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ABSTRACT 
Cellular automata (CA) are able to perform complex 
computations through local interactions. The investigation of how 
CA computations are carried out can be made by the usage of CA 
rules to solve specific tasks. The well-known problem called 
density classification task (DCT) is investigated, with focus on its 
two-dimensional version. Evolutionary algorithms have been 
widely used in the search for DCT rules. A sample of lattices with 
Gaussian distribution is commonly used to evaluate rule quality. 
However, uniform lattices are easier to classify, allowing an 
initial selective pressure needed to start the convergence. A 
comparative evaluation of three adaptive strategies is presented 
here: they start using easy lattices to classify and as effective rules 
are being obtained the difficult level is progressively increased 
toward the target evaluation. Several experiments were performed 
to evaluate the strategies efficiency and new rules were found, 
which outperform the best ones published.   

Categories and Subject Descriptors 
I.2.m [Artificial Intelligence]: Miscellaneous. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Cellular Automata, Evolutionary Algorithms, Density 
Classification Task. 

1. INTRODUCTION 
Cellular Automata have the potential to embody models of 
complex systems and to act as abstract machines that perform 
sophisticated computations with high degree of efficiency and 
robustness. The understanding of how CA computations are 
carried out is still vague. The most-common approach investigates 
specific tasks to be solved by CA rules. An efficient strategy is 
the usage of evolutionary algorithms to search over CA rule space 

for a transition rule able to exhibit a desired computational 
behavior. The most studied computational task is the Density 
Classification Task (DCT) [1]-[14][16][18]. Considering DCT, 
the goal is to find a CA rule transition that can classify the density 
of 1s in the initial lattice. This task has been historically studied in 
one-dimensional CA space, and recently the two-dimensional 
space was explored [8][11][12][14][18]. In the present work, we 
explore DCT in 2D space using Moore neighborhood, resulting in 
rules with 512 bits and a search space of high cardinality (2512). 

Considering DCT, the most difficult instances to be 
classified are the lattices with a distribution of 0s and 1s around 
50%. Therefore, lattice samples with Gaussian distribution are 
commonly used to evaluate the rule efficacy to solve DCT. 
Mitchell and colleagues has identified that an evolutionary search 
of CA rules to solve DCT returns a better convergence if they 
were evaluated using lattice samples with a uniform distribution 
[6]. Uniform lattices are easier to classify and they provoke an 
initial selective pressure in the first generations shooting search 
convergence. Several subsequent works in DCT problem also 
applied this strategy to obtain a better convergence [1][3][8]-[10]. 
However, it was later verified that the gap between the easier 
evaluation performed during the evolution (based on uniform 
distribution) and the hardier evaluation carried out in the end of 
run (based on Gaussian distribution) represents an drawback to 
evolution of high efficacy rules [4]. Different adaptive strategies 
were used in recent works to deal with such gap, including 
coevolutionary approaches [3][4][12][18].  

A high efficacy rule was published for 2D DCT in [18]. This 
CA rule was evolved using 2121 lattices through a sophisticated 
two-level hierarchical evolutionary environment. Besides the two-
tier mechanism, the achieved search success was attributed to the 
usage of a parameter named BWLR-symmetry (associated to 
Black/White and Left/Right equivalent transformations [17]) and 
to the application of a simple kind of cooperative coevolution that 
optimizes and adapts the fitness evaluation during the search. 
Later on, other high efficacy rule was published for 2D DCT in 
[12], evolved using 1212 lattices. A much simpler evolutionary 
algorithm was used in this second work; it was also obtained 
using BWLR-symmetry information and a different type of 
adaptive evaluation, which was previously employed in 1D DCT 
search [3]. A comparative analysis of these both 2D DCT rules 
has highlighted a strong dependence of rules efficacy with the 
parity of the lattice size [12][9]. The 2121 evolved rules are 
better in all the odd-size lattices analyzed while the 1212 
evolved rules surpass the previous ones in all even lattice sizes 
tested. Besides, 2121 evolved rules presented a more severe 
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oscillatory behavior between even and odd size lattice than the 
1212 evolved one. 

Since high efficacy 2D DCT rules were obtained using different 
adaptive evaluation approaches, we decided to investigate such 
strategies. The main goal of the present work is to clarify the role 
of different approaches guiding the evolution of two-dimensional 
cellular automata. The present work helps to understand the 
dependencies between approaches published before. Such kind of 
comprehension is relevant not only to DCT task itself, but also for 
researches using evolutionary methods to search for CA transition 
rules to solve other computational tasks or more specific behavior. 
For example, the basic framework proposed by Mitchell and 
colleagues investigating DCT [6] have been used in the search for 
synchronization task rules [12][18] and transition rules for CA-
based scheduling environments [15]. In a more general context, 
this study can also be used by other Evolutionary Computation 
(EC) researchers who need to apply sampling strategies to do an 
efficient stochastic fitness evaluation. 

Three adaptive evaluation approaches are investigated here. In the 
strategy named A1, the CA lattices used in rule evaluation are 
initially generated using a uniform distribution and as good rules 
are being obtained, an increasing portion of lattices is generated 
using Gaussian distribution. In strategy A2, initial lattice sizes are 
smaller than the target size and, as efficient rules are being 
obtained, this size is progressively incremented. For strategy A3, 
lattices are generated with Gaussian distribution being those with 
a distribution of 1s around 50% are discarded (inside a range 50% 
± d) and the value of d is being decremented as efficient rules 
occur. Different experiments were carried out in the present work, 
the best ones using BWLR-symmetry parameter to guide GA 
search. In general, the most efficient strategies were A1 and A3, 
returning the best rules for even and odd lattice sizes, 
respectively. Besides, it was possible to find better rules than the 
previously published ones. 

2. CELLULAR AUTOMATA AND 
DENSITY CLASSIFICATION TASK 
Cellular Automata (CA) are discrete dynamic systems composed 
by a large number of simple components with local connectivity. 
Basically, a cellular automaton consists of the cellular space and 
the transition rule. Cellular space is a regular lattice of N cells, 
each one with an identical pattern of local connections to other 
cells, and subjected to some boundary conditions. These cells are 
arranged in an n-dimensional space and the most studied 
arrangements are one-dimensional (1D) and two-dimensional 
(2D).  
The simplest CA is the 1D binary structure [17] formed by an 
array of cells (the lattice), where each cell ai can assume states 0 
or 1. Cells interact locally in a discrete time t, usually in a parallel 
and synchronous way. The transition rule establishes how the 
states will change along time based on the current states of each 
cell and their immediate neighbors. For 1D CA, the neighborhood 
size m is usually written as m=2R+1, where R is the radius. The 
state of the cell ai at time t+1 depends only on the states of itself 
and its neighbors at time t and it is determined by the transition 
rule  : 
 

 
( 1) ( ) ( ) ( )[ ,..., ,..., ]t t t t
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   . (1)
 

Considering 2D CA, the neighborhoods usually used are von 
Neumann and Moore. Von Neumann neighborhood is formed by 
5 cells: the centre one and its four adjacent cells (east, west, north 
and south). Moore neighborhood is formed by 9 cells: the same 
five cells of Von Neumann neighborhood and the diagonal cells 
(NE, NW, SE and SW). Therefore, in Moore neighborhood there 
are 512 (29) different arrangements, each one can be represented 
by a 3x3 matrix. These arrangements can be linearly represented 
by sequence of its matrices rows (a11 a12 a13 – a21 a22 a23 – a31 a32 
a33) and the output bits of the rule can be lexographically ordered 
from 000-000-000 to 111-111-111. The usage of 2D CA with 
Moore neighborhoods is the focus of this work. 

Although being very simple to implement, cellular automata are 
able to perform complex computations [8]. The computational 
power of CA has been investigated with emphasis in the study of 
1D CA able to perform specific computational tasks [7]. The most 
widely studied CA task is known as the density classification task 
(DCT) [6]. In this task, the goal is to find a binary CA that can 
classify the density of 1s in the initial lattice, such that: if it has 
more 1s than 0s, the CA should converge to a null configuration 
of 1s; otherwise, it should converge to a null configuration of 0s. 

The most studied configuration for DCT is defined by one-
dimensional lattice consisted of 149 cells and CA rules with 
neighborhood of radius 3 [3][4][6][18]. Although the majority of 
published works investigates its original 1D DCT version, some 
studies are performed to solve this problem in two-dimensional 
rule space [8][11][12][14][18]. Figure 1 shows some steps of a 
temporal evolution of a 2D lattice using a rule with Moore 
neighborhood. This rule successfully solves DCT for an initial 
lattice with more 1’s than 0’s. 

 

 

Figure 1. Snapshots of a rule evolution with Moore 
neighborhood solving DCT in 2D space. 
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DCT is a nontrivial task for a small-radius CA in any dimension, 
since they rely only on local interactions. On the other hand, this 
task is trivial for a system with a central controller or a central 
storage [7]. Performing this task well for a fixed lattice size 
requires more powerful computation than can be performed by a 
single cell or any linear combination of cells. Since the 1s can be 
distributed throughout the CA lattice, the rule transition must 
transfer information over large distances. A kind of global 
coordination is required to communicate cells separated by large 
distances and that cannot communicate directly. It was proven to 
be impossible to solve the DCT perfectly, by any one-dimensional 
cellular automaton with finite radius and periodic boundary 
conditions [5].  

Although perfect solutions can be given to alternative 
formulations of the task [2], the best possible rule for the original 
formulation of Density Classification Task remains unknown. The 
trend to look for better and better DCT rules has led to better and 
better algorithms, more and more fine-tuned to the problem 
[1][3][4][6][8]-[14][16][18]. 

3. EVOLUTIONARY SEARCH FOR DCT 
RULES 
Since a computational task is defined, it is not easy to find a CA 
rule that performs it. Manual programming is difficult and costly, 
and exhaustive search of the rule space becomes impossible, due 
to its high cardinality. A practical alternative has been the 
employment of EC methods [1][3][4][6][8]-[14][16][18]. Packard 
(1988) was the first to publish results using a genetic algorithm 
(GA) as a tool to find CA rules with a desirable computational 
behavior [13]. In this work, the genotype of the automaton was 
given by its transition rule and the phenotype by its ability to 
perform the required task. Crossover among two CA was defined 
by the creation of two new transition rules, out of segments of two 
other ones; mutation was achieved by the random flip of an output 
bit of the rule transitions. Other evolutionary computation 
techniques were used to find such kind of CA rules. Genetic 
programming was also used as a search procedure for CA rules to 
perform the DCT [1]. Furthermore, for the same task, an 
important radius-3 rule was obtained by a coevolutionary 
approach [4].  

Another approach related to the present work is the usage of a 
heuristic based on some CA static parameters to guide the 
evolutionary search toward efficient DCT rules [3][9]. This 
approach uses parameter bands where good rules are more likely 
to occur. Once this information is available, it is used in an active 
way, as an auxiliary metric to guide the processes underlying the 
GA search. This approach has been previously used to find DCT 
and synchronization rules [3][12][9]. Different static parameters 
have been evaluated in the evolution of CA rules [3][16]; in the 
experiments described here BWLR-symmetry was used.  

Any CA rule can have three dynamical equivalent rules obtained 
using three possible transformations: complementary, reflection 
and complementary-plus-reflection (or black-white, left-right and 
joint-black-white-and-left-right transformations) [17]. Previous 
works have shown that the symmetry of the bits related to the 
complementary transformation is related to the success of a rule to 
perform as specific task. In [3] it was observed that in the best 
DCT rules known until that moment the bits related to the 
complementary symmetry has an asymmetrical pattern. This 
observation was used in the evolutionary experiments reported in 

[3] to obtain a rule as good as the best rule known at that moment 
(JP rule discovered in [4]). BWLR-symmetry parameter is defined 
as the number of state transitions of a rule that respect the joint 
black-white and left-right transformations. In the case of good 
DCT rules, the amount of BWLR-symmetry should be maximal, or 
equal to 1 (in a range from 0 to 1). In Wolz and de Oliveira’s 
work [18] the symmetry of the bits related to the complementary-
plus-reflection transformation has revealed as the most significant 
to the success of a DCT CA rule. In fact, the value of this 
symmetry in the best rules published in [18] for 1D and 2D spaces 
are equal to 1. That is, these bits are totally symmetrical, turning 
that each one of these rules does not have a different 
complementary-plus-reflection equivalent rule as the same binary 
code is obtained when the transformation is applied. This 
information was used as a heuristic to guide the evolutionary 
search in [18] to the region of the best possible rules for DCT 
(both in 1D and 2D rule spaces). Heuristic was implemented as a 
repairing infeasible solutions procedure and it has caused the 
discovery of almost all good rules having the BWLR-symmetry 
equal to 1. 

The specification of DCT problem using 2D rules with Moore 
neighborhood was first proposed by Morales and colleagues [8], 
which found a reasonable rule for this task using a GA-based 
environment. Their best rule has an efficacy of about 69% [8]. 
This rule was evolved and evaluated using the same lattice size: 
2121. Later on, this search was improved by Oliveira and 
Siqueira using a parameter-based heuristic and it was possible to 
find better rules [11]. The best rule found has 70.62% of efficacy 
in 12x12 lattices. 2D DCT was also investigated by Reynaga and 
Amthauer [14]. Subsequently, Wolz and de Oliveira could found 
high efficacy rules using a two-tier environment [18]. They could 
found several rules with efficacy above 82% in 2121 lattices and 
the best one have an efficacy of 82.23%. Experiments was 
performed in [12][9] by Oliveira and colleagues to evaluate the 
rules published in previous works, verifying their efficacy in 
different lattice sizes, both odd and even-sizes. Although DCT 
was not commonly studied using even-size lattices due to the 
existence of configurations in which the task is not well-defined 
(exactly 50% of 1s), it is expected that any rule evolved for DCT 
has also a good performance in the even lattices in which the 
majority can be decided. The results obtained in [12][9] showed 
that the rule published in [18], which was evaluated in 2121 
lattices size, returns the best performance in odd-size lattices. 
However, rules evaluated in odd-size lattices present a severe 
oscillating behavior between odd and even lattices. For even-size 
lattices, the best efficacy was obtained in [12][9] by a rule 
evolved in 1212 lattice size. It has an efficacy of 82.78% when 
tested in 100,000 lattices generated using a Gaussian distribution. 
This rule also presented an oscillating behavior related to the 
parity of the lattice size; but it is lesser than that observed for odd 
size evolved rules. As a consequence, the average of the efficacy 
obtained for this 1212 evolved rule [12][9] in all tested lattice 
sizes (44 to 2121) is greater than the average obtained by the 
best 2121 evolved rule in [18]: 81.86% against 73.59%. 

4. ADAPTIVE STRATEGIES FOR FITNESS 
EVALUATION 
Rule fitness related to DCT is defined by the percentage of initial 
configurations (ICs) of lattices that density is successfully decided 
by the rule. It was established in [6] that the initial lattices used to 
evaluate the individuals should be generated by a uniform 
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distribution for a better convergence, since it allows the selective 
pressure to drive the evolutionary search. However, the best rule 
found is evaluated in a sample of random lattices with a Gaussian 
distribution in the end of each GA run. When IC bits are 
randomly generated, the peak of the distribution of 1s will be near 
50% would make density decision hard. Adaptive approaches 
were used in CA rules evaluation to reduce the gap between this 
both distributions [3][12][9][18]. They start using easy lattices to 
classify and, as effective rules are being obtained, the difficult 
level is progressively increased toward the target evaluation. 

Based on works [12][9] and [18], three adaptive evaluation 
strategies are comparatively investigated here. They are related to 
the way in which IC samples to be used in each generation 
evaluation are generated. Strategy A1 starts from uniform 
distributed lattices and, as the rules becoming better, it is increase 
a portion of the lattice using Gaussian distribution. Strategy A2 
randomly generates lattices using Gaussian distribution with a 
small initial size range (44 or 55), and later on smoothly shifted 
towards the target size (2020 or 2121). Strategy A3 randomly 
generates lattices using Gaussian distribution, but removing all 
ICs in the density range [0.50d] for a given d  [0.02, 0.07], 
which is decreased at later stages of the search. A1 was employed 
in [3] and [12][9] to find respectively 1D and 2D DCT rules. A2 
and A3 were jointly employed in [18] to find both 1D and 2D 
DCT rules. The target evaluation is characterized by the lattices 
sample created with Gaussian distribution in the goal size (2020 
for even sizes and 2121 for odd sizes); except when strategy A3 
is applied, because it must be excluded all ICs in the density range 
[0.48, 0.52] (for d = 0.02). 

The dynamics of creating IC samples to perform rule evaluation 
depends on the adaptive approach used. The evaluation in the first 
generation starts from ICs different from the target: (i) A1 
generates a uniformly distributed sample of ICs with the target 
size (100% of lattices are created with uniform distribution); (ii) 
A2 generates a Gaussian distributed sample of ICs with the size 
smaller than the target one (44 or 55 for even or odd-lattices, 
respectively); and (iii) A3 generates a Gaussian distributed sample 
of ICs with the target size and d starts equal to 0.07, that is, 
lattices with density between 0.43 and 0.57 are excluded. As 
generations pass by and evolved rules achieve a pre-specified 
efficacy bound EB, the creation of ICs is slightly modified 
towards of the target evaluation: (i) A1 changes 5% of the current 
uniform distributed ICs to the ones created with Gaussian 
distribution; (ii) A2 increases in 2 the current lattice size of the 
Gaussian distributed sample of ICs (e.g. from W x W to 
W+2 x W+2); and (iii) A3 reduces the current value of d (0.5  d) 
in 0.01. In the last generations, if the evolutionary search had 
found consecutive good rules (with efficacy above the limit EB), 
ICs will be created according to the target evaluation. 

5. EXPERIMENTS 
This section presents experiments performed using the adaptive 
strategies A1, A2 and A3. A very simple GA was implemented 
based in [12][9]. The individuals are 2D binary rules using Moore 
neighborhood. GA evolves a population (Tp) of 100 rules during 
100 generations (Ng). Each individual evaluation was obtained out 
of testing the rule efficacy in 100 initial configurations (NIC). 
Two-dimensional IC sample used in rule evaluation is created in 
each generation according with the strategy adopted (A1, A2, A3). 
Elitism [6] was used at a rate of 20%, parent selection for the one-
point crossover was made directly from the elite and mutation was 

applied after crossover at a rate of 2% per bit. The efficacy of the 
GA run was measured by testing the efficacy of the best rule 
found in the classification of 105 Gaussian distributed ICs. 
Initially, 100 GA runs was executed for each adaptive approach 
alone. After some exploratory runs to set the best value for 
efficacy bound (EB), we adopted EB = 85% for all the approaches. 
A basic experiment was also performed in which all the ICs 
sample are generated with a uniform distribution as in [8]. This 
experiment was used as a reference to estimate the actual 
contribution of each adaptive strategy to improve the evolutionary 
search. Table 1 presents the efficacy of the best rule found in each 
run categorized within specified interval. It also presents the 
average of the efficacy considering the best rules in each 
experiment (100 runs); the confidence interval (95%) associated 
to the best rule found; and the efficacy of the best rule found per 
experiment. It is possible to observe that in both sizes (2020 and 
2121) the adaptive strategy that returned higher efficacy rules 
was A1: it could find rules with efficacy between 70% and 75% in 
more than 40% of the runs while A3 was able to find about 1% of 
the rules in this range and A2 did not find any rule in this range. 
As the work [18] joint applied A2 and A3 to obtain good rules, we 
also performed an experiment to evaluate this composition. 
However, for this composition we used EB = 60%. As one can see 
in Table 1, the joint application of both strategies had returned 
better values than their application alone in the evaluation 
process; however, their results are still significant worst than the 
application of A1 alone. Comparing the adaptive experiments with 
the basic search, we can see that the unique actual improvement 
was obtained using A1. The usage of other adaptive strategies 
returned lower values than the simple adoption of uniform IC 
during individual evaluation. 

 
Table 1. 2D DCT rules obtained using different evaluation 

approaches. 

Adaptive Strategies 
Efficacy Lattices

Basic A1 A2 A3 A2,A3

2020 28 12 99 98 96 
< 60 

2121 18 15 98 97 94 

2020 1 1 0 0 0 
60 ~ 65 

2121 1 2 0 0 0 

2020 48 38 1 1 0 
65 ~ 70 

2121 62 41 1 2 3 

2020 23 49 0 1 4 
70 ~ 75 

2121 19 42 1 1 3 

2020 66.47 67.93 51.35 51.61 52.06
Average (%) 

2121 66.25 67.21 51.55 51.72 52.32

2020 ±1.28 ±1.24 ±0.25 ±0.49 ±0.79
C Int 95% 

2121 ±1.26 ±1.34 ±0.42 ±0.54 ±0.55 

2020 73.33 73.84 69.13 71.15 72.11
Best Rule 

2121 72.15 72.86 71.33 71.19 71.90

 

In previous work using 1D DCT [6], the usage of uniform ICs 
make the problem easier to solve and GA employed by them 
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could start their convergence in the first generation toward 
effective rules to DCT. By our results, we can conclude that 
strategies A2 and A3 alone cannot deal with this problem and they 
still generate difficult ICs in the initial generations and in almost 
all runs the search could not start the convergence to good rules. 
On the other hand, we know that the general idea of these 
strategies was successfully applied in [18]: the evolutionary 
environment described in such reference was able to find high 
effectives rules both in 1D and 2D DCT. Therefore, it seems that 
these adaptive strategies have received some kind of push in the 
first generations to be able to start GA convergence. A heuristic 
based on BWLR-symmetry parameter were used to guide GA 
search. In fact, the best 2121 rule was obtained in [18] using this 
parameter and the best 2020 rule was obtained in [12][9] also 
using this information, although they have been incorporated in 
different ways in both previous works.  

Therefore, we incorporated BWLR-symmetry parameter in the 
evolutionary environment, in the same way described in [12][9], 
applying the same adaptive approaches analyzed previously. Each 
experiment was consisted of 100 GA runs and the same 
parameters used in experiments of Table 1 were employed, except 
for the usage of a weighted fitness function to compose the 
original fitness (the number of ICs classified correctly) and the 
value returned by BWLR-symmetry parameter. Their results are 
presented in Table 2.  

 
Table 2. 2D DCT rules obtained using BWLR-symmetry and 

different evaluation approaches. 

Adaptive Strategies 
Efficacy Lattices 

Basic A1 A2 A3 A2,A3

2020 0 0 2 1 0 
< 65 

2121 0 0 4 0 2 

2020 15 2 22 6 7 
65 ~ 70 

2121 3 3 18 3 7 

2020 84 77 68 57 65 
70 ~ 75 

2121 74 78 72 59 65 

2020 1 21 8 36 28 
75 ~ 80 

2121 23 19 6 38 26 

2020 71.55 73.61 71.58 73.98 73.76
Average (%) 

2121 73.45 73.69 71.69 74.22 73.51

2020 ± 0.33 ± 0.37 ± 0.41 ± 0.32 ± 0.40
C Int 95% 

2121 ± 0.39 ± 0.35 ± 0.39 ± 0.30 ± 0.56

2020 76.12 78.71 76.79 78.16 78.11
Best Rule 

2121 78.27 78.18 77.10 79.70 78.44

 

These experiments showed significant improvements when 
compared with the respective experiments in Table 1. Therefore, 
as pointed in previous works, BWLR-based heuristic indeed 
promotes a consistent improvement on evolutionary search for 
DCT rules. However, the most notable improvement was obtained 
by experiments that use A3. We believe that the strength guidance 
of BWLR-based heuristic toward regions of search space, where 

high efficacy rules are more likely to occur, aim adaptive strategy 
A3 to start GA convergence. On the other hand, A2 returned the 
worst results when applied jointly with BWLR-based heuristic, 
even compared with basic search.  

The experiment using strategy A1 found the best rule for 2020 
lattices while the experiment using strategy A3 found the best one 
for 2121 lattices. These efficacies are still below the best 
published rules in both sizes [12][9] and [18]. However, the GA 
parameters (Tp, Ng, and NIC) used in our initial experiments are 
modest compared with these previous works. Finally, more robust 
GA parameters were applied trying to obtain better rules. 

We performed a new series of runs using Tp = 500, Ng = 500 and 
NIC = 500 and the best adaptive strategies with the BWLR-
symmetry parameter: A1 and A3. The best rules for 2020 and 
2121 lattices were found respectively by approaches A1 and A3. 
Their hexadecimal are:  

000000010F0500770007171105251557041D0003254F0
051001F33DFD7FF1F7F041911071F0F1557261707F7
57BF7B7F9FBF1531175F7C77FF1F9FF7FF7F3F77  

and 

03040001017500100855040D075555FF0303000401050
7374F5F0C2D4557171F0B5715111357051043177E7F
7F575FFF4F07FF3F57177F354F7FFFFF7F37FFFF.  

The global mean performance of the new best rules was tested 
applying both rules in different lattice sizes (from 66 to 2121 
lattices). The comparative performance of this rules are presented 
in Table 3. For all sizes, the rules were evaluated in samples of 
100,000 Gaussian distributed lattices. An explanation is necessary 
about the tests using even size lattices: in such case initial 
configurations with equal number of 0’s and 1’s are possible. In 
this case, DCT is not well defined since it is not possible to decide 
the majority bit. However, in all other situations, DCT could be 
carried out. So, we just excluded the non-decidable lattices from 
our tests. A comparative analysis of our new rules with the 
previous published ones was performed: they were also tested in 
different lattice sizes and their results are showed in Table 3. The 
previous best rules available for even and odd lattices were 
published in works [12][9] and [18]. Their hexadecimal codes are 
respectively: 

000400051D2F801F0005131B034D301504140042155F
103355172B7DD57F3F3D5043003D1F0FC577311D16
FF073F775F1605005F37BFFC7FFFDF777F4FFBF7F 

and 

00000001001101410B1514050D2B7757010113070305
4557009557D703957FF70B1B455505131345177F475F
077F7F77FF57475D1F7F6765BF3F3FBFFFFF7F77. 

Looking over Table 3, except for the smaller lattice size (66), the 
new rule evolved in 2020 - obtained using strategy A1 - is better 
than the previous one evolved using 1212 in [12][9]. Similarly, 
the new rule evolved in 2121 using only approach A3 overcome 
the previous one in [18] in almost all lattice sizes, except for 
1515 lattice size. Besides, the efficacy of the four rules oscillates 
from odd to even lattices, as pointed in [12][9]. Due to this 
oscillation, the even-size evolved rules have a better performance 
in all even lattices, while the odd-size evolved rules present a 
better performance in all odd lattice tested. However, odd-size 
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evolved rules presents a more severe oscillation than even-size 
evolved ones. Besides, the new rule found using 2121 presents 
an oscillation minor than the previous published one. 

 
Table 3. Efficacies obtained using 2D 512-bits CA rules in 

different lattice sizes. 

Evolved in even-size lattices Evolved in odd-size latticesLattice 
Size 1212 [12] 2020 (A1) 2121 [18] 2121 (A3) 

66 87.177 83.357 52.04 64.33 

77 84.863 85.965 87.24 87.58 

88 85.453 85.97 56.87 65.84 

99 83.476 84.873 85.93 86.46 

1010 83.849 85.081 60.46 68.49 

1111 82.83 83.731 84.87 85.24 

1212 82.78 83.898 63.95 70.97 

1313 81.969 83.02 84.34 84.65 

1414 81.465 83.004 66.95 73.53 

1515 80.671 82.432 84.27 84.18 

1616 80.458 82.137 69.83 76.06 

1717 79.659 81.797 83.58 83.67 

1818 79.217 81.449 72.03 77.70 

1919 78.409 81.262 83.07 83.14 

2020 77.944 80.981 73.95 78.74 

2121 76.838 80.732 82.23 82.89 

Average 81.57% 82.95% 75.32% 78.16% 

 

6. CONCLUSIONS 
Three different adaptive strategies were investigated in the 
present work regarding evolutionary search for DCT rules. They 
are related to the way in which lattice samples are generated to 
evaluate individuals in a GA-based approach. All of them start 
using easy lattices to classify and as effective rules are being 
obtained the difficult level is progressively increased toward the 
target evaluation. This evaluation consists on using the hardest 
instances to measure the efficacy of a CA rule when classifying 
them, that is, lattices with about 50% of 0s and 1s. 

A1 strategy starts using a uniformly distributed sample, A2 
strategy starts using small size lattices and A3 strategy starts using 
a Gaussian distributed sample with the discard of lattices with 
proportion of 1s between 43% and 57%. In all strategies, as 
efficient rules are being obtained, the lattices used during 
evaluation are changed to be closer to the target ones. They were 
confronted with a simple fixed strategy using uniformly 
distributed lattices during GA generations. Our results showed 
that when the adaptive strategies are applied alone, the only actual 
improvement was obtained using A1. The other two returned 
results worse than the fixed strategy. However, when the adaptive 
strategies were applied jointly with a parameter-based heuristic 
(which uses BWLR_symmetry parameter), A3 strategy returns 

results as good as A1, outperforming the fixed evaluation. In 
general, A1 returns the best rules when they are evolved using 
even-size lattices, while A3 is more effective when odd-lattices 
are used. Using A1 and A3 in experiments with 2020 and 2121 
lattices, we were able to find CA rules better than the best one 
published. However, a strength oscillation was observed when 
applying the 2121evolved rule over different even and odd size 
lattices. This behavior was also observed in [12] when analyzing 
previous 2121 rules, which have been evolved using jointly A3 
and A2. Thus, an open question is to investigate if the discard of 
instances with distribution very close to 50% as performed when 
using A3 has any relation to the weak performance of such rules 
in even size lattices. We are conducting new experiments to 
explore such issue. Finally, comparing the efficacies of the new 
best 2020 and 2121 evolved rules regarding DCT problem, we 
claim that although the second one surpass the first one in all odd-
size evaluated (from 77 to 2121), the 2020 evolved rule is 
clearly better to solve the problem. When trying to understand 
how CA can be used as a new computational paradigm, a rule to 
solve a specific task should be as general as possible and not so 
dependent on any CA parameter, as the parity of the lattice size. 
Therefore, the 2020 rule is much more equilibrated than the 
other since it only presents a slightly oscillation in the smaller 
sizes. Such better performance can also be highlighted by the 
confidence intervals obtained in the experiments reported in Table 
3: 82.95% ± 0,84 (2020 evolved rule) and 78.16%  ± 3,52 
(2121 evolved rule). 

Although Tables 1 and 2 present only performances obtained 
when rules are applied to the same lattice size for which they 
were evolved, we can say that in general the rules obtained using 
A1 strategy are more equilibrated when applied to different lattice 
size even when they are obtained using odd size. That is, CA rules 
obtained using A1 strategy and odd-sized lattices return smaller 
oscillations than those obtained using A3 strategy. Therefore, we 
can say that A1 strategy shows some competitive advantage and 
can be elected as the best adaptive approach tested here. Strategy 
A3 seems to be adequate only to odd sized lattices and it give 
some particular characteristic to those evolved rules to present a 
more expressive oscillation.  

Another conclusion of this work is related to the usage of 
strategies alone or jointly used with parameter-based heuristic. It 
was possible to observe that when using individually (without 
parameter-based heuristic), two strategies (A2 and A3) seem to be 
very severe for adaptive fitness. However, when the parameter-
based heuristic was applied jointly with these strategies, they 
dramatically change their performance, returning some of the best 
rules, especially in the case of A1. It shows that in the presence of 
a parameter-based heuristic – which gives a general driven to 
promissory regions of rule space - all different fitness evaluation 
strategies were benefited. Thus, although parameter-based 
heuristic are not enough to find good rules for computational tasks 
alone as results in [16] suggests, they are good global drivers for 
other more specific local strategies to be applied in the 
evolutionary search for CA rules. 
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