
A Non-deterministic Adaptive Inertia Weight in PSO

Kusum Deep
Department of Mathematics

Indian Institute of Technology
Roorkee

Uttarakhand, India.

kusumfma@iitr.ernet.in

Madhuri
Department of Mathematics

 Indian Institute of Technology
Roorkee

Uttarakhand, India.

madhuriiitr@gmail.com

Jagdish Chand Bansal
Department of Mathematics

ABV-Indian Institute of Information
Technology and Management

Gwalior (M.P.), India.

jcbansal@iiitm.ac.in

ABSTRACT
Particle Swarm Optimization (PSO) is a relatively recent swarm
intelligence algorithm inspired from social learning of animals.
Successful implementation of PSO depends on many parameters.
Inertia weight is one of them. The selection of an appropriate
strategy for varying inertia weight w is one of the most effective
ways of improving the performance of PSO. Most of the works
done till date for investigating inertia weight have considered
small values of w, generally in the range [0,1]. This paper
presents some experiments with widely varying values of w which
adapts itself according to improvement in fitness at each iteration.
The same strategy has been implemented in two different ways
giving rise to two inertia weight variants of PSO namely Globally
Adaptive Inertia Weight (GAIW) PSO, and Locally Adaptive
Inertia Weight (LAIW) PSO. The performance of the proposed
variants has been compared with three existing inertia weight
variants of PSO employing a test suite of 6 benchmark global
optimization problems. The experiments show that the results
obtained by the proposed variants are comparable with those
obtained by the existing ones but with better convergence speed
and less computational effort.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search–heuristic methods.

General Terms
Experimentation.

Keywords
Particle Swarm optimization, Dynamic inertia weight, Adaptive
inertia weight, Non-deterministic inertia weight.

1. INTRODUCTION
PSO (Particle Swarm Optimization) is a population based
stochastic optimization technique. It is a newer addition to the
class of nature inspired optimization algorithms. It was introduced
by Kennedy and Eberhart in 1995 [9, 10]. Only within a few years
of its introduction PSO has gained wide popularity as a powerful
global optimization tool and is competing with well-established

population based evolutionary algorithms like GA [5]. In the
recent years it has attracted a lot of attention from researchers all
over the world and has been successfully applied for solving a
wide variety of optimization problems occurring in diverse fields
of science, engineering and industry [14, 15, 18].

The fundamental idea behind PSO is the mechanism by which the
birds in a flock and the fishes in a school cooperate while
searching for food. In PSO terminology population is called
swarm and the individual solutions are referred to as particles.
Each particle in the swarm relies on its own experience as well as
the experience of its best neighbor. Each particle has an
associated fitness value. These particles move through search
space with a specified velocity in search of optimal solution. Each
particle maintains a memory which helps it in keeping the track of
the best position it has achieved so far. This is called the particle’s
personal best position (pbest) and the best position the swarm has
achieved so far is called global best position (gbest). PSO has two
primary operators: Velocity update and Position update. During
each generation each particle is accelerated towards the gbest and
its own pbest. At each iteration a new velocity value for each
particle is calculated according to the following velocity update
equation:

 1 1 2 2 () (1)id id id id gd idv v c r p x c r p x    

The new velocity value is then used to calculate the next position
of the particle in the search space, according to the following
position update equation:

(2)id id idx x v 
This process is then iterated until a predefined stopping criterion
is satisfied. Here Xi=(xi1,xi2,…xid) represents the position of the ith
particle in a d-dimensional search space, Pbesti=(pi1,pi2,…pid) is ith
particle’s pbest position, Pgbest=(pg1,pg2….pgd) is gbest position
and Vi=(vi1,vi2,…vid) is the velocity of ith particle. The
acceleration coefficients c1 and c2 control how far a particle can
move in a single iteration. Typically, these are both set equal to a
value of 2. The coefficients r1 and r2 are the uniformly generated
random numbers in the range [0, 1] to provide stochastic nature to
the algorithm.

In PSO the search for global optimal solution is accomplished by
maintaining a dynamic balance between exploration and
exploitation. Exploration is the ability of an algorithm to explore
different regions of the search space in order to locate a good
optimum. Exploitation, on the other hand, is the ability to
concentrate the search around a promising area in order to refine a
candidate solution [4]. So an optimal balance between exploration
and exploitation is the key to the performance control of PSO. To
control the global exploration of particles the concept of inertia
weight was introduced by Shi and Eberhart [16]. The inertia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

1155

weight controls the momentum of a particle by weighing the
contribution of the previous velocity on the new velocity
according to the following equation:

 1 1 2 2() () (3)

Inertia Cognitive Socialcomponent component component

id id id id gd idv wv c r p x c r p x    
 

 Where w is the inertia weight. Clearly, with large values of inertia
weight particles will have large position updates and so the swarm
will have more diversity and hence more exploration capability
which means more exploration of new search areas in pursuit of a
better solution. On the other hand smaller values of inertia weight
will lead to less variation in velocity which provides slower
updating for fine tuning a local search. However, with zero inertia
(w=0) there will be quick changes in the directions of particles
and they will search locally around their current position. It has
been inferred that the system should start with a high inertia
weight for global exploration and then it should decrease
successively to facilitate finer local exploitations. This helps the
system to approach the optimum of the fitness function quickly.

Since the introduction of inertia weight in PSO, a lot of research
has been devoted to find the optimal or the standard value of the
inertia weight. But results show that its value is problem
dependent and no standard value has yet been found. It has been
established that a reasonable choice would be to vary the inertia
weight over iterations instead of using a fixed value of it during
the course of a run. Many researchers have proposed a lot of
strategies for dynamically adjusting inertia weight. Some of them
are random inertia weight [17], fuzzy based adaptive inertia
weight [3], increasing inertia weight [19, 20], decreasing inertia
weight [2]. Hu and Zeng [6] proposed three ways of dynamically
adjusting inertia weight, two of these were linear and one was
non-linear. A number of other ways for non-linearly adapting
inertia weight have been proposed in [1, 7, 8, 13].

Almost all the methods (except a few) that have been proposed till
date, for the dynamic adjustment of inertia weight, have used
some deterministic approach and have taken its value between 0
and 1. In this paper a non-deterministic way of dynamically
adjusting the inertia weight is proposed and larger values of
inertia weight have also been allowed. This method is based on
the improvement in the fitness of the particles as the search
process progresses. The performance of the proposed PSO model
is compared with some other available PSO models reported in
the literature.

The remainder of this paper is organized as follows: The second
section of the paper describes the proposed strategy for dynamic
adjustment of inertia weight. Computational results obtained for
the test functions are presented in third section. Finally we
conclude the work in section 4.

2. PROPOSED INERTIA WEIGHT PSO
This paper proposes a new approach for adjusting inertia weight
in PSO that adapts itself at each iteration according to the
improvement in best fitness. Here the inertia weight has been
taken as a function of iteration number and is updated according
to the following equation:

(1) 0.9, if 0;
(4)

(1) () (1) if 0

w t t

w t f t f t t

   
     

Where w(t+1) is the inertia weight at (t+1)th iteration and f (t) is
the best fitness value at tth iteration. This modification increases
the influence of potentially fruitful inertial directions while
decreasing the influence of potentially unfavourable inertial
directions. Clearly, this way of adapting the inertia weight may
sometimes lead to very large values of w resulting in the
explosion of particle’s velocities, therefore the velocities are
clamped in the range [-Vdmax , Vdmax] to keep the particles within
the boundaries of the search space.When using this approach, the
variations of inertia weight as obtained experimentally are as
shown in the Figure 1 for two benchmark problems.

Here the swarm starts with w=0.9 which is then updated using
equations (4) according as the improvement in global best fitness.
For all the functions used in our study it is observed that there are
large oscillations in the value of inertia weight in the initial
iterations which help the swarm in maintaining the diversity
resulting in good exploration. So the particles can fly through the
total search space quickly. Towards the end it is observed that the
oscillations become smaller and smaller which facilitate fine
tuning of the final solution. Based on this observation, we can
expect that this strategy may perform well for enhancing the
performance of PSO. From Figure 1 another observation is that
during the search the inertia weight sometimes becomes zero and
does not increase for many consecutive iterations which means
that the swarm sometimes stagnates at a suboptimal solution. The
smaller the inertia weight, the more do the cognitive and social
components control position updates. With zero inertia of swarm,
stagnation for many consecutive iterations implies that the social
and cognitive components are not capable of easily escaping the
suboptimum. It slows down the search process. To overcome this
situation it is proposed that if the swarm stagnates for M
consecutive iterations, the swarm should be provided with some
inertia to increase the diversity. So the inertia weight equation is
modified as follows:

Figure 1. Variation of inertia weight with iterations for
Rosenbrock, and Ackley Functions

1156

(1) 0.9 0

0

(1) () (1)

()* / ; 0start start end max

w t if t

and for t we have

w t f t f t

w w w w t t if w for M

successive iterations

   
     
    


(5)

Where wstart is the initial value of the inertia weight, and wend is
the final value of the inertia weight, and t is the current iteration
(generation) of the algorithm while tmax is the maximum number
of iterations (generations) specified by the user. This strategy may
help in decreasing the period of entrapment (i.e., the number of
iterations for which the swarm stagnates) in suboptimal solutions
during the search and hence improve the convergence rate. We
use this strategy in two ways, namely, globally and locally. In the
global strategy each particle in the swarm has the same inertia
weight that updates according to equations (5) using the
improvement in global best fitness. It is called globally adaptive
inertia weight (GAIW). At any iteration if the global best fitness
improves, the particles are encouraged to search in their current
directions, otherwise inertia is made zero and the swarm starts
contracting to the current global best position until another
particle takes over or until the swarm is provided with some
inertia from which time it starts globally exploring the search
space. If the global best particle stops moving for a few iterations
then the whole swarm may stop changing. It may lead to
premature convergence. Considering this possible disadvantage of
the global strategy a local strategy is proposed i.e., the inertia
weight for each particle at each iteration is updated individually
according to equations (5) using the improvement in its personal
best fitness. It is called locally adaptive inertia weight (LAIW). At
any iteration if a particle’s personal best fitness improves, the
particle is encouraged to search in its current direction, otherwise
its inertia is made zero and the particle starts searching locally
until its personal best improves or until it is provided with some
inertia from which time it starts global exploration. Also since the
inertia weight of each particle is updated individually, all the
particles in the swarm possibly have different inertia weight.
Therefore some particles may search globally while the others are
searching locally. This leads to automatic balancing of local and
global search. This strategy strongly avoids entrapment in
suboptimal solutions and due to increased diversity it is highly
explorative.

3. COMPUTATIONAL EXPERIMENTS
The proposed inertia weight variants of PSO i.e., GAIW and
LAIW are compared with three existing inertia weight variants
namely fixed inertia weight (FIW), linearly decreasing inertia
weight (LDIW) and non-linearly decreasing inertia weight
(NDIW). The equations (6) and (7) are used to determine LDIW
[16] and NDIW [11] respectively.

– (–)* / (6)start start end maxw w w w t t

1 (7)
7
8start end end

max

t
w (w – w)* tan w

t

k
*

  
             

Where wstart, wend, tmax and t have the same meanings as in
equations (5), tan() is the trigonometric tangent function, and k is
the control variable which can control the smoothness of the
curve that reflects the relationship between the w and t.

3.1 Test Problems
The relative performance of the algorithms is evaluated on a set of
6 benchmark problems. These problems are of continuous
variables and have different degree of complexity and
multimodality. The problem size for all problems is kept fixed at
30. All these problems are of minimization type. The problem set
is shown in Table 1.

3.2 Parameter selection
General parameter setting is used for experiments. We use
c1=c2=2, swarm size=60, tmax=5000. The maximum allowable
velocity in each dimension has been taken to be

() *0.25dmax dmax dminV x x  , where xdmax and xdmin are the upper

and lower bounds for particles’ positions in dth dimension of the
search space. All these settings have been kept same for all the
algorithms considered here. The termination criterion for all
algorithms is a combination of the following two conditions: (i)
reaching the maximum number of iterations, (ii) getting a solution
within the tolerance limit ε (see Table 1), which means that
simulation of an algorithm is stopped as soon as either of these
conditions is satisfied. For FIW PSO w=0.68 is set. For all other
algorithms wstart=0.9 and wend=0.4 are set. Also for NDIW PSO
k=0.6 (as recommended in [11]) is taken. For GAIW and LAIW
M=25 is taken for all problems.

3.3 Performance Evaluation Criteria
In order to avoid attributing the results to the choice of a
particular initial population, each test is performed 100 times,
starting from various randomly selected points in the search
space. All the PSOs are implemented in C and experiments are
carried out on a Xeon, 3.4 GHz machine under LINUX operating
system. All the results that have been recorded and presented here
have been averaged over the successful runs out of 100. A run is
considered a success if the algorithm finds a solution

satisfying opt minf f   , where fmin is the best solution found

when an algorithm terminates and fopt is the known global
optimum of the problem. For each algorithm and for each
problem the following are recorded:

1. Average number of function evaluations of successful
runs (AFE).

2. Average Execution Time (AET) of successful runs.

3. Success Rate (SR) =
(# of successful runs)

100
total runs



4. Average Error (AE) = Average of opt minf f over

successful runs.
5. Standard Deviation (SD) = Standard deviation of the

error opt minf f .

6. Success Performance (SP)

 =
(AFE)

(# of total runs)
of successful runs

 [12]

These measures are shown in tabular as well as graphical form
using box-plots.

3.4 Results and Discussions
All the results are recorded in Table 2. In Figures 2 the best
performing PSO is marked with star. The box-plots have been
drawn for all the functions taken together. The goal of the

1157

analysis is to observe if the proposed strategy shows an
improvement over the existing ones or not.

AFE is a measure of the computational cost of the method. It is
clear from the results that LAIW performs the best from AFE
point of view. So the order of PSOs based on the computational
cost is:

 1LAIW > GAIW > NDIW > FIW > LDIW.

Thus the proposed PSOs significantly reduce the computational
effort.

AET is a measure of the convergence rate of the method. The
results clearly show that from this point of view also LAIW
performs the best. The order of PSOs based on AET is:

LAIW > GAIW > FIW > NDIW > LDIW

Success rate is a measure of the reliability of the method. It is
clear that performance of LAIW is again the best among all PSOs
considered. Further the order of PSOs based on the SR
performance is:

 LAIW > GAIW > NDIW > FIW > LDIW

 except for Ackley function, where GAIW gives better SR than
LAIW.

In order to observe the consolidated effect on SR and AFE
performance, a comparison among all five versions is made on the
basis of success performance (SP) also. From SP point of view
following order is seen (except for Ackley function):

LAIW > GAIW > NDIW > FIW > LDIW.

1 A > B implies that algorithm A performs better than algorithm B

for that particular point of view.

Now the most accurate method is sought. For this the comparison
based on average error (AE) and standard deviation (SD) of
successful runs is carried out. Standard deviation gives the
information about the consistency of the optimal solution over the
successful runs. Smaller value of SD indicates the consistency of
the algorithm in finding the optimal solution. From this point of
view the following performance order of the algorithms is
observed:

 LAIW > GAIW > FIW > NDIW > LDIW.

On the basis of above analysis, LAIW gives overall best
performance among all five versions of PSO considered here. So
it may be concluded that the proposed strategy gives significantly
better results than the existing ones.

Let us now discuss the possible reasons for the good performance
of proposed strategy. In standard PSO each particle moves under
the influence of three velocity components. When inertia weight
is kept fixed or is varied between 0 and 1, each of the three
velocity components affect, almost equally, the movement of the
particle during entire search process. But in the proposed strategy
when the value of w is very large, the particles perform almost
individual search controlled mainly by inertia, and when the value
of w is very small, the search is controlled mainly by the social
and cognitive components. For intermediate values of w there is a
balance between the two. In this way the search pattern becomes
like a combination of individual search and social cooperation
with their due weightages that vary with iterations. During
individual search the swarm has high diversity which is an
important factor for good performance of any population based
optimization algorithm. By studying the patterns of variation of
inertia weight for various functions used here, we see that during
the initial iterations w takes very large values, so initially
individual search is more effective than social search.

Table 1: Description of Test Functions

Sl. Name Function Bounds ε

1 Sphere
2

1 i

n

i
x

 [-5.12,5.12]30 0.001

2 Griewank    







 n

i

n

i

i
i

i

x
x

1 1

2 cos
4000

1
1 [-600,600]30 0.001

3 Rosenbrock    n

i iii xxx
1

222

1))1()(100(

[-30,30]30 100

4 Rastrigin    n

i ii xxn
1

2))π2cos(10(10

[-5.12,5.12]30 50

5 Ackley
 

e

x
n

x
n

n

i i

n

i i




















  

20

π2cos
1

exp
1

02.0exp20
11

2

[-30,30]30 0.001

6 Schwefel 3  
 n

i i

n

i i xx
11 [-10,10]30 0.001

1158

Consequently the swarm is more diverse and performs better
exploration rapidly. So the good regions of search space are
quickly identified during first few iterations. In the later iterations
the values of inertia weight are relatively small so the social
cooperation is given more weightage now, and usual PSO search
is performed to exploit the information obtained yet.

The overall search pattern may be viewed as a swarm starting
with zero velocities and w=0.9 first explore the search space
vigorously, sometimes searching locally around good positions
and in the later iterations concentrate the search in good areas
found so far.Hence it can be said that the faster convergence of
proposed PSO is due to (i) the quick exploration in first few
iterations, and (ii) the reduction in the period of entrapment
during the search. Also the high success rate may be due to the
increased diversity of the swarm because now the swarm explores
the search space more effectively.

4. CONCLUSIONS
In this paper two variants of PSO have been proposed, which are
based on a new approach for dynamically adjusting the inertia
weight at each iteration. The proposed variants are tested on 6
benchmark problems. The aim was to increase diversity of swarm
for more exploration of the search space during initial iterations
and apply mild fine tuning during later iterations so that the
optimal solution could be approached with better accuracy,
simultaneously making the PSO capable of avoiding entrapment
in suboptimal solutions and, also improving its convergence rate.
All these purposes are simultaneously and successfully fulfilled to
a satisfactory level by using the proposed inertia weight strategy,
as is clear from the results of experiments. An advantage of using
the proposed strategy is that it is almost problem independent i.e.,
the same strategy gives different inertia weights for different
problems according to that problem’s requirement.

Performance
Measure

Function
Name

FIW LDIW NDIW GAIW LAIW

Sphere 70921 161621 99573 15080 1560
Griewank 157472 187242 124739 36272 1867
Rosenbrock 121825 186560 120594 140243 1480
Rastrigin 64856 180404 96820 45017 651
Ackley 177488 194984 131728 72143 119713

Average
functional

Evaluations

Schewfel 3 177488 180559 119416 42372 1980
Sphere 0.3032 0.6684 0.5024 0.0778 0.0088
Griewank 1.0962 1.3029 0.9827 0.2905 0.0159
Rosenbrock 0.6173 0.9569 0.7282 0.8489 0.0099
Rastrigin 0.5989 1.0917 0.6728 0.3147 0.0048
Ackley 1.1561 1.2461 0.9629 0.5368 0.9412

Average
Execution

Time

Schewfel 3 0.6782 0.9604 0.7439 0.2702 0.0137
Sphere 100 100 100 100 100
Griewank 21 31 39 17 100
Rosenbrock 74 53 75 94 100
Rastrigin 81 68 94 98 100
Ackley 97 97 100 99 64

Success Rate

Schewfel 3 81 55 91 15 100
Sphere 0.000953 0.000945 0.000942 0.000934 0.000114
Griewank 0.000954 0.000924 0.000925 0.000885 0.000007
Rosenbrock 98.34058 97.89938 98.88599 94.54052 32.66543
Rastrigin 49.21176 49.39174 49.19422 49.4536 4.322524
Ackley 0.000971 0.000966 0.000965 0.000928 0

Average
Error

Schewfel 3 0.000948 0.000954 0.000964 0.000799 0
Sphere 0.000034 0.000057 0.000068 0.000065 0.000126
Griewank 0.001852 0.001381 0.001158 0.00196 0.000067
Rosenbrock 58.35779 92.35525 57.10645 28.01283 11.49765
Rastrigin 23.86082 33.89431 12.4941 7.110318 7.890891
Ackley 0.000173 0.000173 0.000029 0.00015 0

Standard
Deviation

Schewfel 3 0.000462 0.000863 0.000305 0.001913 0
Sphere 70921 161621 99573 15080 1560
Griewank 749866.7 604006.5 319843.6 213364.7 1867
Rosenbrock 164628.4 352000 160792 149194.7 1480
Rastrigin 80069.1 265300 103000 45935.71 651
Ackley 182977.3 201014.4 131728 72871.72 187051.6

Success
Performance

Schewfel 3 219121 328289.1 131226.4 282480 1980

Table 2: Results of Experiments

1159

Thus it can be concluded that the proposed inertia weight variants
increase the performance of PSO significantly and can be used for
different kinds of optimization problems thus releasing the user
from the pain of indulging into extensive experiments for finding
an appropriate setting of inertia weight.

5. ACKNOWLEDGMENTS
The second author , Madhuri, acknowledges Council of Scientific
and Industrial Research, New Delhi, India, for providing the
financial support for this work.

6. REFERENCES
[1] Chatterjee, A., and Siarry, P. Nonlinear inertia weight

variation for dynamic adaptation in particle swarm
optimization. Computers & Operations Research, 33 2006,
859–871.

[2] Cui, H. M., and Zhu, Q. B. Convergence analysis and
parameter selection in particle swarm optimization.
Computer Engineering and Applications, 23, 43, 2007, 89-
91.

FIW LDIW NDIW GAIW LAIW

0

2

4

6

8

10

12

14

16

18

20
x 10

4

A
v

e
ra

g
e

 F
u

n
c

ti
o

n
 E

v
a

lu
a

ti
o

n
s

Algorithm
FIW LDIW NDIW GAIW LAIW

0

0.2

0.4

0.6

0.8

1

1.2

A
ve

ra
g

e
E

xe
c

u
ti

o
n

 T
im

e

Algorithm

FIW LDIW NDIW GAIW LAIW

0

10

20

30

40

50

60

70

80

90

100

A
v

er
a

g
e

 E
rr

o
r

Algorithm
FIW LDIW NDIW GAIW LAIW

20

30

40

50

60

70

80

90

100

S
u

cc
e

ss
 R

at
e

Algorithm

FIW LDIW NDIW GAIW LAIW

0

10

20

30

40

50

60

70

80

90

S
ta

n
d

a
rd

 D
e

vi
a

ti
o

n

Algorithm
FIW LDIW NDIW GAIW LAIW

0

1

2

3

4

5

6

7

x 10
5

S
u

c
ce

ss
 P

er
fo

rm
a

n
c

e

Algorithm

Figure 2: Box plots for various performance measures

1160

[3] Eberhart, R. C., and Shi, Y. 2001. Tracking and optimizing
dynamic systems with particle swarms. In Proceeding
Congress on Evolutionary Computation 2001, Seoul, Korea,
Piscataway, NJ: IEEE Service Centre.

[4] Engelbercht, A. P. Fundamentals of computational swarm
intelligence. John Wiley & Sons, 2005.

[5] Goldberg, D. E. Genetic Algorithms in Search Optimization,
and Machine Learning, Reading MA: Addison-Welsey,
1989.

[6] Hu, J. X., and Zeng, J.C. Selection on Inertia Weight of
Particle Swarm Optimization. Computer Engineering, 33, 11,
June 2007, 193-195.

[7] Hu, J. Z., Xu, J., Wang, J. Q., and Xu, T. Research on
Particle Swarm Optimization with dynamic inertia weight. In
Proceedings of International Conference on Management
and Service Science, (MASS '09), 2009.

[8] Jiao, B., Lian, Z., and Gu, X. A dynamic inertia weight
particle swarm optimization algorithm. Chaos, Solitons and
Fractals, 37, 2008, 698–705.

[9] Kennedy, J., and Eberhart, R. C. Particle swarm
optimization. In Proceedings of IEEE International
Conference on Neural Networks, WA Australia, 1995, 1942–
1948.

[10] Kennedy, J., Eberhart, R. C., and Shi Y. Swarm intelligence.
Morgan Kaufmann Publishers, 2001.

[11] Li, L., Bing, X., Ben, N., Lijing, T., and Jixian, W. A Novel
Particle Swarm Optimization with Non-linear Inertia Weight
Based on Tangent Function. D.-S. Huang et al. (Eds.): ICIC
2009, LNAI, 5755, Springer-Verlag Berlin Heidelberg, 2009,
785–793.

[12] Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M.,
Suganthan, P., Coello, C. and Deb, K. Problem definitions
and evaluation criteria for the CEC 2006, Special Session on
Constrained Real-Parameter Optimization, Technical Report,
2006.

[13] Malik, R. F., Rahman, T. A., Hashim, S. Z. T., and Ngah, R.
New Particle Swarm Optimizer with Sigmoid Increasing

Inertia weight, International Journal of Computer Science
and Security, 1, 2, 2007.

[14] Mendes, R., Cortez, P., Rocha, M., and Neves, J. Particle
Swarms for Feedforward Neural Network Training. In
Proceedings of the International Joint Conference on Neural
Networks (IJCNN 2002), 2002, 1895–1899.

[15] Parsopoulos, K. E., Papageorgiou, E. I., and Groumpos, P.P.
A First Study of Fuzzy Cognitive Maps Learning Using
Particle Swarm Optimization. In Proceedings of IEEE
Congress on Evolutionary Computation 2003 (CEC 2003),
Canbella, Australia, 2003, 1440–1447.

[16] Shi, Y., and Eberhart, R. C. A modified particle swarm
optimizer. In Proceedings of the IEEE Conference on
Evolutionary Computation, Piscataway, NJ, IEEE Press,
1998, 69-73.

[17] Shi, Y., and Eberhart, R. C.. Fuzzy Adaptive Particle Swarm
Optimization. In Proceedings of Congress on Evolutionary
Computation. Seoul, Korea, Piscataway, NJ, IEEE Service
Centre, 2001, 101-106.

[18] Venayagamoorthy, G. K., and Doctor, S. Navigation of
Mobile Sensors Using PSO and Embedded PSO in a Fuzzy
Logic Controller. In Proceedings of the 39th IEEE IAS
Annual Meeting on Industry Applications, Seattle, USA,
2004, 1200–1206.

[19] Zheng, Y. L., Ma, L. H., Zhang L. Y., and Qian, J. X.
Empirical Study of Particle Swarm Optimizer with an
Increasing Inertia Weight. In Proceeding of the IEEE
Congress on Evolutionary Computation, Vol.1, 2003, 221-
226.

[20] Zheng, Y. L., Ma, L. H., Zhang L. Y., and Qian, J. X. On the
convergence analysis and parameter selection in particle
swarm optimization. In Proceedings of the Second
International Conference on Machine Learning and
Cybernetics, 2003, 1802-1807.

1161

