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ABSTRACT
The evolution of strategies in iterated multi-player social
dilemma games is studied on small-world networks. Two
different games with varying reward values – the N-player
Iterated Prisoner’s Dilemma (N-IPD) and the N-player Iter-
ated Snowdrift game (N-ISD) – form the basis of this study.
Here, the agents playing the game are mapped to the nodes
of different network architectures, ranging from regular lat-
tices to small-world networks and random graphs. In a given
game instance, the focal agent participates in an iterative
game with N − 1 other agents drawn from its local neigh-
bourhood. We use a genetic algorithm with synchronous
updating to evolve agent strategies. Extensive Monte Carlo
simulation experiments show that for smaller cost-to-benefit
ratios, the extent of cooperation in both games decreases as
the probability of re-wiring increases. For higher cost-to-
benefit ratios, when the re-wiring probability is small we
observe an increase in the level of cooperation in the N-IPD
population, but not the N-ISD population. This suggests
that the small-world network structure with small re-wiring
probabilities can both promote and maintain higher levels
of cooperation when the game becomes more challenging.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence

General Terms
Theory, Algorithms, Experimentation

Keywords
Iterated N-player games, small-world networks, prisoner’s
dilemma, snowdrift game

1. INTRODUCTION
Understanding how cooperative behaviour can be pro-

moted and maintained in social communities when the self-
ish actions available to individuals are clearly favoured is

a long-standing scientific endeavour. A great deal of the
related research has focused on two-player social dilemma
models, such as the Prisoner’s Dilemma (PD) and the Snow-
drift (SD) games. In these games, the players typically must
choose between two actions: to cooperate or to defect. A
reward (R) is given if both players cooperate, while punish-
ment (P) is handed out if they both defect. In the situation
where one player defects and the other player cooperates,
the one who defects is awarded a tempting reward (T) but
the one who cooperates will be given the sucker’s punish-
ment (S). Accordingly, we have a PD game when T > R >
P > S and an SD game when T > R > S > P.

Spatial (or network) reciprocity is now widely regarded as
a mechanism that can be used to promote cooperation in
social dilemma games [24, 25]. That is, by mapping play-
ers onto the nodes of a simple regular lattice, and restrict-
ing their interactions to a local neighbourhood, cooperative
outcome that might otherwise be impossible in a well-mixed
population can emerge. Over the past decade, related stud-
ies have suggested that relaxing the rigid local neighbour-
hood structure imposed by regular lattices could be advan-
tageous. For example, Abramson and Kuperman [1] studied
the PD game with players placed on a small-world network,
and observed that different topologies ranging from regular
lattices to random graphs give rise to a variety of emergent
behaviours. Masuda and Aihara [23] carried out a similar
study using the PD game, with players mapped to nodes of
different networks ranging from regular lattices to random
networks. The experiments showed that the small-world
topology is the optimal structure as far as speed of con-
vergence is concerned. Hauert and Szabó [16] explored the
spatial extension of the PD game on regular lattices, regular
small-world networks and random regular graphs, in which
all players have the same fixed number of neighbours, and
noticed that the parameter range over which cooperators
persist on random regular graphs is larger than for regular
lattices.

In other work, Tomassini et al. [38] have investigated the
Hawk-Dove game – a game with the same payoff ranking
but a slightly different matrix structure to the SD game
– on different network topologies including regular lattices,
small-world networks and random graphs, and showed that
cooperation is sometimes inhibited and sometimes enhanced
in these network structures depending on the update rules
as well as the cost-to-benefit ratio of cooperation and defec-
tion. More recently, several authors (e.g., [29, 30, 31]) have
found that scale-free networks promote the evolution of co-
operation, although this to a certain extent is dependent on
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the types of scale-free networks that are in place (see [22,
34]).

In this paper, we extend the study in this area by inves-
tigating population dynamics in iterated N-player games on
small-world networks. Despite the massive body of litera-
ture covering the two-player game, there have only been a
limited number of studies that have considered the N-player
game using alternative network topologies (e.g., [21, 26, 32]).
To the best of our knowledge, the previous work reported
in the literature has not examined spatial games that also
incorporate the concept of reciprocal altruism via repeated
interactions.

In our model, agents are mapped to the nodes of the net-
works. In a given game instance, the focal agent participates
in an iterative game with N −1 other agents drawn from its
local neighbourhood. That is, the agents play their games
over a fixed number of generations, with iterated interac-
tions taking place within each of the generations. An agent’s
strategy, which is decoded to select an action, is represented
by a binary string. We use a genetic algorithm (GA) with
synchronous updating to evolve the strategies over time.

Comprehensive simulations based on the N-player Iter-
ated Prisoner’s Dilemma (N-IPD) and the N-player Iter-
ated Snowdrift game (N-ISD) show that the agents on nodes
with lattice-like neighbourhoods perform significantly better
when the cost-to-benefit ratio is small, but agents on nodes
modified during the re-wiring process (with a small re-wiring
probability) of the construction of small-world networks tend
to have surprisingly better performances in the N-IPD popu-
lation when the cost-to-benefit ratio ranges from medium to
high. The results suggest that small-world networks could
be a potential cooperation promoter when the game1 is more
challenging.

The remainder of this paper is organised as follows: In
the next section, the N-IPD and the N-ISD are briefly intro-
duced. Following which, the fundamentals of small-world
networks are described. In Section 3, the details of our
model are presented. Sections 4 and 5 discuss the exper-
imental settings, results and findings. Finally, we conclude
the paper in Section 6 with a summary of the implications
of this work.

2. BACKGROUND

2.1 Iterated N-player Games
Iterated games provide an abstract framework to investi-

gate reciprocal altruism – the situation where players inter-
act on a regular basis, and each player takes into considera-
tion the impact of their current action on the future actions
of other players [40]. In the Iterated PD (IPD) game, for
example, many rounds of the simple PD are played, thus
allowing the players to counteract an opponent’s past be-
haviour. The IPD has been widely studied since the 1980s
(see [2]) across various disciplines, including biology, sociol-
ogy, economics, computer science and artificial intelligence.

A simple extension to the IPD, which we refer to as the
N-IPD game (see [4, 7, 8, 9, 11, 43]), is to modify the game
so that multiple players play a version of the game at the

1Throughout this paper, we will be addressing the game
as “more challenging”, “less challenging”, “more difficult” or
“easier” in terms of promoting/maximising cooperative be-
haviour in the population.

same time. In the N-IPD, N players repeatedly interact
with one another (where N > 2), making decisions indepen-
dently based on two actions – cooperate or defect – without
knowing the choices of other players. A rule exists that re-
wards a social benefit b, which increases when more players
are cooperating. There is, however, always a cost c for the
cooperators. Here, b > c. Boyd and Richerson [4] formally
defined the utility function, Π, for this scenario as follows:

Π =

{
b×i
N
− c for cooperators,

b×i
N

for defectors.
(1)

where i is the number of cooperators.
In contrast to the IPD, there has been less research inves-

tigating iterated interactions in the SD game. One example
can be found in the work of Posch et al. [27] who studied the
role of aspiration levels in generalised deterministic strate-
gies in both the SD and PD games. Another example, based
on the results of Dubois and Giraldeau [13], suggests that
iterations generally promote less aggressive, and hence more
cooperative behaviour in the SD game. In a recent study,
Kümmerli et al. [20] experimentally examined human co-
operation in the Iterated SD (ISD) game and compared it
with human cooperation in the IPD. Their results showed
that iterations in the ISD game consistently lead to higher
levels of cooperation than in the IPD.

Similarly, the N-player versions of the SD game have only
been studied in detail very recently (e.g., [5, 6, 10, 17, 21,
35, 45]). Among these studies, only Chiong and Kirley [10]
have investigated the N-ISD. In their work, they formulated
a generalised utility function for the N-ISD as follows:

Π =

{
b× i− c× (N − 1)/i for cooperators,
b× i for defectors.

(2)

As can be seen from Equation 2, the main difference be-
tween the N-IPD and the N-ISD is that the cost of coopera-
tion is shared among the cooperators for the latter but this
is not the case for the former. In other words, the N-ISD
represents an “easier” game than the N-IPD. That is, we
would expect higher levels of cooperation to be maintained
within the population for a given parameter set as compared
to the N-IPD game.

2.2 Small-World Networks

2.2.1 Definitions
Formally, a small-world network can be modelled as a

graph G(V,E) where V is a finite set of nodes (vertices)
and E a finite set of edges (links), such that each edge is as-
sociated with a pair of nodes i and j. G can be represented
by simply giving the V × V adjacency (or connection) ma-
trix whose entry aij is 1 if there is an edge joining node i
to node j and is 0 if otherwise. Typically, two measures are
used to characterise the structural properties of the network:
a global property–the average path length (L), and a local
property–the clustering coefficient (C) [41].
L measures the average separation between two nodes in

the graph. The distance dij between two nodes, labelled i
and j respectively, is defined as the number of edges along
the shortest path connecting them. Short connecting paths
suggest that contagious behaviour can spread more easily
across the network.
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Figure 1: (a) A regular lattice; (b) Some of the links
have been re-wired resulting in a small-world net-
work.

C is the probability that two nearest neighbours of a node
are also nearest neighbours of each other. Ci of node i is
then defined as the ratio between the number Ei of edges
that actually exist among these ki nodes and the total possi-
ble number ki(ki − 1)/2. The clustering coefficient C of the
whole network is the average of Ci over all i. Clearly, C < 1
and C = 1 if and only if the network is globally coupled,
which means that every node in the network connects to ev-
ery other node. Generally speaking, high clustering implies
that interaction in the network resembles interaction in a
closed group.

Small-world networks are often described as a transition
from regular to random networks. In these networks, each
link is re-wired with some probability ρ. The effect of re-
wiring is the substitution of some short-range connections
with long-range connections (see Figure 1). The regular lat-
tice (ρ = 0) and the random graph (ρ = 1) represent the
two extreme cases. Regular networks are highly clustered
with relatively high shortest average path lengths. On the
other hand, random networks are rather homogeneous, that
is, most of the nodes have approximately the same num-
ber of links. Random networks have relatively short average
path lengths and tend to have low clustering. For interme-
diate ρ values, small-world networks have a large overlap
of neighbourhoods (clustering), and yet only relative short
paths connecting any two individuals in the network.

2.2.2 Evolutionary games on small-world networks
Since the work of Watts and Stogatz [41], many authors

have investigated various aspects/effects of the small-world
settings using two-player games with pair-wise interactions
(e.g., [1, 14, 15, 16, 18, 23, 33, 37, 38, 39, 42, 44, 46]). Some
of the latest studies can be found in [12, 19, 28]. On the con-
trary, minimal attention has been paid to N-player games on
small-world networks. In a recent study, O’ Riordan et al.
[26] showed that cooperation in N-player games can emerge
in a small-world network if the so-called community struc-
ture is preserved. Szabó and Fáth [36] provided a compre-
hensive review of evolutionary games on complex networks
for interested readers.

3. THE MODEL
In our model, we consider a population of 30 × 30 play-

ers where interacting individuals (agents) are placed on the
nodes (or vertices) of a graph. Every agent is initialised
with a random strategy, represented by a binary string (see
details below). Each agent – the focal agent – participates
in an iterative game with N − 1 other agents drawn from

its local neighbourhood. For example, in a regular lattice
for values of N < 9, the non-focal agents are drawn from
the Moore neighbourhood. It is important to note that for
a given value of N , the agents which form the focal agent’s
group do not change over the course of the game. The utility
(fitness) of each agent is determined by summing its payoffs
in the game against the group members. At the end of each
generation, all agents are presented with an opportunity to
update their strategies according to the payoffs received.

In the following subsections, we describe the individual
components of our model and the game in detail.

3.1 Payoffs
The payoff values used in this study are defined below:

Πn =

{
b× i− c× λ(N − 1) for cooperators,
b× i for defectors.

(3)

where n ∈ [1...N ].
Based on this utility function, we have, on one hand, the

N-IPD game with payoffs equivalent to Equation 1 as defined
by Boyd and Richerson [4] when λ = 1. On the other hand,
we have the N-ISD equivalent to Equation 2 when λ = 1

i
.

By doing so, we are able to study both games as a natural
transition from one to another rather than comparing two
“disparate” games.

3.2 Strategy Representation
There are various ways to represent the agent’s game-

playing strategies. The most straightforward method is to
use the representation scheme proposed by Axelrod in [3] for
the IPD. As pointed out by Yao and Darwen [43], however,
Axelrod’s representation scheme does not scale well with
the increase in the number of players for N-player games.
Besides that, it provides redundant information by telling
which of the other players cooperated or defected, whereas
the only information needed is how many cooperators or de-
fectors there are. As such, we have decided to adopt the
representation developed by Yao and Darwen.

Under this representation, a history of l rounds for an
agent can be represented as the combination of the following
bit strings:

• l bits to represent the agent’s l previous actions (‘1’ =
defection and ‘0’ = cooperation)

• l × log2N bits to represent the number of cooperators
in the previous l rounds among the agent’s social group
(N is the group size)

Based on preliminary empirical analysis, we have limited
the number of previous actions in memory to 3 (i.e. l = 3),
as this value can be used to generate a very large set of
possible strategies. In the case of N = 4, for example, the
history for an agent would be 3 + 3 × log24 = 9 bits long
according to this representation scheme.

Figure 2 illustrates a possible history an agent could have.
The initial three bits are the agent’s previous three actions.
From the figure we can see that the agent defected in the
last two rounds and cooperated the round before that. The
two-bit sets after the first three bits represent the number
of cooperators in the last three rounds from the agent’s so-
cial group. This agent’s history indicates that there were 3,
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Figure 2: History of an agent.

1 and 2 cooperators in the agent’s group in the last three
rounds.

An agent’s strategy provides a move m, m ∈ [1, 0], in
response to every possible history. Therefore, when N = 4
the strategy should be at least 29 = 512 bits in length. Using
the example from Figure 2, the history 110 11 01 10 would
trigger agent an, n ∈ [1...N ], to make a move corresponding
to the bit listed in the 438th position of strategy sn (438 is
the decimal number for the binary 110110110).

It should be noted that the larger the group size, the more
bits are required for the representation. Due to the fact that
there is no memory of previous rounds in the beginning, we
have added additional three bits to each strategy to compen-
sate for the lack of complete history in the first three rounds.
This means that the actions in the first three rounds of each
generation are hard-coded into the strategy. Thereafter, the
moves are made based on the history of the agent and its
group members.

3.3 Strategy Update
For strategy update, we use a GA to evolve the pool of

agents’ strategies. Each agent plays the game repeatedly
for T iterations at each generation. Every agent an uses a
unique strategy sn to decide the action to play at iteration
t, where t ∈ [1...T ]. At the end of T iterations, they may
change their behaviour by comparing their utility to that of
neighbouring agents using two GA-based operators crossover
and mutation.

For crossover, a random number is generated to deter-
mine whether it should take place. Two-point crossover with
rank-based selection is used. Note that the crossover oper-
ation will happen only when the crossover rate is satisfied
and the current strategy is ranked below the elite group (in
this study, strategies that rank among the top 50% are con-
sidered to be in the elite group). Otherwise, nothing comes
about. This elite preserving mechanism ensures that good
strategies are being carried forward to the next generation.
As with crossover, a random number is generated to deter-
mine whether a strategy will be mutated. For mutation, a
random position in the strategy’s bit representation is se-
lected and the bit at that position is flipped.

3.4 Network Topologies
Three different network architectures provide the game

scaffolding to be investigated in this study: regular lattice,
small-world network, and random graph. The regular lattice
is two-dimensional with periodic boundary conditions. The
neighbourhood structure in place is dependent on the value
of N . As for the small-world network, we use a version sim-
ilar to the one introduced by Watts and Strogatz [41]. That
is, from our two-dimensional regular lattice substrate we re-
wire each link with probability ρ. Here, we allow neither self

or repeated links nor disconnected graphs. By doing so, we
ensure that the individuals in the population are highly clus-
tered and have relatively short path length. When ρ = 0, it
is essentially a regular lattice. As ρ = 1, we have a random
regular graph (note: we have kept the value of N constant
each time, hence it is not just a random graph but a random
regular graph).

4. EXPERIMENTS AND RESULTS
Extensive computational simulations have been carried

out to investigate the population dynamics of the games
played. All experiments were performed on a network con-
sisting of 30 × 30 = 900 agents, randomly initialised with
50% of cooperators and 50% of defectors at the start of each
game. Every agent played iteratively against one another
within its social groups for 500 generations, with T = 25
rounds of learning process constituting each generation. At
the end of each generation, all agents had an opportunity
to update their strategies via the crossover and mutation
operations of the GA. The rates of crossover and mutation
were set to 0.7 and 0.05 respectively. Payoffs of agents were
calculated based on Equation 3, using a range of b and c
values normalised to a function of cost-to-benefit ratios. All
our simulations were repeated for 100 independent runs with
appropriate statistical tests. The small-world networks were
generated by systematically varying the value of ρ from 0 to
1, starting from a two-dimensional regular lattice base. Syn-
chronous updating of the model was used.

4.1 Levels of Cooperation with Varying ρ

The main goal of this study was to analyse the influence
of small-world topologies on the level of cooperation in the
population. As such, we first compare equilibrium propor-
tions of cooperators as a function of the cost-to benefit ratio
r ∈ [0...1] in both the N-IPD and N-ISD populations with
varying ρ values.

Figures 3 and 4 show the levels of cooperation achieved for
the N-IPD and the N-ISD respectively, with N = 5, when
the values of ρ were varied. In the N-IPD population, we see
that the extent of cooperation decreases as the probability of
re-wiring increases for small r. When r > 0.5, however, we
observe an increase in the proportions of cooperators for a
wide range of ρ compared to the two extreme cases of ρ = 0
and ρ = 1. Moving our attention to the N-ISD, we see a
much higher level of cooperation throughout. This is largely
expected since the N-ISD represents a less challenging game
than the N-IPD. As r and ρ increase, we notice a consistent
drop in the numbers of cooperators in the N-ISD population.

To verify whether the results obtained were statistically
significant, we have performed pair-wise t-tests to compare
ρ = 0 (i.e., the regular lattice as the baseline) with varying
ρ values at specific r intervals based on the 100 individual
runs. We report results based on significance levels with α
value = 0.05. In the following tables, the scenarios being
compared are represented by a symbol in each cell. Three
different symbols are used: “=” indicates that there is no
statistical significance between the two settings compared,
“+” means that the setting in the column has yielded a sig-
nificantly higher level of cooperation than the baseline case
of ρ = 0 with confidence, and “−” is used if otherwise.

As can be seen from Table 1, the regular lattice holds
a significant advantage over re-wired small-world topologies
for promoting cooperative behaviour in the N-IPD popula-

1126



Figure 3: The frequency of cooperation as a func-
tion of r = c/b across different values of ρ for the
N-IPD population, where N = 5. All data points are
averages over 100 realisations.

Figure 4: The frequency of cooperation as a func-
tion of r = c/b across different values of ρ for the
N-ISD population, where N = 5. All data points are
averages over 100 realisations.

tion when r is small. However, this advantage diminishes as
r increases. An interesting observation is that when small
re-wiring probabilities are used in the network, the extent
of cooperation can actually be enhanced significantly when
r is beyond 0.5. In other words, minor re-wiring in the
population may be beneficial when the game becomes more
challenging.

For the N-ISD, we see from Table 2 that the re-wiring
process in general has a detrimental effect on the evolution
of cooperation, except for the situation when the re-wiring
probability is very small. This indicates that a strong lo-
cal neighbourhood is favourable for inducing cooperative be-
haviour.

To probe further on this issue, we have conducted a se-
ries of experiments with a specific case where all links of
an agent (instead of each link) were re-wired at the same
time according to a single ρ value. This means even with a
small re-wiring probability, it is possible that an agent could
have all its links re-wired resulting in random long-range in-
teractions and thus low clustering in the population. The
rationale of this set of experiments is to demonstrate the
importance of strong local neighbourhoods in the emergence
and maintenance of cooperative behaviour.

Figures 5 and 6 show the levels of cooperation in both
the N-IPD and N-ISD populations, with N = 5, when all

Table 1: Statistical tests on the N-IPD with N = 5
r ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

0.0 − − − − −
0.1 − − − − −
0.2 = − − − −
0.3 = − − − −
0.4 = = = = −
0.5 = = = = =
0.6 + = = = =
0.7 + = = = =
0.8 + = = = =
0.9 + = = = =
1.0 + = = = =

Table 2: Statistical tests on the N-ISD with N = 5
r ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

0.0 − − − − −
0.1 = − − − −
0.2 = − − − −
0.3 = − − − −
0.4 = − − − −
0.5 = − − − −
0.6 = − − − −
0.7 = − − − −
0.8 = − − − −
0.9 = − − − −
1.0 = − − − −

the links of an agent would be re-wired simultaneously in
accordance to the same ρ. As expected, the proportions of
cooperators become very low when this is the case. The
uncertainties surrounding who to associate with (or play
against) are highly destructive to the local dynamics of the
population.

4.2 Levels of Cooperation with Varying N

It is well-known in evolutionary game theory that as the
size of interacting groups increases, the evolution of cooper-
ation becomes more challenging. To complete the picture,
we performed simulation experiments with varying group
sizes ranging from N = 3 to N = 9. The results across the
spectrum of ρ values (see Figures 3 and 4) indicate that the
most interesting behaviour has been observed with small ρ
values. As such, in this series of experiments we have fixed
ρ = 0.1.

Figures 7 and 8 show the equilibrium proportions of agents
playing cooperatively in the small-world N-IPD and N-ISD
populations with different group sizes. A close examination
of Figure 7 reveals that agents in the N-IPD population can
maintain high levels of cooperation only for small r. As r
increases, the proportion of cooperators drops regardless of
the group sizes. When r is high, the number of coopera-
tors becomes very low. In Figure 8, we again observe the
decreasing of cooperators in the N-ISD population as r in-
creases but this time at a much slower rate. Even for high r,
around 20% to 30% of cooperators persisted. These results
are consistent with our previous findings.

5. DISCUSSION
In the spatial evolutionary games domain, the population

structure can, in some instances, help to promote and main-
tain high levels of cooperation. While the shift from simple
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Figure 5: The frequency of cooperation as a func-
tion of r = c/b across different values of ρ (where all
links of an agent would be re-wired at the same time
according to ρ) for the N-IPD population, where
N = 5. All data points are averages over 100 reali-
sations.

Figure 6: The frequency of cooperation as a function
of r = c/b across different values of ρ (where all links
of an agent would be re-wired at the same time ac-
cording to ρ) for the N-ISD population, where N = 5.
All data points are averages over 100 realisations.

lattice-based models to games on networks can be consid-
ered a step towards more realistic conditions, especially in
the context of human societies, its real benefits remain un-
clear (see the discussion in [1]; see also [18] and the lengthy
review in [36]). To date, the majority of the studies on evo-
lutionary games and complex networks have been done on
two-player pair-wise games. In this paper, our investigation
has focused on the impact of alternative network topologies
in iterated games with N-player interactions. The specific
aim has been to examine the extent of cooperation in the
agent population playing the N-IPD and the N-ISD. Here,
the role of (a) the cost-to-benefit ratio r, (b) the probability
of re-wiring ρ, and (c) the group size N , are of interest.

To meet the objectives of this study, systematic numer-
ical simulations were used to determine how these param-
eters influenced the population dynamics. In the first set
of experiments, we have examined population trajectory for
the scenario: r vs. ρ with the group size fixed at 5. If ρ
is disregarded, one may expect that when the value of r is
sufficiently high defectors would dominate the agent popu-
lation. On the other hand, when the value of r is small it
would be worthwhile to cooperate. For intermediate values

of r, the population would settle into a mixed state where
we see cooperators striving to form clusters in order to resist
the invasion by defectors. Our results in Figures 3 and 4 are
consistent with this.

The value of ρ has a direct impact on the level of clustering
in the network. The higher its value, there is a correspond-
ing high probability of low clustering among agents. It is
reasonable to expect that the level of cooperation should
drop when the probability of re-wiring is increased. Our
results provide further supporting evidence for this expecta-
tion over a wide range of r, except in the N-IPD population
when the cost-to-benefit ratio is beyond 0.5. For an N-IPD
game with r > 0.5, it is extremely challenging to evolve co-
operative behaviour. The frequency of cooperators at this
level is typically low, as can be seen in Figure 3. In this
case, small re-wiring probabilities could have led to isolated
clusters of cooperators surrounded by a sea of defectors to
rejoin cooperative clusters else where, hence the unexpected
increase in their numbers compared to when there is no re-
wiring at all.

In the next set of experiments, we have investigated a spe-
cial case when all links of an agent were re-wired at the same
time based on a value of ρ. One may expect this to result
in a low-clustering agent population and thus lower levels of
cooperation. Our results show exactly this, once again pro-
viding supporting evidence for the positive effects that local
neighbourhoods have on promoting and supporting cooper-
ation [26].

In the final set of experiments, we have focused on examin-
ing the effects of changing the group size for given topologies
and payoff values: N vs. r with ρ fixed at 0.1. Naturally,
the level of cooperation is expected to drop off with larger
group sizes and cost-to-benefit ratios. Our results in Figures
7 and 8 reinforce this well-known fact, where the trend can
be observed across different group sizes.

In a nutshell, it is clear that different values of the average
path length and clustering coefficient of alternative networks
can lead to the establishment and persistence of different
types of populations. The simulation results here suggest
that a small re-wiring probability could be advantageous
when the evolution of cooperation is difficult, while highly
modified nodes tend to switch actions too often and thus
causing instabilities in the agent population.

6. CONCLUSION
In this paper, we have investigated the evolution of strate-

gies in iterated N-player games on different network archi-
tectures. Two games have been considered, namely the
N-IPD and the N-ISD. Detailed computational simulations
have shown that the regular lattice with strong local neigh-
bourhoods is highly favourable for evolving cooperative be-
haviour in both games. Within a certain parameter range
when the game becomes extremely challenging (especially
the N-IPD), however, the small-world network with small
re-wiring probabilities could spring a few surprises by pro-
viding a way out for the cooperators to persist in the popu-
lation. The results suggest that the small-world may favour
cooperation in more difficult games.
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