si and Sj and (Li =
Lj) and (Ui < Uj)). That is, a given individual is better
than another if it is schedulable and the other is not, or if it
uses a smaller cache (both being schedulable), or in case of
tie, the former presents a lower system utilisation.

The schedulability test determines whether all the tasks in
the system meet their deadlines. The schedulability analysis
is accomplished by comparing the response time of tasks
versus their respective deadlines.

In order to compute the response time of the tasks, it is
necessary to estimate both their WCET and CRTA. This
poses no problem due to the use of a statically-locked in-
struction cache; these figures can be easily obtained by us-
ing the equations described in [5]. Finally, from the response
time of tasks, it is easy to compute the system global utili-
sation.

Although it is possible to use other metrics such as task
slack or response times, in [16] it is shown that using the
system utilisation in the fitness function offers similar results
than using these aforementioned metrics.

3.3.4 Selection policy

To reduce the execution time of the GA, binary tourna-
ment has been chosen for the selection policy; to select a
parent, two individuals are chosen pseudo-randomly, their

fitness functions are compared, and the better individual is
choosen. The previous procedure is repeated to choose the
other parent.

Besides, an elitist selection with two variants has been
introduced. The first variant, termed s1, makes two copies
of the best individual in the current generation. Since these
two copies are subject to mutation, it may be possible that
the best individual does not compete in the next generation.
The second variant, termed s2, also makes two copies of the
best individual. In this case however, one of them suffers
no mutation and is effectively incorporated into the next
generation without any modification.

3.3.5 Crossover operation

Single point crossover is used in this algorithm. The single-
point crossover is obtained by splitting every parent at a
locus given by a pair Task number and Set number. This
approach guarantees that when any two parents are joined,
the resulting individual satisfies the cache mapping function.

3.3.6 Mutation operation

This operation also has two variants. In the first one,
termed m1, one out of three operations is made:
• pseudo-randomly select a set of unlocked blocks and mark
them as locked, thus increasing the number of locked blocks,
and therefore, the size of cache;
• pseudo-randomly select a set of block pairs, each pair con-
taining a locked block and an unlocked one, and exchange
them, leaving unchanged the number of locked blocks and
the cache size;
• pseudo-randomly select a set of locked blocks and mark
them as unlocked, thus decreasing the number of locked
blocks and therefore, the cache size. This mutation schema
is derived from the original GA, and the authors judged that
it was worth to assess its performance.

The second variant, termed m2, pseudo-randomly selects
a set of locked blocks and marks them as unlocked, thus
decreasing the number of locked blocks and therefore, the
cache size. The purpose of this variant is clear: attempt to
reduce as soon as possible the cache size.

3.3.7 Termination condition

The GA execution finishes when a predetermined number
of generations has been reached. This value and the remain-
ing input parameters will be discussed in the Experiments
section.

3.4 Prag-GA
This algorithm results from merging the pragmatic algo-

rithm and the GAi2s2m2. The latter was chosen because it
is the GA version which offers better results as will be shown
in the Experimental Results section. In [3] it is shown that
both algorithms offer results of an almost identical quality,
except in some particular cases where the structure of the
tasks causes the GA to yield better solutions. To exploit
the advantages of both algorithms, in [12] an algorithm that
integrates them is presented.

The initial population for the GA is composed as follows:
the result of executing the pragmatic algorithm is replicated
ten times to obtain ten identical individuals; another 90
individuals are created from the previous individual, but
this time some of the originally selected blocks are pseudo-
randomly marked as non-selected. To complete the pop-

1165

ulation, 100 more individuals are created according to the
procedure termed as i2, including one special individual with
all of the blocks selected.

4. EXPERIMENTAL RESULTS
To evaluate and compare the different algorithms, the

real-time systems presented in [4] were used. The total
number of systems is 28. There are 14 different task sets.
The tasks are synthetic and may contain sequential code,
loops, nested loops, if-then-else conditional structures and
any combination of these.

From each task set two systems are generated; the differ-
ence between them lies in the task periods. In one of the
systems, the periods have been adjusted so that the num-
ber of task preemptions is low and the system utilisation,
when using a conventional cache memory, is about 40%. To
distinguish those systems, the suffix L is used. In the other
system, the periods have been adjusted so that the number
of task preemptions is high and the system utilisation, when
using a conventional cache memory, is larger than 90%. To
denote those systems, the suffix H is used.

Using the same task set but different task periods allows
assessing the behaviour of the algorithms in front of a wider
range of cache size requirements: as the task interference
is increased, a bigger cache is required to keep the system
schedulable, as can be observed in the following tables.

Fetching an instruction from cache takes 1 cycle while
fetching an instruction from main memory takes 10 cycles.
The mapping function for the locking cache is only direct-
mapping, because this one is the most restrictive for the
locking cache.

In order to tune the algorithms parameters, several runs
were performed. Regarding population size, in accordance
with previous works, sizes between 50 and 300 individuals
were tested. With respect to mutation probability, fifteen
values have been tested, ranging from 0.1% to 50%.

Furthermore, the effects of the pseudo-random number
generation routine as well as the value used for its seed have
been evaluated by running 25 times every experiment. Al-
though the solutions, considered as the set of selected main
memory blocks to be locked, were different, the number of
cache lines required to keep the system schedulable is the
same, regardless of the seed value.

The genetic algorithm parameters are:
• Population size: 200 individuals.
• Termination condition: 5000 generations.
• Crossover probability: 100%.
• Mutation probability: 8%.

The major goal of the experiments is to decide which algo-
rithm is able to obtain a schedulable real-time system while
using the smallest cache size. Another goal is to determine
whether the proposed algorithms can improve the results
obtained when repeatedly using the original algorithm, as
presented in [4]. These issues can be ascertained by means
of the following tables and graphics.

Since the results for GAi1s1m1 and GAi1s2m1 were iden-
tical, in both Tables 1 and 2, their results were merged in
the GAi1sXm1 column.

Table 1 shows the minimum number of cache lines ob-
tained for each algorithm. The first column shows the real-
time system used. Regarding the pragmatic algorithm, just
one version is included since in all of the cases both algo-

rithms yield the same result. The last column (Original)
corresponds to the results obtained when using the original
algorithm presented in [4].

In those cases where improved results were obtained with
respect to the original algorithm, the best result is high-
lighted using a boldface type. From these highlighted results
it is possible to observe that: algorithms with initialization
type 1, that is GAi1sXmX, perform worse than the original
algorithm; there is no algorithm, from the proposed ones,
capable of always beating the original algorithm; algorithms
GAi2s1m2, GAi2s2m2 and Prag-GA perform better than
the others.

In order to help determining which algorithm offers the
best results, the rows in Table 2 show the number of cases
in which the new algorithm obtains a better result than the
original algorithm (Better than Original, BtO), the number
of cases in which the new algorithm is in a tie with the
original algorithm (Equal to Original, EtO), and the number
of cases in which the new algorithm is beaten by the original
algorithm (Worse than Original, WtO).

The last row shows, in percentage, the average reduction
on the number of cache lines obtained when using the dif-
ferent algorithms when compared to using the original algo-
rithm. A negative reduction indicates that in order to make
the system schedulable, the corresponding algorithm needs
more lines than the original one.

From Table 2 it can be seen that GAi2s1m2, GAi2s2m2
and Prag-GA offer the best results, being able to defeat the
original algorithm in more than 75% of the cases with a
reduction in cache size that lies between 7% and 10%.

AlgorithmsGAi2s1m1 andGAi2s2m1 also perform better
than the original one, but in a lower scale.

The remaining algorithms –GAs with initialisation type 1
and the pragmatic algorithm– exhibit results that are not
any better than those from the original one. Furthermore,
they produce worse results in the majority of the cases.

To ascertain whether the differences between the differ-
ent selection and mutation policies, as shown in Table 2, are
statistically significant, a multi-sample comparison has been
made considering the number of lines obtained by each al-
gorithm minus the number of lines obtained by the original
algorithm. This allows isolating the effects of the existing
differences in magnitude in cache size from experiment to ex-
periment –as a way of example, experiment 6H needs around
3000 cache lines while experiment 8L needs no more than
711–. This comparison also includes the Prag-GA algorithm.

The result of this comparison is shown in Figure 1, which
illustrates the LSD (Least Significant Differences) means
and intervals [8] with a confidence level of 95%. In this figure
it can be observed that there are three algorithms that stand
out (have a more negative mean) and with statistically sig-
nificant differences (show no overlapping with others): those
which employ a type 2 mutation policy (m2) and the hy-
brid Prag-GA algorithm, as one could expect since it also
uses policy m2. Hence, the selection policy has no effect in
the results while initialisation type i2 when combined with
mutation type m2 exhibit the best results.

Last but not least, to statistically verify that GAi2sXm2 -
type algorithms are really able to defeat the original algo-
rithm, three null hypothesis tests have been made: t-test,
sign-test and signed rank-test. In all three cases the answer
was the same, indicating that there is a significant difference

1166

Table 1: Minimum number of cache lines obtained when using the different algorithms with 28 different
real-time systems

Prag GAi1sXm1 GAi1s1m2 GAi1s2m2 GAi2s1m1 GAi2s1m2 GAi2s2m1 GAi2s2m2 Prag-GA Original

Ex1H 2374 2505 2461 2455 2504 2370 2430 2370 2370 2374
Ex1L 265 463 516 519 265 265 265 265 265 265
Ex2H 2931 3336 3235 3219 3341 2990 3274 2930 2927 2931
Ex2L 277 530 702 711 277 277 277 277 277 302
Ex3H 1587 1598 1584 1583 1600 1572 1583 1567 1567 1482
Ex3L 509 785 776 774 584 526 573 524 509 524
Ex4H 1563 1539 1293 1341 775 725 764 824 1087 821
Ex4L 1350 782 408 416 214 200 209 202 196 515
Ex5H 1891 2070 1944 1946 2081 1597 2018 1650 1709 1891
Ex5L 293 649 743 735 365 297 332 289 291 293
Ex6H 3016 3161 3038 3041 3177 2936 3144 2936 2936 3016
Ex6L 143 205 328 327 143 142 143 142 143 161
Ex7H 3485 3599 3538 3521 3608 3455 3610 3454 3455 3485
Ex7L 394 1584 1639 1649 394 394 394 394 394 396
Ex8H 1831 1855 1828 1829 1824 1736 1850 1734 1731 1831
Ex8L 469 686 711 711 465 448 470 452 469 467
Ex9H 2972 2967 2734 2735 2973 2308 2850 2319 2436 2972
Ex9L 187 674 925 786 221 158 187 158 158 162

Ex10H 2347 3424 2346 2348 2357 2340 2355 2340 2341 2346
Ex10L 399 586 605 621 398 398 398 398 398 402
Ex11H 1731 1812 1556 1555 1842 1178 1458 1121 1441 1718
Ex11L 250 107 129 132 56 56 56 56 56 60
Ex12H 2249 2334 2290 2289 2340 2204 2330 2204 2208 2249
Ex12L 353 722 754 765 364 353 370 352 352 353
Ex13H 757 767 750 752 772 746 762 746 752 757
Ex13L 20 20 22 22 20 20 20 20 20 20
Ex14H 1808 1998 1929 1918 1747 1466 1660 1506 1614 1809
Ex14L 1 1 1 1 1 1 1 1 1 4

Table 2: Table 2. Number of cases in which the new algorithms beat, tie, lose in front of the original algorithm
and average percentage of reduction (if any)

Prag GAi1sXm1 GAi1s1m2 GAi1s2m2 GAi2s1m1 GAi2s1m2 GAi2s2m1 GAi2s2m2 Prag-GA

BtO 7 2 6 6 11 21 11 23 23

EtO 13 1 1 0 2 3 2 3 2
WtO 8 25 21 22 15 4 15 2 3

Red (%) -17,7 -50,6 -58,4 -56,1 1,3 9,8 4,0 9,4 7,1

1167

Figure 1: LSD Intervals for GAi2sXmX minus Orig-

inal (confidence level 95%).

between the results obtained when using GAi2sXm2 -type
algorithms in front of the original algorithm.

Another parameter that has to be evaluated is the execu-
tion time of the algorithms. This time does not affect in any
way either the performance of the final system or the cache
size, but the system development time.

Since both the population size and the number of itera-
tions for all of the algorithms is the same, their execution
times are constant. For the Prag-GA however, which pre-
viously executes the pragmatic algorithm, it is necessary to
account for one extra minute, which in the end, does not
add much. Likewise, the differences in applying one muta-
tion type or the other or a given selection policy are also
non significant.

Therefore, five algorithms, (Prag-GA and the GAi2sXmX
family) need on average eight minutes to finish, with a max-
imum of 12 and a minimum of five.

These variations in the execution time result from the dis-
parity present in the amount of cache lines a given real-time
system task needs: estimating the CRTA in an iterative way
takes more or less time according to the degree of interfer-
ence between the tasks. Also, the number of tasks in the
system affects the time required to estimate the CRTA.

The original algorithm has an execution time quite similar
to the new algorithms presented in this paper. There is
however a major drawback: it is necessary to execute it in
a repeated manner, testing with different cache sizes until
the minimum is found. Therefore, when using the original
algorithm in order to solve the problem, several dozens of
executions may be required; in contrast, with the algorithms
presented in this paper, one execution suffices.

To finish the analysis, the generation number in which ev-
ery algorithm has found the best individual has also been
recorded. Once more, this result has been strongly influ-
enced by the tasks in the real-time system.

The result of a multi-sample comparison is shown in Fig-
ure 2 where the LSD intervals are presented. From this
figure it can be seen that there is no difference in the con-
vergence of the different algorithms, except for GAi2s1m1,
which clearly needs much more iterations to obtain a poor
result with respect to the other algorithms.

This is due to using the s1 selection policy combined with
them1 mutation policy, which establishes that the best indi-
vidual in the current generation is copied in the next gener-
ation but may suffer mutation. This way, it is possible that

Figure 2: LSD Intervals for convergence iteration
(confidence level 95%).

it gets more lines (mutation m1), causing the algorithm to
go back; that is, having more lines as iterations advance.

For the latter algorithms, the mean value for the gen-
eration in which the best solution is found is around 800;
in some of the experiments however, the best solution is
reached around 3000 generations. Therefore, choosing 5000
generations as the stop condition seems to be adequate.

5. CONCLUSIONS
This paper presents a series of algorithms for selecting con-

tents to be loaded into a locking cache in order to minimise
the cache size so that a real-time system is schedulable. The
locking cache memory is locked in a static manner, which
means that once the system starts operating, there are no
cache replacements. The systems analysed are pre-emptive,
fixed-priority, multitasking real-time systems.

The starting point was a genetic algorithm developed to
optimise the performance of real-time systems using a static
approach to lock the cache memory that was then adapted
to solve the cache size minimisation problem. This original
algorithm works with pre-determined cache sizes; hence, to
find the minimum cache size, it is necessary to make a high
number of executions with different cache sizes. Besides, the
number of executions was not delimited, since it depends on
the characteristics of the real-time system such as number
of tasks or relationship between task periods.

The objective of this work was developing new algorithms
that satisfy two goals: First, to improve the solutions ob-
tained previously. This means guaranteeing that the real-
time system is still schedulable with smaller cache sizes. The
second goal is to make just a single execution to get a mini-
mum cache size within a bounded and small execution time.

In this work, ten algorithms have been developed. All
of them output a set of instructions to be loaded and then
locked into cache memory while guaranteeing that the real-
time system is schedulable.

From these ten algorithms, five of them are not able to
decrease the number of selected blocks compared against
the original algorithm; in fact, they need bigger cache sizes.

These five algorithms are the pragmatic algorithm and
the GAs that use initialisation type 1. The problem with
the former is that it chooses the blocks by using a static
estimation of the worst-case execution path. That is, the

1168

estimation is made before the block selection is done and
the worst-case execution path remains the same during the
entire analysis.

Previous works however show that the worst-case execu-
tion path may vary as the blocks are loaded into cache mem-
ory. The pragmatic algorithm however can not adapt to
these variations.

Regarding quality of the results obtained, the deciding
factor is the initial population policy. The greater the vari-
ability of the individuals in the initial population, the better
the results are.

In particular, for GAs with initialisation type 1, since all
the individuals are identical at the beginning, the contribu-
tion made by selection and crossover operators is negligible;
thus the mutation is responsible for the evolution of the pop-
ulation. Unfortunately, the effect of the mutation operator
is not strong enough to get good solutions.

The four algorithms with initialisation type 2 are able
to improve the results obtained by the original algorithm,
which indicates the importance of the policy used to create
the initial population. Two of these algorithms, those using
mutation type 2 –which always eliminates blocks–, consis-
tently obtain the best results independently of the selection
policy used, whose effect is negligible with respect to the
quality of the solution.

On the other hand, the hybrid Pragmatic-GA algorithm,
which uses mutation type 2 and initialisation type 2 to cre-
ate a part of the initial population, exhibits identical be-
haviour to algorithms in the GAi2sXm2 family. Therefore,
having a good starting population does not necessarily guar-
antee obtaining better solutions.

Taking into account the results regarding both the qual-
ity of the solution and the execution times, the authors con-
sider that the best algorithms are GAi2s1m2 andGAi2s2m2.
These algorithms provide a solution to the problem of select-
ing locking cache contents to get an schedulable hard real-
time system, while keeping the cache memory in its minimal
size. Also, their results are in almost all of the cases bet-
ter than those provided by previous version of genetic and
greedy algorithms.

6. ACKNOWLEDGMENTS
This work has been partly supported by the Universitat

Politècnica de València project AID.

7. REFERENCES
[1] J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and

A. Wellings. Adding instruction cache effect to
schedulability analysis of preemptive real-time
systems. In Real-Time Technology and Applications
Symposium, 1996. Proceedings., 1996 IEEE, pages 204
–212, jun 1996.

[2] A. M. Campoy, A. P. Jimenez, A. P. Ivars, and
J. V. B. Mataix. Using genetic algorithms in content
selection for locking-caches. In IASTED International
Symposia Applied Informatics, pages 271 –276, feb
2001.

[3] A. M. Campoy, I. Puaut, A. P. Ivars, and J. V. B.
Mataix. Cache contents selection for statically-locked
instruction caches: An algorithm comparison. In
Proceedings of the 17th Euromicro Conference on
Real-Time Systems, pages 49–56, Washington, DC,
USA, 2005. IEEE Computer Society.

[4] A. M. Campoy, F. Rodriguez-Ballester, R. Ors, and
J. Serrano. Saving cache memory using a locking cache
in real-time systems. In Proceedings of the 2009
International Conference on Computer Design, pages
184–189, jul 2009.

[5] M. Campoy, A. P. Ivars, and J. V. B. Mataix. Static
use of locking caches in multitask preemptive real-time
systems. In Proceedings of IEEE/IEE Real-Time
Embedded Systems Workshop (Satellite of the IEEE
Real-Time Systems Symposium, dec 2001.

[6] H. Falk, S. Plazar, and H. Theiling. Compile-time
decided instruction cache locking using worst-case
execution paths. In Proceedings of the 5th IEEE/ACM
international conference on Hardware/software
codesign and system synthesis, CODES+ISSS ’07,
pages 143–148, New York, NY, USA, 2007. ACM.

[7] Y. Liang and T. Mitra. Instruction cache locking using
temporal reuse profile. In Proceedings of the 47th
Design Automation Conference, DAC ’10, pages
344–349, New York, NY, USA, 2010. ACM.

[8] G. McPherson. Applying and Interpreting Statistics. A
Comprehensive Guide. Springer Texts in Statistics.
Springer, 2nd edition, 2001.

[9] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA, 1998.

[10] D. Patterson and J. Hennessy. Computer Organization
and Design: The Hardware/software Interface.
Morgan Kaufmann, 1994.

[11] I. Puaut. Cache analysis vs static cache locking for
schedulability analysis in multitasking real-time
systems. In Proceedings of the 2nd International
Workshop on worst-case execution time analysis, in
conjunction with the 14th Euromicro Conference on
Real-Time Systems, jun 2002.

[12] I. Puaut. Wcet-centric software-controlled instruction
caches for hard real-time systems. In Proceedings of
the 18th Euromicro Conference on Real-Time Systems,
pages 217–226, Washington, DC, USA, 2006. IEEE
Computer Society.

[13] I. Puaut and D. Decotigny. Low-complexity algorithms
for static cache locking in multitasking hard real-time
systems. In Proceedings of the 23rd IEEE Real-Time
Systems Symposium, RTSS ’02, pages 114–,
Washington, DC, USA, 2002. IEEE Computer Society.

[14] A. Shaw. Reasoning about time in higher-level
language software. Software Engineering, IEEE
Transactions on, 15(7):875 –889, July 1989.

[15] E. Tamura, J. Busquets-Mataix, and
A. Marti Campoy. A parallel genetic algorithm for
locking-cache contents selection in pre-emptive
real-time systems. Epiciclos Scientific Journal, 4(1):9
–26, 2005.

[16] E. Tamura, J. Busquets-Mataix, J. Serrano, and
A. Marti Campoy. A comparison of three genetic
algorithms for locking-cache contents selection in
real-time systems. In B. Ribeiro, R. F. Albrecht,
A. Dobnikar, D. W. Pearson, and N. C. Steele, editors,
Adaptive and Natural Computing Algorithms, pages
462–465. Springer Vienna, 2005.

[17] X. Vera, B. Lisper, and J. Xue. Data cache locking for
higher program predictability. SIGMETRICS
Perform. Eval. Rev., 31:272–282, June 2003.

1169

