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ABSTRACT

For problems involving uncertainties in design variables and
parameters, a bi-objective evolutionary algorithm (EA) based
approach to design optimization using evidence theory is
proposed and implemented in this paper. In addition to
a functional objective, a plausibility measure of failure of
constraint satisfaction is minimized. Despite some interests
in classical optimization literature, such a consideration in
EA is rare. Due to EA’s flexibility in its operators, non-
requirement of any gradient, its ability to handle multiple
conflicting objectives, and ease of parallelization, evidence-
based design optimization using an EA is promising. Results
on a test problem and a couple of engineering design prob-
lems show that the modified evolutionary multi-objective
optimization (EMO) algorithm is capable of finding a widely
distributed trade-off frontier showing different optimal solu-
tions corresponding to different levels of plausibility failure
limits. Furthermore, a single-objective evidence based EA is
found to produce better optimal solutions than a previously
reported classical optimization procedure. Handling uncer-
tainties of different types are getting increasingly popular
in applied optimization studies and more such studies using
EAs will make EAs more useful and pragmatic in practical
optimization problem-solving tasks.

Categories and Subject Descriptors

J.6 [Computer Applications]: Computer-aided engineer-
ing—computer-aided design

General Terms
Design, Reliability
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1. INTRODUCTION

Considering the effect of uncertainties is often unavoid-
able during a design optimization task. This is because the
physical realization of the design variables and parameters
is generally imprecise and this can lead to an optimal design
becoming unusable if any constraints get violated. Reliabil-
ity Based Design Optimization (RBDO) is the name given
to an optimization procedure wherein the reliability of a de-
sign is also given due consideration, either as a constraint by
limiting it to a minimum value, or as an additional objective.

Uncertainties can be classified as ‘aleatory’ or ‘epistemic’
depending on their nature. While an aleatory uncertainty is
well defined as a probability distribution, epistemic uncer-
tainty represents our lack of information about the nature
of the impreciseness. Thus, a well defined probability distri-
bution may not always be available to handle uncertainties
in a design optimization problem. In such a case, the usual
RBDO methodologies cannot be used and a new approach
which can utilize low amount of information about the un-
certainty is required. Few such methods like a Bayesian ap-
proach for sample-based information [5] and an evidence the-
ory based approach [7] for interval-based information have
been proposed, but only a few studies like [8] have explored
them in an EA-context.

In this work, we use the evidence-based approach, assum-
ing that information about the uncertainty is available as ev-
idence of the uncertain variables lying within definite inter-
vals around the nominal value. We propose that instead of
constraining the plausibility of failure to a predefined value,
a bi-objective approach may be adopted in order to get more
useful results, and discuss other benefits of using an evolu-
tionary algorithm for evidence-based design optimization.

2. RBDO PROBLEM FORMULATION

A general formulation of a deterministic optimization prob-
lem is:

f(x,p)
gi(x,p)>0,5=1,...,J

minimize
X (1)
subject to:

In this formulation, x are the n design variables that are
varied in the optimization while p are the m design param-
eters that are kept fixed. Both x and p are assumed to be



real-valued. The objective is to minimize a function f sub-
ject to J inequality constraints. We do not consider equality
constraints because reliability is not defined for equality con-
straints in this context.

In reliability-based optimization, uncertainties in the de-
sign are embodied as random design variables X and random
design parameters P, and the problem is formulated as:

minimize  f (ux, pp)
Hx

2
Prig; (X,P)20]3 Ry j—1,.d D)

subject to:

The objective of the problem is to minimize f with respect to
the means (u’s) of the random variables given the means of
the random parameters. The problem is subject to the con-
straints that the probability of design feasibility is greater
than or equal to R;, for all j =1, ..., J, where R; is the
target reliability for the 71" probabilistic constraint. A solu-
tion to a reliability-based optimization problem is called an
optimal-reliable design.

If the uncertainty in the variables and parameters can be
confidently expressed as probability distributions (aleatory
uncertainty), the above RBDO formulation is sufficient for
reliability analysis. However, it is often found that the un-
certainty associated with the variables and parameters of a
design optimization problem can not be expressed as a prob-
ability distribution. This is because the only information
available might be a certain number of physical realizations
of the variables, or expert opinions about the uncertainty.
The above RBDO formulation can not utilize this type of in-
formation and therefore, a different approach to uncertainty
analysis is called for.

3. BASICS OF EVIDENCE THEORY

Evidence theory has recently been used for analysis of
design reliability when very limited information about the
uncertainty is available, usually in the form of expert opin-
ions. Before we proceed to describe an evidence based de-
sign optimization (EBDO) procedure using an evolutionary
algorithm, we outline the fundamentals of evidence theory
as discussed in [7] in this section.

Evidence theory is characterized by two classes of fuzzy
measures, called belief and plausibility measures, respec-
tively, They are mutually dual, and thus each can be uniquely
determined from the other. The plausibility and belief mea-
sures act as upper and lower bounds of classical probability
to measure the likelihood of events without use of explicit
probability distributions. When the plausibility and be-
lief measures are equal, the general evidence theory reduces
to the classical probability theory. Therefore, the classical
probability theory is a special case of evidence theory. A
recapitulation of the basics of fuzzy set theory is essential to
understand the nature of plausibility and belief measures.

A universe X represents a complete collection of elements
having the same characteristics. The individual elements in
the universe X, called singletons, are denoted by z. A set
A is a collection of some elements of X. All possible subsets
of X constitute a special set called the power set p.

A fuzzy measure is defined by a function g : p(X) — [0, 1].
Thus, each subset of X is assigned a number in the unit
interval [0, 1]. The assigned number for a subset A € p(X),
denoted by g(A), represents the degree of available evidence
or belief that a given element of X belongs to the subset A.

In order to qualify as a fuzzy measure, the function g must
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have certain properties. These properties are defined by the
following axioms:

e g(0) =0and g(X)=1.
e For every A, B € p(X), if A C B, then g(A) < g(B).
e For every sequence (A; € p(X),i=1,2,...) of subsets

of p(X), if either A1 C A; C...or A1 D Az D ... (the
sequence is monotonic), then lim g(A;) = g(limA;).
1—>00 i—00

A belief measure is a function Bel : p(X) — [0, 1] which
satisfies the three axioms of fuzzy measures and the following
additional axiom:

Bel(A1 @] AQ) > Bel(A1) -+ Bel(AQ) — Bel(A1 N AQ) (3)

Similarly, A plausibility measure is a function Pl : o(X) —
[0, 1] which satisfies the three axioms of fuzzy measures and
the following additional axiom:

Pl(AlﬂAQ) SPl(A1)+Pl(A2)7Pl(A1UA2). (4)

Being fuzzy measures, both belief and its dual plausibility
measure can be expressed with respect to the non-negative
function:

m: p(X) = [0,1],
such that m(f) = 0, and

> m(4) =1

A€p(X)

(5)

(6)

The function m is referred to as basic probability assign-
ment (BPA). The basic probability assignment m(A) is in-
terpreted either as the degree of evidence supporting the
claim that a specific element of X belongs to the set A or
as the degree to which we believe that such a claim is war-
ranted. Every set A € p(X) for which m(A) > 0 (evidence
exists) is called a focal element of m. Given a BPA m, a
belief measure and a plausibility measure are uniquely de-
termined by

Bel(A) = > m(B). (7)

BCA

(8)

BNA#0

In Equation (7), Bel(A) represents the total evidence cor-
responding to all the subsets of A, while the PI(A) in Equa-
tion (8) represents the sum of BPA values corresponding to
all the sets B intersecting with A. Therefore,

PI(A) > Bel(A). (9)

Several theories have been proposed to combine evidence
obtained from independent sources or experts. If the BPAs
m1 and meo express evidence from two experts, the com-
bined evidence m can be calculated using Dempster’s rule
of combining:

>

m(A) _ BNnC=A

m1(B)m2(C)

for A#0, (10)

1-K ’
where

K= Y mi(B)ma(C)

BNC=0

(11)

represents the conflict between the two independent experts.
Other methods of combining evidence may also be used.



4. EBDO PROBLEM FORMULATION AND
EA-BASED SOLUTION APPROACH

In the previous section, the fuzzy measure of plausibility
was introduced which can be used to represent the degree
to which the available evidence supports the belief that an
element belongs to a set or overlapping sets. In [7], an ev-
idence theory based approach to handle uncertainties in a
design problem is discussed. Each probability constraint of
the RBDO problem is replaced with a plausibility constraint,
limiting the plausibility of failure for each constraint to a
pre-defined value.

In this paper, we propose taking a different approach
which treats the problem as a bi-objective problem due to
the crucial role of the uncertainty in design. Since the relia-
bility of the design will be an important factor in choosing a
design, a trade-off analysis between objective function value
and reliability is desirable. Thus, instead of using a plausi-
bility constraint, the plausibility value of any solution x can
be converted to a second objective function. Since we are
evaluating the plausibility of failure, the plausibility value
should then be minimized. For multiple constraints, the
maximum plausibility over all constraints Plmax is chosen
to be the second objective. According to [7], the plausi-
bility measure is preferred, instead of the equivalent belief
measure, since at the optimum, the failure domain for each
active constraint will usually be much smaller than the safe
domain over the frame of discernment. As a result, the com-
putation of the plausibility of failure is much more efficient
than the computation of the belief of safe region.

Using an evolutionary algorithm for such a design task has
several advantages. Firstly, evidence based design methods
have not been investigated adequately due to the high com-
putational complexity of implementation. Since evolution-
ary algorithms can be efficiently parallelized, a significant
amount of computational time and resources can be saved.
Also, evolutionary methods are a good choice for EBDO
since the optimization task requires an algorithm which is
derivative-free and can handle discrete plausibility values.
Secondly, as discussed before, using a bi-objective evolution-
ary approach, a set of trade-off solutions can be obtained
which can be very useful to a decision maker. These so-
lutions can in turn be utilized for post optimality analysis
and further insights into the nature of the problem can be
developed.

Using the bi-objective evolutionary approach discussed
above, the RBDO problem stated in Equation (2) can be
formulated using an evidence theory based approach as fol-
lows:

mlr;é%lze f(X,P),

minimize leax, (12)
X,P
subject to: 0 < Plmax <1,

where (for g > 0 type constraints),
Plinax = miax(PL{g; (X, P) < 0]). (13)
p

The plausibility of failure for each member of the pop-
ulation (each design point) must be evaluated in the bi-
objective formulation. A step-by-step method for this eval-
uation is as follows:

1. The frame of discernment (FD) about the design point
is identified first. This is the region in the decision vari-

Constraint boundary

/Frame of discernment
Yn +2.0

Yy + 1.0 x e

g9<0 g9>0 3
Y 2% L]
XN, Yn)
Yy — 1.0 / 7777777
Yy —2.0 A

Xy—25 Xy—15 Xy—05 Xy+05 Xy+15 Xy+25

Figure 1: Focal elements contributing to plausibility
calculation.

able space for which evidence is available. In a typi-
cal BPA structure, the available evidence is expressed
corresponding to various intervals of values near the
nominal value (denoted by the subscript N) of each
variable and parameter. If a conflict exists, a suitable
rule for combining evidence must be used. The FD can
be viewed as a Cartesian product of these intervals.

2. Each element of the Cartesian product of intervals is
referred to as a focal element. This is the smallest
unit in the FD for which evidence can be calculated
by combining the BPA structures of the variables and
parameters. In Figure 1, the focal elements are the
rectangles bounded by dashed lines. When the vari-
ables/parameters are independent, the BPA of a focal
element is simply the product of BPA values corre-
sponding to the intervals that compose it. The BPA
structure for the entire FD is thus obtained.

3. According to Equation 8, the focal elements that com-
pletely or partially lie in the failure region contribute
to the plausibility calculation. Similarly, the focal ele-
ments lying completely in the failure region contribute
to the belief calculation (Equation 7). This calcula-
tion must be performed for each problem constraint.
To check if failure occurs within a focal element, the
minimum value of the constraint function in the focal
element is searched for. If the minimum is negative
(for greater-than-equal-to type constraints), then fail-
ure occurs in the focal element. Various issues related
to identifying the focal elements for plausibility calcu-
lation are discussed in Section 4.1.

4. The combined BPA values for the focal elements iden-
tified for plausibility calculation are summed to ob-
tained the plausibility for the failure region according
to Equation 8.

5. The maximum plausibility value over all constraints is
obtained as the second objective function value to be
minimized, according to Equation 13.

The illustration in Figure 1 shows the FD within which
a constraint boundary lies. The dashed lines divide the FD
into focal elements according to the intervals of the BPA



structure along each axis. In this case, the shaded focal ele-
ments contribute to the plausibility calculation since inside
these elements, the constraint becomes infeasible.

4.1 Plausibility calculation and related issues

It is evident that the calculation of plausibility is a compu-
tation bottle-neck in an evidence-based design optimization
task, and this is a major reason that such methods have not
been investigated or used as much as others in the past. In
this section we discuss some methods to tackle this computa-
tional complexity, making the approach less time-consuming
and more practical.

An intuitive approach to the problem of reducing compu-
tations is to use an algorithm that does not need to search
all the individual focal elements for a minimum, so that
several focal elements belonging to the feasible or infeasi-
ble region can be identified together. Such a method will
circumvent the local search effort in each focal element and
is thus expected to reduce computation substantially. For
this purpose, subdivision techniques such as [3] can be used
to eliminate a portion of the search region in each step. A
similar algorithm has been demonstrated for evidence-based
design optimization in [7]. However, it must be noted that if
the computation cost of the identification of focal elements
still remains high, then such an algorithm can not be paral-
lelized readily.

Parallelization or distributed computing is certainly a vi-
able option for the search process required for plausibility
calculation. Focal elements belonging to a frame of discern-
ment can be searched in parallel threads and all the ele-
ments contributing to the plausibility calculation identified
simultaneously. Thus, a computational speed-up of the or-
der of the number of focal elements is expected, making the
approach most suitable when this number is high, that is,
the information available about the uncertainty is more and
more crisp. We are currently pursuing such a parallelization
and shall communicate the results at a later date.

Whether a subdivision technique is used or not, a sub-
task of finding the failure plausibility at a design point is to
classify a region (containing one or several focal elements)
as feasible or infeasible with respect to all the constraints.
As previously stated, this can be done by searching for the
minimum of the constraint in the region, and checking if
it is negative (implying infeasibility for ¢ > 0 type con-
straints). There are various techniques which can be used
for this search:

Grid-point evaluation: The constraint function can be
evaluated at all points forming a hyper-grid across the
dimensions of the search space and then the minimum
of the values obtained can be used as the minimum of
the constraint function. Although the minimum ob-
tained through this technique will not be accurate, it
may be sufficient for checking the negativity condition.

Sampling-based evaluation: Instead of evaluating the con-

straint at uniform grid-points, techniques like opti-
mum symmetric Latin hypercube sampling [10] may be
used to evaluate the constraint at fewer, representative
points in the search space. Both the grid-based method
using a coarse grid and sampling techniques are suit-
able when the search regions are not large enough that
major variations in the constraint values may be ex-
pected.
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Local search: A local search for the minimum can be per-
formed using a vertex method, gradient-based method
or a solver like KNITRO [1] depending on the complex-
ity of constraints. Some of these methods may signif-
icantly raise the computation cost and thus should be
carefully chosen. To simplify the evaluation of the con-
straints, a response surface or kriging models may be
generated using sampling techniques as in [11]. For
this paper, KNITRO is used to confirm the results ob-
tained from a grid-point evaluation method.

Finally, it is seldom the case that a design optimization
task is a black-box operation and no information about the
behavior of the constraints is available. Quite often, design-
ers are capable of predicting the behavior of the constraint
functions with respect to different variables and parameters,
and this information should be utilized effectively to reduce
the computation cost for such methods. For example, a de-
flection constraint might always reach extrema at the vari-
able bounds for the material property, and there is no need
to perform a search operation for the region under consider-
ation with respect to this variable. This type of information
utilization can significantly reduce the computational effort
in practice.

5. NUMERICAL TEST PROBLEM

We first demonstrate the approach on a two-variable test
problem described as follows:

mini}r{nize (X)) = X1 + Xo,
. XPX;
: 1 - <
subject to: g1 :1 0 = 0,
)2
92:17(X1+X2 5)
30 )
_ (X1 — X9 — 12) < 0’ (14)
120
80
01— <0
93 XZ+8Xy—5 =
0< X, <10,
0< X5 < 10.

The deterministic optimum for this problem is at f* =
5.179. To demonstrate evidence based analysis, it is as-
sumed that the variables X; and X2 are epistemic, and the
evidence available about the variation of uncertainty corre-
sponding to each can be represented by a BPA structure
such as that described in Table 1. Due to the uncertainties,
the optimal solution to the evidence based design optimiza-
tion is likely to be worse than the deterministic optimum.
For simulation purposes, the value of BPA assigned to a par-
ticular interval may be obtained directly from an assumed
probability distribution. The subscript N denotes the nom-
inal value for a decision variable or parameter.

The problem is converted to a bi-objective problem as
developed in the previous section, where an additional ob-
jective of minimizing the plausibility of failure is now con-
sidered. The problem is solved using the well-known NSGA-
IT [2] procedure. We use a population size of 100 (to obtain
as distributed a front as possible) and run it for 100 gener-
ations. The resulting trade-off front is shown in Figure 2.



Table 1: BPA Structure for the numerical test prob-
lem.

z1
Interval BPA
[1,5 - 1.0, 21,5 - 0.5] 4.78 %
[z1,5 - 0.5, z1,N] 45.22 %
[z1,~5, z1,8 + 0.5] 45.22 %
[x1,ny + 05, 21,8 +1.0] 478 %
z2
Interval BPA
[2,5 - 1.0, z2,.x - 0.5]  4.78 %
[2,5 - 0.5, 22,N] 45.22 %
[z2,N, x2,n + 0.5] 45.22 %
[xe,n + 0.5, za 8 + 1.0] 478 %

Plinax minimized

o o 990 9 90 9 9 9
L R I N ¥ Y- NN B~ C N
T

1
45 5
Objective function (minimized)

I I I
55 6 6.5 7

(=1

IS

7.5

Figure 2: Results obtained for the two variable test
problem.

It should be noted that the front is discontinuous due to
the discrete nature of the BPA structure; only certain values
of plausibility are possible, and the front does not exist for
intermediate values. Also, several design points will have the
same plausibility of failure, and the algorithm is able to find
the points for which the first objective is minimized while
the second remains constant. The design points with failure
plausibility closer to unity lie in the infeasible region with
respect to their nominal values, and it is only due to the
uncertainty that a few feasible realizations may be expected
for these designs.

The jumps in the plausibility values obtained in the final
front are due to the jumps in the BPA structures of the vari-
ables. To demonstrate this, we modify the BPA structures
to be more smooth, distributing the high values of evidence
for the central intervals as in Table 2. The final front ob-
tained in Figure 3 is seen to be much smoother and without
large jumps in plausibility values. This reflects our intuition
that more information about the uncertainty distribution
will lead to better decision making.

The mirrored ‘S’ shaped form of the trade-off frontier is
evident from these plots. Solutions near the minimum-f
point (deterministic optimum of f) would make large fail-
ures due to uncertainties in decision variables and parame-
ters. However, any small improvement in failure probability
demands for a large sacrifice of f. Also, when a too tight a
failure probability is needed, a very large sacrifice in optimal
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Table 2: Modified BPA structure for the numerical
test problem.

X1
Interval BPA
[xLN - 1.0, ZT1,N - 05] 4.78 %
[z1,n5 - 0.5, 1,5 - 0.25]  15.22 %
[z1,n - 0.25, z1,N] 30 %
[#1,5, z1,n + 0.25] 30 %
[x1,n + 0.25, z1n + 0.5] 1522 %
[x1,n + 0.5, 21,8 + 1.0]  4.78 %
X2
Interval BPA
[1}271\7 - 1.0, T2,N - 05] 4.78 %
[z2,n5 - 0.5, 2o,y - 0.25]  15.22 %
[x2,n - 0.25, z2,N] 30 %
[2,n, T2, N + 0.25] 30 %
[x2,n + 0.25, z2 v + 0.5] 1522 %
[t2,n 4+ 0.5, zo.n + 1.0] 478 %

0.4

02

Pliax

0 L L L "
4 4.5 5 55 6 6.5 7

Objective function (minimized)

Figure 3: Results obtained for the modified two vari-
able test problem.

f has to be accepted. In general, high values of plausibility
of failure are undesirable, and should be eliminated using
a constraint. Designers can set a limit of failure probabil-
ity and choose a preferred solution from such a bi-objective
trade-off frontier.

6. RESULTS FOR ENGINEERING DESIGN
PROBLEMS

6.1 Cantilever beam design

The first engineering design problem we solve is a can-
tilever beam design for vertical and lateral loading [9]. In
this problem, a beam of length 100 in. is subjected to a ver-
tical load Y and lateral load Z at its tip. The objective of
the problem is to minimize the weight of the beam which
can be represented by f = w X ¢, where w is the width and
t the thickness of the beam.

The problem is modeled with two constraints which rep-
resent two non-linear failure modes. The first mode is rep-
resented by failure at the fixed end of the beam, while the
second mode is the tip displacement exceeding a maximum
allowed value of Dy = 2.5 in. The deterministic optimization



problem formulation is given as follows:

minirrtlize f=wt,
w,
600Y  600Z
bject to: Ty — >
subject to: g1 :y ( e + R ) >0,
ar* [(Y\*, (2
: Do — —— = — ] >0
921507 But (t2> +(w2) =
0<w<5h,
0<¢t<5.

(15)

To demonstrate the principle of the evidence theory based
EA approach, the variables w and t are taken to be deter-
ministic, while the parameters Y = vertical load, Z = lat-
eral load, y = yield strength and £ = Young’s modulus are
assumed to be epistemic. In general, expert opinions and
prior information about the uncertainty will yield a BPA
structure for the epistemic parameters. However, in order
to facilitate comparison with an RBDO result, the distri-
butions of the parameters as used in an RBDO study [6]
are used to obtain the BPA structure for them. Thus, nor-
mal distributions Y ~ N (1000, 100) 1b, Z ~ N (500, 100) Ib,
y ~ N (40000, 2000) psi and E ~ N(29(10°),1.45(10%)) psi
are assumed and the area under the corresponding PDF for
each interval is taken as the BPA for each parameter.

1 i

e e e o 9
o 9 » o
T T T T T

RO
[SIN
T T

Plyax (minimized)
(=]
B
T

e
=
T

I I I
5 6 7 8 9

Weight (minimized)

=}

Figure 4: Obtained trade-off front for the Cantilever
design problem.

The problem is converted to the bi-objective formulation
developed in Section 4, and solved using a population size
of 60 for 100 generations of NSGA-II. The resulting trade-
off is shown in Figure 4. The mirrored ‘S’ shaped front is
obtained.

6.1.1 Comparison with an earlier study

In order to compare to the results with a previous study [7],
which used a single objective of minimizing f alone, NSGA-
1T is used to solve for the single-objective formulation, setting
the limit of failure plausibility for each constraint equal to
Diim as follows:

minin}ize f=wt,
subject to:  Plmax < Diim, (16)
0<w<5,
0<t<s5.
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Table 3: BPA Structure for the cantilever design
problem

y/ y (x10%)
Interval BPA Interval BPA
[200,300] 22%  [35,37 6.1%
[300, 400] 13.6 % [37, 38] 9.2 %
[400, 450]  15%  [38,39] 15%
[450, 500] 19.2 % [39, 40] 19.2 %
(500, 550]  19.2 %  [40,41] 192 %
[550, 600] 15 %  [41,42] 15 %
[600, 700]  13.6 %  [42,43] 92 %
[700, 800] 22%  [43,45] 7.1%

Y E (x10°%)
Interval BPA Interval BPA
[700, 800] 22 % [26.5, 27.5] 10 %
[800, 900]  13.6 % [27.5,28.5] 21 %
[900, 1000] 34.1 %  [28.5, 29] 13.5 %
[1000, 1100] 34.1 %  [29,29.5] 13.5 %
[1100, 1200] 13.6 % [29.5,30.5] 21 %
[1200, 1300] 2.4 % [30.5,31.3] 21 %

Table 5: Cantilever design: Comparison of results
for piim = 0.0013. NSGA-II solution makes Pl(g;)
constraint have a value close to this limit.

Variable DIRECT [7] NSGA-II
w 2.5298 2.414244
t 4.1726 4.124685

Values obtained

Pl(g1) 0.000032  0.001274
Pl(gs) 0.000000  0.000000
10.556 9.957998

The results, comparing with the previous results obtained
using the DIRECT optimizer, are shown in Table 4. It is
notable that NSGA-II finds a better design point for all three
values of pjim, demonstrating the better performance of an
evolutionary algorithm for this complex optimization task.
The plausibility and objective function values obtained for
prim = 0.0013 corresponding to the design point reported
in [7] and the point obtained by NSGA-II are compared in
Table 5. The superiority of the NSGA-II solution comes
from the fact that NSGA-II solution is able to find a solution
for which the plausibility failure of first constraint is almost
same as the desired pjim, whereas the solution reported in
the existing study is far from this limit.

As expected the design points obtained under uncertainty
are worse than the deterministic optimum, since objective
function value must be sacrificed in order to gain in the
reliability of the design. Also, the value of weight obtained
for piim = 0.0013 (corresponding to R = 0.9987) for the
RBDO study is worse than the reliable optimum. This is
because evidence theory based optimization is a case of lower
information than RBDO, and this loss of information about
the uncertainty affects the optimum weight value that can
be obtained.



Table 4: Comparison of results for the Cantilever design problem.

Evidence theory based results

Reliable Optimum Deterministic optimum

Algorithm  prim = 0.2 prim = 0.1 prim, = 0.0013 R = 0.9987
. DIRECT [7]  8.6448 10.217 10.556
Weight = “Nsca-m 85751 8.8832 9.9580 95212 76679

6.2 Pressure vessel design

The second engineering design problem is design of a pres-
sure vessel [4]. The objective of the problem is to maximize
the volume of the pressure vessel which is a function of de-
sign variables R, the radius and L, the mid-section length.
A third design variable is the thickness ¢ of the pressure
vessel wall. The problem is modeled with five constraints
which represent failure in the form of yielding of material in
circumferential and radial directions, and violation of geo-
metric constraints. The deterministic problem formulation
is as follows:

maximize f = é7rR1\73 + 7TRN2LN,
Ry,Ln,tn 3
subject to: g1 : 1.0 — w >0,
P(2R* + 2Rt + t*)SF
: 1.0 — >0
92 CRL )Y
L+2R+2t
g3:1.0 — ——— >0,
R+ {"
g4 1.0 — T 2 0,
5t
gs: 1.0 — E > 07
0.25 <ty < 2.0,
6.0 < Ry <24,
10 < Ly < 48.
(17)

Besides the design variables, the parameters internal pres-
sure P, and yield strength Y are also assumed to be epis-
temic for this problem (making a total of five epistemic vari-
ables). The assumed normal distribution for P and Y are
P ~ N(1000,50) and Y ~ N (260000, 13000), respectively,
while the normal distributions for R, L and t are assumed
to have standard deviations equal to 1.5, 3.0 and 0.1 respec-
tively. Table 6 shows the BPA structure used.

The bi-objective formulation of the problem is solved us-
ing a population size of 60 for 100 generations of NSGA-II
and the resulting trade-off is shown in Figure 5. The ob-
served jumps in the front are expected due to the jumps in
the BPA structure of the problem variables, as explained
earlier in Section 5.

A similar comparison as in the previous example shows
that NSGA-II is able to obtain better solution in terms of
objective function value for the same value of pj;,, than DI-
RECT. Table 7 shows that the results obtained are con-
sistent with expected values, being worse the deterministic
optimum as well as the corresponding reliability based opti-
mum (pim = 0.015 corresponding to R = 0.985), reflecting
the lack of information about the uncertainty. Table 8 com-
pares the design point reported previously [7] and the design
point obtained by NSGA-II in terms of plausibility and ob-
jective function values.
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Figure 5: Obtained trade-off front for the Pressure
Vessel design problem.

Table 8: Pressure vessel design: Comparison of re-
sults for piim = 0.015. NSGA-II solution makes
Pl(g2) constraint have a value close to this limit.

Variable DIRECT [7] NSGA-II
R 7.074 7.127
L 29.626 30.019
t 0.413 0.364
Values obtained
Pl(g1) 0.001298 0.001301
Pl(g2) 0.001318 0.014732
Pl(g3) 0.012020 0.012020
Pl(ga) 0.012050 0.012050
Pl(gs) 0.012020 0.012020
f 6.137¢3 6.307e3

7. CONCLUSIONS

In this paper, we have proposed a new evolutionary ap-
proach to design optimization using evidence theory. The
use of evidence theory for uncertainty analysis in design op-
timization has been limited in the past primarily due to the
high computation cost involved. However, due to availabil-
ity of better optimization algorithms and parallel comput-
ing platforms, they are getting more and more tractable and
such methods are bound to become more popular. An evolu-
tionary approach also offers the possibility of parallelization
and an algorithmic flexibility which can drastically reduce
the computation time required for analysis.

Our proposed approach is based on a bi-objective formula-
tion and the solution methodology is based on the NSGA-II
approach. Since a number of trade-off solutions can be found
by such an approach, designers will have a plethora of infor-
mation relating to designs having different plausible failure



Table 6: BPA Structure for the pressure vessel design problem.

R L t BPA P Y BPA
[Ry - 6.0, Ry - 4.5]  [Ln-12, Ly -9]  [tn - 04, tx - 03] 0.13%  [800, 850]  [208000, 221000]  0.13%
[Rn - 4.5, Ry - 3.0] [Ln -9, Ly - 6] [ty - 0.3, ty -02]  2.15%  [850, 900]  [221000, 234000]  2.15%
[Rw - 3.0, Rn] [Ly - 6, L] [tx - 0.2, tn] 47.72%  [900, 1000]  [234000, 260000] 47.72%
[Rn, Ry + 3.0] [Ln, Lx + 6] [tn, tn + 0.2] 47.72%  [1000, 1100]  [260000, 286000] 47.72%
[Rv + 3.0, Ry +4.5] [Ln +6, Ly +9]  [tx + 0.2, tx + 03] 2.15%  [1100, 1150]  [286000, 299000]  2.15%

[Rnv + 4.5, Ry + 6.0] [Ln + 9, Ly +12] [t~ 4+ 0.3, tx + 0.4]  0.13%  [1150, 1200]  [299000, 312000]  0.13%

Table 7: Comparison of results for the Pressure Vessel design problem.

Evidence theory based results

Reliable Optimum Deterministic optimum

Algorithm  prim = 0.3 piom = 0.2 pizm = 0.015 R—=0.985
DIRECT [7]  1.10le4  0.9053e4 0.6137e4
Volume  “NoaaTT 1.126e4  0.9495¢4 0.6307¢4 1.605¢4 2.240e4

limits. Such information is not only important to choose a
single design using a post-optimality analysis, the knowledge
of variation of solutions for different limiting failure levels
would be most valuable to the designers. Results for numer-
ical and engineering design problems show the effectiveness
of the proposed approach, and the capability of an EA to
find better solutions in the discrete objective space. More-
over, due to better handling of constraints within NSGA-II,
the proposed approach has been able to find a better design
compared to an existing classical optimization algorithm.

Handling uncertainties in design variables and parameters
is a must if optimization methods have to be used routinely
in engineering design activities. The uncertainties in some
parameters may be known by means of a probability distri-
bution and uncertainties in some other parameters may not
not be known with any particular distribution. A methodol-
ogy for handling combined such cases (combining reliability-
based and evidence-based design) would be the next step.
Computation of plausibility values are computationally de-
manding and the use of parallel computing is important for
such problem-solving tasks. The use of optimization algo-
rithms that allow such parallel computations, such as EAs,
will also remain as key methodologies for solving such prob-
lems.
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