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ABSTRACT 
Particle Swarm Optimization (PSO) is a relatively recent swarm 
intelligence algorithm inspired from social learning of animals. 
Successful implementation of PSO depends on many parameters. 
Inertia weight is one of them. The selection of an appropriate 
strategy for varying inertia weight w is one of the most effective 
ways of improving the performance of PSO. Most of the works 
done till date for investigating inertia weight have considered 
small values of w, generally in the range [0,1]. This paper 
presents some experiments with widely varying values of w which 
adapts itself according to improvement in fitness at each iteration. 
The same strategy has been implemented in two different ways 
giving rise to two inertia weight variants of PSO namely Globally 
Adaptive Inertia Weight (GAIW) PSO, and Locally Adaptive 
Inertia Weight (LAIW) PSO. The performance of the proposed 
variants has been compared with three existing inertia weight 
variants of PSO employing a test suite of 6 benchmark global 
optimization problems. The experiments show that the results 
obtained by the proposed variants are comparable with those 
obtained by the existing ones but with better convergence speed 
and less computational effort.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search–heuristic methods.  

General Terms 
Experimentation. 

Keywords 
Particle Swarm optimization, Dynamic inertia weight, Adaptive 
inertia weight, Non-deterministic inertia weight. 

1. INTRODUCTION 
PSO (Particle Swarm Optimization) is a population based 
stochastic optimization technique. It is a newer addition to the 
class of nature inspired optimization algorithms. It was introduced 
by Kennedy and Eberhart in 1995 [9, 10]. Only within a few years 
of its introduction PSO has gained wide popularity as a powerful 
global optimization tool and is competing with well-established 

population based evolutionary algorithms like GA [5]. In the 
recent years it has attracted a lot of attention from researchers all 
over the world and has been successfully applied for solving a 
wide variety of optimization problems occurring in diverse fields 
of science, engineering and industry [14, 15, 18].  

The fundamental idea behind PSO is the mechanism by which the 
birds in a flock and the fishes in a school cooperate while 
searching for food. In PSO terminology population is called 
swarm and the individual solutions are referred to as particles. 
Each particle in the swarm relies on its own experience as well as 
the experience of its best neighbor. Each particle has an 
associated fitness value. These particles move through search 
space with a specified velocity in search of optimal solution. Each 
particle maintains a memory which helps it in keeping the track of 
the best position it has achieved so far. This is called the particle’s 
personal best position (pbest) and the best position the swarm has 
achieved so far is called global best position (gbest). PSO has two 
primary operators: Velocity update and Position update. During 
each generation each particle is accelerated towards the gbest and 
its own pbest. At each iteration a new velocity value for each 
particle is calculated according to the following velocity update 
equation: 

 1 1 2 2 ( ) (1)id id id id gd idv v c r p x c r p x      

The new velocity value is then used to calculate the next position 
of the particle in the search space, according to the following 
position update equation:                                   

(2)id id idx x v 
This process is then iterated until a predefined stopping criterion 
is satisfied. Here Xi=(xi1,xi2,…xid) represents the position of the ith 
particle in a d-dimensional search space, Pbesti=(pi1,pi2,…pid) is ith  
particle’s pbest position,  Pgbest=(pg1,pg2….pgd) is gbest position 
and Vi=(vi1,vi2,…vid) is the velocity of  ith particle. The 
acceleration coefficients c1 and c2 control how far a particle can 
move in a single iteration. Typically, these are both set equal to a 
value of 2. The coefficients r1 and r2 are the uniformly generated 
random numbers in the range [0, 1] to provide stochastic nature to 
the algorithm. 

In PSO the search for global optimal solution is accomplished by 
maintaining a dynamic balance between exploration and 
exploitation. Exploration is the ability of an algorithm to explore 
different regions of the search space in order to locate a good 
optimum. Exploitation, on the other hand, is the ability to 
concentrate the search around a promising area in order to refine a 
candidate solution [4]. So an optimal balance between exploration 
and exploitation is the key to the performance control of PSO. To 
control the global exploration of particles the concept of inertia 
weight was introduced by Shi and Eberhart [16]. The inertia 
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weight controls the momentum of a particle by weighing the 
contribution of the previous velocity on the new velocity 
according to the following equation: 

 1 1 2 2( ) ( ) (3)

Inertia Cognitive Socialcomponent  component  component
          

id id id id gd idv wv c r p x c r p x    
 

 Where w is the inertia weight. Clearly, with large values of inertia 
weight particles will have large position updates and so the swarm 
will have more diversity and hence more exploration capability 
which means more exploration of new search areas in pursuit of a 
better solution. On the other hand smaller values of inertia weight 
will lead to less variation in velocity which provides slower 
updating for fine tuning a local search. However, with zero inertia 
(w=0) there will be quick changes in the directions of particles 
and they will search locally around their current position. It has 
been inferred that the system should start with a high inertia 
weight for global exploration and then it should decrease 
successively to facilitate finer local exploitations. This helps the 
system to approach the optimum of the fitness function quickly.

 
Since the introduction of inertia weight in PSO, a lot of research 
has been devoted to find the optimal or the standard value of the 
inertia weight. But results show that its value is problem 
dependent and no standard value has yet been found. It has been 
established that a reasonable choice would be to vary the inertia 
weight over iterations instead of using a fixed value of it during 
the course of a run. Many researchers have proposed a lot of 
strategies for dynamically adjusting inertia weight. Some of them 
are random inertia weight [17], fuzzy based adaptive inertia 
weight [3], increasing inertia weight [19, 20], decreasing inertia 
weight [2]. Hu and Zeng [6] proposed three ways of dynamically 
adjusting inertia weight, two of these were linear and one was 
non-linear. A number of other ways for non-linearly adapting 
inertia weight have been proposed in [1, 7, 8, 13].  

Almost all the methods (except a few) that have been proposed till 
date, for the dynamic adjustment of inertia weight, have used 
some deterministic approach and have taken its value between 0 
and 1. In this paper a non-deterministic way of dynamically 
adjusting the inertia weight is proposed and larger values of 
inertia weight have also been allowed. This method is based on 
the improvement in the fitness of the particles as the search 
process progresses. The performance of the proposed PSO model 
is compared with some other available PSO models reported in 
the literature. 

The remainder of this paper is organized as follows: The second 
section of the paper describes the proposed strategy for dynamic 
adjustment of inertia weight. Computational results obtained for 
the test functions are presented in third section. Finally we 
conclude the work in section 4. 

2. PROPOSED INERTIA WEIGHT PSO  
This paper proposes a new approach for adjusting inertia weight 
in PSO that adapts itself at each iteration according to the 
improvement in best fitness. Here the inertia weight has been 
taken as a function of iteration number and is updated according 
to the following equation:  

( 1) 0.9, if 0;
(4)

( 1) ( ) ( 1) if 0

w t t

w t f t f t t

   
     

 

Where w(t+1) is the inertia weight at (t+1)th iteration and f (t) is 
the best fitness value at tth iteration. This modification increases 
the influence of potentially fruitful inertial directions while 
decreasing the influence of potentially unfavourable inertial 
directions. Clearly, this way of adapting the inertia weight may 
sometimes lead to very large values of w resulting in the 
explosion of particle’s velocities, therefore the velocities are 
clamped in the range [-Vdmax , Vdmax] to keep the particles within 
the boundaries of the search space.When using this approach, the 
variations of inertia weight as obtained experimentally are as 
shown in the Figure 1 for two benchmark problems.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here the swarm starts with w=0.9 which is then updated using 
equations (4) according as the improvement in global best fitness. 
For all the functions used in our study it is observed that there are 
large oscillations in the value of inertia weight in the initial 
iterations which help the swarm in maintaining the diversity 
resulting in good exploration. So the particles can fly through the 
total search space quickly. Towards the end it is observed that the 
oscillations become smaller and smaller which facilitate fine 
tuning of the final solution. Based on this observation, we can 
expect that this strategy may perform well for enhancing the 
performance of PSO. From Figure 1 another observation is that 
during the search the inertia weight sometimes becomes zero and 
does not increase for many consecutive iterations which means 
that the swarm sometimes stagnates at a suboptimal solution. The 
smaller the inertia weight, the more do the cognitive and social 
components control position updates. With zero inertia of swarm, 
stagnation for many consecutive iterations implies that the social 
and cognitive components are not capable of easily escaping the 
suboptimum. It slows down the search process. To overcome this 
situation it is proposed that if the swarm stagnates for M 
consecutive iterations, the swarm should be provided with some 
inertia to increase the diversity. So the inertia weight equation is 
modified as follows: 

 

Figure 1. Variation of inertia weight with iterations for 
Rosenbrock, and Ackley Functions 
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( 1) 0.9 0

0

( 1) ( ) ( 1)

( )* / ; 0start start end max

w t if t

and for t we have

w t f t f t

w w w w t t if w for M

successive iterations

   
     
    


(5)

Where wstart is the initial value of the inertia weight, and wend is 
the final value of the inertia weight, and t is the current iteration 
(generation) of the algorithm while tmax is the maximum number 
of iterations (generations) specified by the user. This strategy may 
help in decreasing the period of entrapment (i.e., the number of 
iterations for which the swarm stagnates) in suboptimal solutions 
during the search and hence improve the convergence rate. We 
use this strategy in two ways, namely, globally and locally.  In the 
global strategy each particle in the swarm has the same inertia 
weight that updates according to equations (5) using the 
improvement in global best fitness. It is called globally adaptive 
inertia weight (GAIW). At any iteration if the global best fitness 
improves, the particles are encouraged to search in their current 
directions, otherwise inertia is made zero and the swarm starts 
contracting to the current global best position until another 
particle takes over or until the swarm is provided with some 
inertia from which time it starts globally exploring the search 
space. If the global best particle stops moving for a few iterations 
then the whole swarm may stop changing. It may lead to 
premature convergence. Considering this possible disadvantage of 
the global strategy a local strategy is proposed i.e., the inertia 
weight for each particle at each iteration is updated individually 
according to equations (5) using the improvement in its personal 
best fitness. It is called locally adaptive inertia weight (LAIW). At 
any iteration if a particle’s personal best fitness improves, the 
particle is encouraged to search in its current direction, otherwise 
its inertia is made zero and the particle starts searching locally 
until its personal best improves or until it is provided with some 
inertia from which time it starts global exploration. Also since the 
inertia weight of each particle is updated individually, all the 
particles in the swarm possibly have different inertia weight. 
Therefore some particles may search globally while the others are 
searching locally. This leads to automatic balancing of local and 
global search. This strategy strongly avoids entrapment in 
suboptimal solutions and due to increased diversity it is highly 
explorative. 

3. COMPUTATIONAL EXPERIMENTS 
The proposed inertia weight variants of PSO i.e., GAIW and 
LAIW are compared with three existing inertia weight variants 
namely fixed inertia weight (FIW), linearly decreasing inertia 
weight (LDIW) and non-linearly decreasing inertia weight 
(NDIW). The equations (6) and (7) are used to determine LDIW 
[16] and NDIW [11] respectively. 

–  ( – )* /  (6)start start end maxw w w w t t  

1 (7)
7
8start end end

max

t
w ( w – w )* tan w

t

k
*

  
             

 

Where wstart, wend, tmax and t have the same meanings as in 
equations (5), tan() is the trigonometric tangent function, and k is 
the control variable which can control the smoothness of the 
curve that reflects the relationship between the w and t.   

3.1 Test Problems  
The relative performance of the algorithms is evaluated on a set of 
6 benchmark problems. These problems are of continuous 
variables and have different degree of complexity and 
multimodality. The problem size for all problems is kept fixed at 
30. All these problems are of minimization type. The problem set 
is shown in Table 1. 

3.2 Parameter selection 
General parameter setting is used for experiments. We use 
c1=c2=2, swarm size=60, tmax=5000. The maximum allowable 
velocity in each dimension has been taken to be 

( ) *0.25dmax dmax dminV x x  , where xdmax and xdmin are the upper 

and lower bounds for particles’ positions in dth dimension of the 
search space. All these settings have been kept same for all the 
algorithms considered here. The termination criterion for all 
algorithms is a combination of the following two conditions: (i) 
reaching the maximum number of iterations, (ii) getting a solution 
within the tolerance limit ε (see Table 1), which means that 
simulation of an algorithm is stopped as soon as either of these 
conditions is satisfied. For FIW PSO w=0.68 is set. For all other 
algorithms wstart=0.9 and wend=0.4 are set. Also for NDIW PSO 
k=0.6 (as recommended in [11]) is taken. For GAIW and LAIW 
M=25 is taken for all problems. 

3.3 Performance Evaluation Criteria  
In order to avoid attributing the results to the choice of a 
particular initial population, each test is performed 100 times, 
starting from various randomly selected points in the search 
space. All the PSOs are implemented in C and experiments are 
carried out on a Xeon, 3.4 GHz machine under LINUX operating 
system. All the results that have been recorded and presented here 
have been averaged over the successful runs out of 100. A run is 
considered a success if the algorithm finds a solution 

satisfying opt minf f   , where fmin is the best solution found 

when an algorithm terminates and fopt is the known global 
optimum of the problem. For each algorithm and for each 
problem the following are recorded: 

1. Average number of function evaluations of successful 
runs (AFE). 

2. Average Execution Time (AET) of successful runs. 

3. Success Rate (SR) = 
(# of successful  runs)

100   
total runs 

  

4. Average Error (AE) = Average of opt minf f  over 

successful runs. 
5. Standard Deviation (SD) = Standard deviation of the  

error opt minf f . 

6. Success Performance (SP)  

                  =
(AFE)

(# of total runs)   
# of successful runs 

  [12] 

These measures are shown in tabular as well as graphical form 
using box-plots. 

3.4 Results and Discussions 
All the results are recorded in Table 2. In Figures 2 the best 
performing PSO is marked with star. The box-plots have been 
drawn for all the functions taken together. The goal of the 
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analysis is to observe if the proposed strategy shows an 
improvement over the existing ones or not.  

AFE is a measure of the computational cost of the method. It is 
clear from the results that LAIW performs the best from AFE 
point of view. So the order of PSOs based on the computational 
cost is: 

 1LAIW > GAIW > NDIW > FIW > LDIW. 

Thus the proposed PSOs significantly reduce the computational 
effort. 

AET is a measure of the convergence rate of the method. The 
results clearly show that from this point of view also LAIW 
performs the best. The order of PSOs based on AET is: 

LAIW > GAIW > FIW > NDIW > LDIW 

Success rate is a measure of the reliability of the method. It is 
clear that performance of LAIW is again the best among all PSOs 
considered. Further the order of PSOs based on the SR 
performance is: 

 LAIW > GAIW > NDIW > FIW > LDIW 

 except for Ackley function, where GAIW gives better SR than 
LAIW. 

In order to observe the consolidated effect on SR and AFE 
performance, a comparison among all five versions is made on the 
basis of success performance (SP) also. From SP point of view 
following order is seen (except for Ackley function): 

LAIW > GAIW > NDIW > FIW > LDIW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
1 A > B implies that algorithm A performs better than algorithm B 

for that particular point of view. 

Now the most accurate method is sought. For this the comparison 
based on average error (AE) and standard deviation (SD) of 
successful runs is carried out. Standard deviation gives the 
information about the consistency of the optimal solution over the 
successful runs. Smaller value of SD indicates the consistency of 
the algorithm in finding the optimal solution. From this point of 
view the following performance order of the algorithms is 
observed:  

 LAIW > GAIW > FIW > NDIW > LDIW. 

On the basis of above analysis, LAIW gives overall best 
performance among all five versions of PSO considered here. So 
it may be concluded that the proposed strategy gives significantly 
better results than the existing ones. 

Let us now discuss the possible reasons for the good performance 
of proposed strategy.  In standard PSO each particle moves under 
the influence of three velocity components. When inertia weight 
is kept fixed or is varied between 0 and 1, each of the three 
velocity components affect, almost equally, the movement of the 
particle during entire search process. But in the proposed strategy 
when the value of w is very large, the particles perform almost 
individual search controlled mainly by inertia, and when the value 
of w is very small, the search is controlled mainly by the social 
and cognitive components. For intermediate values of w there is a 
balance between the two. In this way the search pattern becomes 
like a combination of individual search and social cooperation 
with their due weightages that vary with iterations. During 
individual search the swarm has high diversity which is an 
important factor for good performance of any population based 
optimization algorithm. By studying the patterns of variation of 
inertia weight for various functions used here, we see that during 
the initial iterations w takes very large values, so initially 
individual search is more effective than social search.   

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Description of Test Functions 
 

Sl. Name Function Bounds ε 

1 Sphere 
2

1 i

n

i
x

 [-5.12,5.12]30 0.001 

2 Griewank    







 n

i

n

i

i
i

i

x
x

1 1

2 cos
4000

1
1  [-600,600]30 0.001 

3 Rosenbrock    n

i iii xxx
1

222

1 ))1()(100(

 

[-30,30]30 100 

4 Rastrigin    n

i ii xxn
1

2 ))π2cos(10(10

 

[-5.12,5.12]30 50 

5 Ackley 
 

e

x
n

x
n

n

i i

n

i i




















  

20

π2cos
1

exp
1

02.0exp20
11

2

 

[-30,30]30 0.001 

6 Schwefel 3  
 n

i i

n

i i xx
11 [-10,10]30 0.001 
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Consequently the swarm is more diverse and performs better 
exploration rapidly. So the good regions of search space are 
quickly identified during first few iterations. In the later iterations 
the values of inertia weight are relatively small so the social 
cooperation is given more weightage now, and usual PSO search 
is performed to exploit the information obtained yet.  

The overall search pattern may be viewed as a swarm starting 
with zero velocities and w=0.9 first explore the search space 
vigorously, sometimes searching locally around good positions 
and in the later iterations concentrate the search in good areas 
found so far.Hence it can be said that the faster convergence of 
proposed PSO is due to (i) the quick exploration in first few 
iterations, and (ii) the reduction in the period of entrapment 
during the search. Also the high success rate may be due to the 
increased diversity of the swarm because now the swarm explores 
the search space more effectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS  
In this paper two variants of PSO have been proposed, which are 
based on a new approach for dynamically adjusting the inertia 
weight at each iteration. The proposed variants are tested on 6 
benchmark problems. The aim was to increase diversity of swarm 
for more exploration of the search space during initial iterations 
and apply mild fine tuning during later iterations so that the 
optimal solution could be approached with better accuracy, 
simultaneously making the PSO capable of avoiding entrapment 
in suboptimal solutions and, also improving its convergence rate. 
All these purposes are simultaneously and successfully fulfilled to 
a satisfactory level by using the proposed inertia weight strategy, 
as is clear from the results of experiments. An advantage of using 
the proposed strategy is that it is almost problem independent i.e., 
the same strategy gives different inertia weights for different 
problems according to that problem’s requirement.  

Performance 
Measure 

Function 
Name 

FIW LDIW NDIW GAIW LAIW 

Sphere 70921 161621 99573 15080 1560 
Griewank 157472 187242 124739 36272 1867 
Rosenbrock 121825 186560 120594 140243 1480 
Rastrigin 64856 180404 96820 45017 651 
Ackley 177488 194984 131728 72143 119713 

Average 
functional 

Evaluations  
 

Schewfel 3 177488 180559 119416 42372 1980 
Sphere 0.3032 0.6684 0.5024 0.0778 0.0088 
Griewank 1.0962 1.3029 0.9827 0.2905 0.0159 
Rosenbrock 0.6173 0.9569 0.7282 0.8489 0.0099 
Rastrigin 0.5989 1.0917 0.6728 0.3147 0.0048 
Ackley 1.1561 1.2461 0.9629 0.5368 0.9412 

Average 
Execution 

Time  
 

Schewfel 3 0.6782 0.9604 0.7439 0.2702 0.0137 
Sphere 100 100 100 100 100 
Griewank 21 31 39 17 100 
Rosenbrock 74 53 75 94 100 
Rastrigin 81 68 94 98 100 
Ackley 97 97 100 99 64 

Success Rate 

Schewfel 3 81 55 91 15 100 
Sphere 0.000953 0.000945 0.000942 0.000934 0.000114 
Griewank 0.000954 0.000924 0.000925 0.000885 0.000007 
Rosenbrock 98.34058 97.89938 98.88599 94.54052 32.66543 
Rastrigin 49.21176 49.39174 49.19422 49.4536 4.322524 
Ackley 0.000971 0.000966 0.000965 0.000928 0 

Average 
Error 

Schewfel 3 0.000948 0.000954 0.000964 0.000799 0 
Sphere 0.000034 0.000057 0.000068 0.000065 0.000126 
Griewank 0.001852 0.001381 0.001158 0.00196 0.000067 
Rosenbrock 58.35779 92.35525 57.10645 28.01283 11.49765 
Rastrigin 23.86082 33.89431 12.4941 7.110318 7.890891 
Ackley 0.000173 0.000173 0.000029 0.00015 0 

Standard 
Deviation 

Schewfel 3 0.000462 0.000863 0.000305 0.001913 0 
Sphere 70921 161621 99573 15080 1560 
Griewank 749866.7 604006.5 319843.6 213364.7 1867 
Rosenbrock 164628.4 352000 160792 149194.7 1480 
Rastrigin 80069.1 265300 103000 45935.71 651 
Ackley 182977.3 201014.4 131728 72871.72 187051.6 

Success 
Performance 

Schewfel 3 219121 328289.1 131226.4 282480 1980 

Table 2: Results of Experiments 
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Thus it can be concluded that the proposed inertia weight variants 
increase the performance of PSO significantly and can be used for 
different kinds of optimization problems thus releasing the user 
from the pain of indulging into extensive experiments for finding 
an appropriate setting of inertia weight. 
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Figure 2: Box plots for various performance measures
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