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ABSTRACT

Standard Cooperative Co-evolution uses a round-robin method to
select subcomponents to undergo optimization. In a non-separable
(epistatic) optimization problem, dividing the computational bud-
get equally between all of the subcomponents is not necessarily the
best strategy. When dealing with non-separable problems, there is
usually an imbalance between the contribution of various subcom-
ponents to the global fitness of the individuals. Using a round-robin
fashion treats all of the subcomponents equally and wastes the com-
putational budget. In this paper, we propose a Contribution Based
Cooperative Co-evolution (CBCC) that selects the subcomponents
based on their contributions to the global fitness. This alleviates
the imbalance issue and allows the computational resources to be
used more efficiently. Experiments on several benchmark functions
with the “imbalance issue” show that this new scheme is promis-
ing, especially when it is combined with a grouping algorithm that
captures interacting variables in common subcomponents.

Categories and Subject Descriptors

F.2.1 [Analysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems; G.1.6 [Mathematics of Com-

puting]: Optimization—Global Optimization; I.2.8 [Artificial In-

telligence]: Problem Solving, Control Methods, and Search—Heuris-

tic methods

General Terms

Algorithms, Performance

Keywords

contribution based cooperative co-evolution, large scale optimiza-
tion, non-separability, evolutionary algorithms

1. INTRODUCTION
Evolutionary Algorithms (EAs) have been very successful in solv-

ing many optimization problems [4, 1], however their performance
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deteriorates as the dimensionality of the problem increases. Curse

of dimensionality [2] refers to the exponential growth in the size
of the search space as the dimensionality increases. This makes
large scale optimization a very challenging task. Cooperative Co-
evolution (CC) has been proposed by Potter and De Jong in order
to bring a notion of problem decomposition into EAs [10]. This
scheme is very promising for large scale optimization because of
its potential in decomposing a high dimensional problem into a set
of lower dimensional problems.

Various decomposition strategies have been suggested. In the
original CC implementation, the decision vector is decomposed
into a set of low-dimensional problems. In other words, every sub-
component evolves only one of the decision variables at a time [10].
In a more recent work [13] the decision variables are divided into k

s-dimensional subcomponents each of which is evolved separately
in a round-robin fashion (where k × s equals to the total number
of dimensions n). Since an individual in one subcomponent does
not form a complete solution, it will be concatenated by selected
individuals from other subcomponents (usually best members of
other subcomponents) before evaluation. This is where the coop-
eration happens. These static decomposition strategies are only ef-
fective when the interactions of variables between subcomponents
are kept at minimum [6]. This interdependency between the de-
cision variables is commonly referred to as non-separability [11]
or epistasis [5]. As remarked in [7]: “In other words, epistasis

measures the extent to which the contribution to fitness of one gene

depends on the values of other genes”. Salomon has shown that
the performance of EAs degrades significantly in optimizing non-
separable problems [11]. Without variable interaction, a large scale
problem could be decomposed into a set of one dimensional prob-
lems each of which is optimized for a predefined number of iter-
ations in a round-robin fashion. However, this is not an effective
decomposition under variable interaction. In order to benefit from
a CC framework in a non-separable domain, we need to identify
and group the interacting variables in common subcomponents.

Random Grouping [14] and Delta Grouping [9] are two major
attempts in capturing interacting variables in common subcompo-
nents. Cooperative Co-evolution with Variable Interaction Learn-
ing (CCVIL) [3], is another grouping technique recently proposed.
Delta grouping in particular has shown great performance where
there is only one group of interacting variables [9]. By the ad-
vent of such grouping techniques, it is now possible to quantify
the contribution of the separable and non-separable portions of an
optimization problem to the fitness of the individuals. In this pa-
per we demonstrate that there is usually an imbalance between the
contribution of the non-separable and the separable portions of an
optimization problem to the global fitness. We show that the round-
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robin strategy of CC in selecting a subcomponent to undergo opti-
mization is very ineffective where there is an imbalance between
the separable and non-separable portions of the fitness value. In
many cases the value of the separable portion of the fitness is neg-
ligible compared to its non-separable portion (or vice versa). This
means that even if the separable portion is optimized to its opti-
mum value, it will have minimum effect on the global fitness. In
such scenarios, most of the effort needs to be focused on the sub-
components with the most significant effect on the global fitness.
Round-robin strategy fails in such situations by putting equal em-
phasis on all of the subcomponents regardless of their fitness share,
wasting considerable amount of fitness evaluations (FEs).

In order to mitigate this deficiency of round-robin strategy, we
proposed a Contribution Based Cooperative Co-evolution (CBCC)
where the subcomponents are selected for further optimization based
on their contributions towards improving the global fitness. In a
nutshell, the rationale behind this new contribution based coopera-
tive co-evolution is to reduce the imbalance in the contributions to
the global fitness between the separable and non-separable compo-
nents as much as possible. Given a grouping strategy that can iden-
tify non-separable and separable subcomponents, this technique
keeps the separable and non-separable components of the fitness
value as close as possible to each other. Failing to do so will result
in a significant imbalance in subcomponent’s contribution to the
global fitness. In such situations the true improvement in some of
the subcomponents – no matter how well they converged – will not
be reflected in the global fitness simply because they are negligible
as compared to the fitness of other subcomponents. Any effort in
further improving the individuals in such subcomponents will be
simply wasted in the co-evolutionary process. The imbalance issue
and the mechanics of the CBCC algorithm is further described in
Sections 2 and 4 respectively. The organization of the rest of this
paper is as follows. Section 2 describes the imbalance issue in more
details. Section 3 covers the preliminaries. Section 4 describes the
CBCC algorithm. The experimental results and the analysis of the
empirical studies are described in Sections 5 and 6 respectively. Fi-
nally, Section 7 concludes the findings of the paper and sketches
possible future investigations.

2. THE IMBALANCE PROBLEM
It was described earlier in Section 1 that in some problems, there

may be an imbalance between the fitness contribution of the non-
separable and separable subcomponents to the global fitness. In
Cooperative Co-evolution, a round-robin method is employed to
optimize all of the subcomponents in an iterative manner. This
switching strategy splits the computational budget equally between
all of the subcomponents. However, it is clear that in the presence
of an imbalance between the fitness contribution of various sub-
components, this strategy is ineffective.

Here we use a concrete example to illustrate the imbalance issue
between the subcomponents. For our discussion we selected f4
from CEC’2010 benchmark suite [12] as a representative which is
defined as follows:

f4(~x) = 106 × felliptic(R[xp1 , ..., xpm ]T ) +

felliptic([xpm+1
, ..., xpn ]

T ) , (1)

where n is the dimensionality of the problem, m is the dimension-
ality of the non-separable portion, R is a rotation matrix to create
variable interaction, and ~p is a random permutation vector with val-
ues from {1, ..., n}. The variables m and n are set to 50 and 1000
respectively according to [12]. So f4 contains a 50-dimensional
non-separable subcomponent based on rotated elliptic function and

a 950-dimensional separable subcomponent based on the shifted
elliptic function (felliptic). Note that the coefficient 106 in Equa-
tion (1) creates the imbalance between the two components, giving
the non-separable component more weight in the overall fitness.

Our investigations on f4 have shown that its initial average fit-
ness of 25 independent runs is approximately 5.16×1015. In order
to quantify the fitness contribution of separable and non-separable
portions of the fitness we need to record them separately. The
newly proposed CEC’2010 benchmark functions gives us this flex-
ibility. Note that our proposed CBCC algorithm solely relies on the
global fitness value to estimate the contribution of various subcom-
ponents (See Section 4).

Recording the separable and non-separable subcomponents of
the fitness function revealed that the initial fitness of the non-separable
subcomponent is approximately 5.16×1015 while the fitness of the
separable subcomponent is approximately 3.44 × 1011. Note that
the global fitness is the sum of these two components. It is clear
that the contribution of the separable subcomponent in the global
fitness is negligible as compared to the non-separable subcompo-
nent. It is obvious that any effort in further optimizing the separa-
ble portion will not improve the global fitness significantly and any
major improvement is due to improvements in the non-separable
subcomponent. The round-robin strategy in CC treats both of the
subcomponents equally and in the case of f4, approximately half of
the fitness evaluations would be wasted. On the other hand, CBCC
algorithm uses these information to split the computational budget
between various subcomponents based on their contributions. It is
notable that CBCC works well as long as there is an imbalance be-
tween various subcomponents, no matter which subcomponent has
the maximum contribution. For example in the case of f4, if the
separable portion has a greater contribution in the global fitness,
any effort in optimizing the non-separable portion would be waste
of computational budget.

Without any systematic decomposition of decision variables into
separable and non-separable subcomponents, round-robin strategy
may be the best possible solution for choosing subcomponents to
undergo optimization. However, using more systematic grouping
techniques such as delta grouping [9] and CCVIL [3], it is now pos-
sible to identify non-separable variables from the separable ones.
Being able to quantify the fitness contribution of each of the sub-
components, more computational budget can be spent on the sub-
components with the greatest contribution in the improvement of
the global fitness value. Clearly, decomposition strategies (which
we will describe in the following section) play an important role in
determining the contributions of the subcomponents.

3. GROUPING STRATEGIES
In this section we describe the two decomposition strategies that

we used in our experiments, namely delta grouping and ideal group-
ing.

3.1 Delta Grouping
Delta grouping is a systematic approach for capturing interacting

variables [9]. According to Salomon [11], the improvement interval
of variables shrink considerably when dealing with non-separable
problems. The rationale behind the delta grouping is that when two
interacting variables are grouped in separate subcomponents, there
will be a limit to the extent these variables could be optimized to-
wards their global optimum [9]. Delta grouping is based on this
idea and sorts the decision variables based on their absolute mag-
nitude of change in each of the dimensions. In other words, a delta
vector is formed based on the absolute difference in the centroid of
populations in two consecutive iterations. By sorting the decision
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variables based on their corresponding delta values, it will be more
likely to place interacting variables with similar delta values close
to each other. Finally, in a CC framework the grouping of variables
is determined based on the sorted delta values.

3.2 Ideal Grouping
Ideal grouping refers to the decomposition of decision variables

into a set of subcomponents where there is absolutely no interde-
pendency between any two subcomponents. In order to perform
an unbiased analysis of CBCC algorithm, we decided to perform
a manual ideal grouping of the decision variables based on the
test functions provided in the CEC’2010 benchmark functions [12]
since we know exactly which variables interact with each other.
The purpose of using this “ideal grouping” information is to facil-
itate the comparison of our proposed CBCC model in the context
of such ideal situation in order to determine the effectiveness of
CBCC. For the sake of completeness, the performance of CBCC is
also benchmarked in combination with one of the systematic group-
ing strategies. We have chosen delta grouping for our studies. We
believe that the performance of grouping strategies will continue to
improve in near future, making an ideal decomposition of the de-
cision variables a feasible and achievable goal. For example, the
recently proposed CCVIL [3] seems to suggest that it is possible to
obtain a near optimal grouping of the decision variables.

4. CONTRIBUTION BASED COOPERATIVE

CO-EVOLUTION
Contribution Based Cooperative Co-evolution attempts to divide

the computational budget based on the contribution of different
subcomponents towards improving the global fitness. It was men-
tioned in previous section that the CBCC algorithm only relies on
the global fitness to calculate the contribution of separable and non-
separable subcomponents of the fitness function. This is not possi-
ble without any systematic grouping of the decision variables in or-
der to minimize the interdependency between the subcomponents.

Under ideal decomposition, there is no dependency between the
subcomponents. So when one of the subcomponents undergoes op-
timization while other subcomponents are kept intact, the changes
in the global fitness value will be the reflection of the improve-
ment in the selected subcomponent. Under a suboptimal decompo-
sition such as delta grouping, such calculations will be less accu-
rate. However, delta grouping still serves as a good approximation
to calculate the contributions of various subcomponents. It is clear
that the accuracy of the measurements relies on the accuracy of de-
composition strategy. According to [9], delta grouping is capable
of capturing interacting variables with reasonable accuracy when
the fitness function has only one non-separable component.

In this paper, we propose the CBCC algorithm to estimate the
contribution of each of the subcomponents by measuring the changes
in the global fitness when the respective subcomponent undergoes
optimization. Algorithm 1 shows how CBCC uses these informa-
tion to select various subcomponents for optimization. CBCC is
very similar to a conventional CC. After the initialization, each of
the subcomponents which are formed using either delta or ideal
grouping will be selected in a round-robin fashion to measure their
initial contributions in the global fitness (Algorithm 1, lines 12-
19). We call this the testing phase. It can be seen that the array ∆F

keeps track of the changes in the fitness for all of the subcompo-
nents. In the next stage (Algorithm 1, lines 20-30) the subcompo-
nent with the greatest entry in ∆F is selected for further optimiza-
tion. The difference between the two versions of the CBCC (i.e.
CBCC1 and CBCC2) is in this stage. In CBCC1, the selected sub-

Algorithm 1: CBCC(cycles, FEs, version)

1. pop[1 : Npopsize, 1 : n]← random population

2. (best, best_val)← min(evaluate(pop))
3. oldpop← pop
4. prev_best_val← best_val
5. for i← 1 to cycles do

6. if grouping_method = “ideal” then

7. (groups, num_groups)← ideal_grouping()
8. else

9. (groups, num_groups)← delta_grouping()
10. if i = 1 then

11. ∆F ← zeros(1, num_groups)
12. for j ← 1 to num_groups do

13. indicies← groups(j)
14. subpop← pop[:, indicies]
15. subpop← SaNSDE(best, subpop, FEs)
16. pop[:, indicies]← subpop
17. prev_best_val← best_val
18. (best, best_val)← min(evaluate(pop))
19. ∆F [i]← ∆F [i] + prev_best_val− bestval
20. δ ← 1
21. while δ 6= 0 do

22. ∆F _indicies← sort_descending(∆F )
23. indicies← groups(∆F _indicies[1])
24. subpop← pop[:, indicies]
25. subpop← SaNSDE(best, subpop, FEs)
26. pop[:, indicies]← subpop
27. prev_best_val← best_val
28. (best, best_val)← min(evaluate(pop))
29. δ ← prev_best_val− bestval
30. ∆F [∆F _indicies[1]]← ∆F [∆F _indicies[1]] + δ
31. if version = “CBCC1” then

32. δ ← 0

component is optimized for only one iteration whereas in CBCC2,
the selected subcomponent will be optimized as long as it improves
the fitness. When no improvement is identified in the selected sub-
component, the algorithm enters the testing phase to give all of
the subcomponents another chance to update their contributions in
∆F . Note that the contribution information is accumulated from
the first cycle.

5. EXPERIMENT SETUP
We conducted our experiments based on the newly proposed

CEC’2010 benchmark functions which have been proposed for the
Special Session and Competition on Large Scale Global Optimiza-
tion in CEC’2010 [12]. The advantage of this benchmark suite is
that the degree of non-separability is well defined and is adjustable.
This set of benchmark functions is scalable and contains five major
categories which are as follows:

1. Separable Functions (f1-f3)

2. Single-group m-nonseparable Functions (f4-f8)

f4: Single-group Shifted and m-rotated Elliptic Function.
f5: Single-group Shifted and m-rotated Rastrigin’s Function.
f6: Single-group Shifted and m-rotated Ackley’s Function.
f7: Single-group Shifted and m-rotated Schwefel’s Problem 1.2.
f8: Single-group Shifted and m-rotated Rosenbrock’s Function.

3. n
2m

-group m-nonseparable Functions (f9-f13)

4. n
m

-group m-nonseparable Functions(f14-f18)

5. Nonseparable Functions (f19-f20)

In the above list, m refers to the number of interacting variables
in a non-separable group and n is the dimensionality of the prob-
lem. We have used the original values used in [12] which are 50
and 1000 respectively. We have excluded the fully separable func-
tions (f1-f3) and fully non-separable functions (f19-f20) from our
experiments because the focus of this paper is on problems where
there are a mixture of separable and non-separable variables. From
the remaining functions we focused our analysis more on functions
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Table 1: Result of CBCC variants and DECC over 1000 dimen-

sions using delta grouping (averaged over 25 runs).

Functions CBCC1-D CBCC2-D DECC-D

f4 3.884424e+12 3.953996e+12 3.994117e+12

f5 3.846258e+08 3.934090e+08 4.162337e+08

f6 4.025218e+06 2.449806e+06 1.356873e+07

f7 4.214883e+07 4.222071e+07 6.578934e+07

f8 3.604591e+07 5.639487e+07 5.392069e+07

f9 6.240636e+07 6.231822e+07 6.187354e+07

f10 1.181007e+04 1.193022e+04 1.156625e+04

f11 5.611686e+01 5.592898e+01 4.764118e+01

f12 1.538192e+05 1.512779e+05 1.527193e+05

f13 9.168733e+02 1.066448e+03 9.867780e+02

f14 1.981534e+08 2.040980e+08 1.983536e+08

f15 1.534865e+04 1.542186e+04 1.531490e+04

f16 1.525727e+02 1.698745e+02 1.880495e+02

f17 8.994593e+05 8.893276e+05 9.030164e+05

f18 2.891205e+03 2.366799e+03 2.123339e+03

Table 2: Result of CBCC variants and DECC over 1000 dimen-

sions using ideal grouping (averaged over 25 runs).

Functions CBCC1-I CBCC2-I DECC-I MA-SW-Chains [8]

f4 5.1828e+11 4.9948e+11 6.1306e+11 3.53e+11

f5 1.1192e+08 1.1468e+08 1.3439e+08 1.68e+08

f6 1.6331e+01 1.6301e+01 1.6358e+01 8.14e+04

f7 5.8431e+02 9.6063e+02 2.9676e+01 1.03e+02

f8 1.0907e+03 4.7965e+05 3.1908e+05 1.41e+07

f9 5.5926e+07 6.2658e+07 4.8397e+07 1.41e+07

f10 3.9186e+03 3.9134e+03 4.3361e+03 2.07e+03

f11 1.0082e+01 1.0392e+01 1.0206e+01 3.80e+01

f12 2.3631e+03 2.3664e+03 1.4754e+03 3.62e-06

f13 1.1129e+03 1.1050e+03 7.5150e+02 1.25e+03

f14 3.6539e+08 3.5944e+08 3.3762e+08 3.11e+07

f15 5.8581e+03 5.8682e+03 5.8754e+03 2.74e+03

f16 6.0027e-13 8.2380e-13 2.4741e-13 9.98e+01

f17 4.5081e+04 4.5663e+04 3.9151e+04 1.24e+00

f18 1.1543e+03 1.1328e+03 1.1694e+03 1.30e+03

f4 to f8 due to their imbalance characteristic. The imbalance issue
is less significant in functions f9 to f13 and functions f14 to f18 do
not have any imbalance issue.

For every function, we run each of the algorithms for 25 indepen-
dent runs and the mean and median are recorded. The dimension-
ality of all of the functions is set to 1000. We used SaNSDE [15] as
the subcomponent optimizer in a CC framework and its population
size of the subcomponent optimizers is set to 50. We call this algo-
rithm DECC. The maximum number of fitness evaluations is set to
3× 106 according to [12].

6. ANALYSIS OF RESULTS
This section contains the experimental results and the analysis

of the outputs. Table 11 contains the average fitness of the 25
independent runs using delta grouping. The results for two vari-
ants of CBCC and the standard round-robin implementation of CC
(DECC) are recorded in this table. Table 2 contains similar infor-
mation but ideal grouping is used instead of delta grouping.

It can be seen from Table 1 that both CBCC variants outperform
DECC on the second category of the benchmark functions (f4-f8)
with the exception of f8 where only CBCC-1 outperforms DECC.
The reason that we don’t see the same trend on the next category
(f9-f13) might be due to poor performance of delta grouping in
dealing with functions with more than one non-separable compo-
nents. Although there is still a separable subcomponent in this cat-
egory of functions, the poor performance of delta grouping affects

1The last character in CBCC1-D or DECC-D refers the grouping
strategy. ‘D’ stands for delta and ‘I’ stands for ideal grouping.

the performance of the contribution based strategy in choosing the
right subcomponents for optimization. For the next category of
functions (f14-f18), since all of the components of the benchmark
functions are non-separable, we do not expect to see any advantage
in CBCC. This is because there is no imbalance between the fitness
share of various components and hence all of the subcomponents
should have equal chance of being selected for optimization. As a
result, there is no clear trend for functions f14-f18 in Table 1 and
in most cases the performance of CBCC and DECC is similar.

As we mentioned earlier in Section 3.2, although delta group-
ing is effective in capturing the interacting variables for the second
category of the benchmark functions, it is still an approximation
technique which is far from an ideal grouping. The real contri-
bution of a subcomponent is reflected only when the dependency
between the subcomponents is kept to a minimum. This happens
when we have an ideal separation of non-separable variables. So
in order to better analyze the effect of the new contribution based
CC, we also report the performance of both variants of CBCC and
standard round-robin CC using ideal grouping of the decision vari-
ables. Table 2 contains similar results to Table 1, however ideal
grouping is used instead of the delta grouping.

Table 2 shows the same trend as Table 1 except for f7 and f8. In
order to justify this behavior we need to study the fitness of the sep-
arable and non-separable components of the fitness function sepa-
rately, which is further described later in this section (see Tables
3 and 4). We can also see from Table 2 that on functions f9-f13,
although the imbalance issue is less significant, at least one variant
of CBCC has a better performance than its round-robin counter-
part (DECC). Functions f10 and f11 behave as such. Note that this
is hardly the case in delta grouping due to its poor performance
on this category of functions (Table 1). We also compared the re-
sults in Table 2 with MA-SW-Chains [8], which is ranked first in
CEC’2010 Competition on Large Scale Global Optimization [12].
It is interesting to see that both CBCC versions outperformed MA-
SW-Chains on f5, f6 and f8 from the second category of functions
and on f11, f13, f16, and f18 on the rest of the categories.

Looking at the global fitness value in Tables 1 and 2 is not suf-
ficient for proper understanding CBCC’s behavior. So in order to
better understand the effect of CBCC, we recorded the fitness value
for the separable and the non-separable portions of the fitness func-
tion separately in Table 3. It can be seen from the table that the
result of Wilcoxon test is provided for significance testing. Note
that the test is conducted for the separable and non-separable sub-
components separately. The research hypothesis is as follows: Hr:
CBCC < DECC. In addition to these information the number of
times that the separable and non-separable subcomponents are se-
lected for optimization is also reported in Table 3. Since there are
19 non-separable subcomponents in CBCC-D, the grouping infor-
mation for the non-separable subcomponent is based on the sub-
component that captured the maximum number of interacting vari-
ables. The number of times that this particular subcomponent is
selected to be optimized, is also based on the average of the 25
runs.

By looking at Table 3, we can see that both variants of CBCC
spend more time on the subcomponent that contains most of the
interacting variables and hence less time is spent on the separable
component. This shows that CBCC picks the subcomponent that
has the maximum contribution in the improvement of the global
fitness. By looking at the fitness values for the non-separable com-
ponent of the fitness, we can see that in most cases, the value of
the CBCC variants is lower than the corresponding value of their
round-robin counterpart (DECC-D). This is intuitive as the contri-
bution based methods spend more iterations on non-separable sub-
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Table 3: Empirical results of CBCC and DECC on f4 to f8 using delta grouping with separate fitness values for non-separable and

separable subcomponents. The frequency that each subcomponent is selected for optimization is also recorded.

Delta Grouping DECC-D CBCC1-D CBCC2-D CBCC1-D vs DECC-D
n = 1000 Non-sep Sep Non-sep Sep Non-sep Sep Non-sep Sep

f4

Mean 4.192954e+12 2.815573e+7 3.884384e+12 4.02947e+7 3.953953e+12 4.423631e+7
Median 3.804919e+12 2.633791e+7 3.499598e+12 3.278075e+7 3.999183e+12 4.197518e+7 0.2305 0.9245
Times optimized 3000 3000 3773 2959 4003 2947

f5

Mean 4.396958e+8 2.282362e+2 3.846256e+8 2.22091e+2 3.934088e+8 2.172886e+2
Median 4.447408e+8 2.264145e+2 3.950831e+8 2.230814e+2 3.651457e+8 2.200173e+2 0.0199 0.1758
Times optimized 3000 3000 3431 2977 3545 2971

f6

Mean 1.589092e+6 1.568911e+0 4.025214e+6 4.05105e+0 2.449804e+6 2.497631e+0
Median 7.105427e-9 1.98952e-13 7.105427e-9 2.096101e-13 7.105427e-9 2.167155e-13 0.6424 0.9972
Times optimized 3000 3000 4111 2941 4819 2904

f7

Mean 4.951645e+7 4.770511e+5 4.156518e+7 5.836553e+5 4.164323e+7 5.77486e+5
Median 4.643947e+7 4.790678e+5 4.046763e+7 5.86592e+5 4.034548e+7 5.890547e+5 0.0627 1.0000
Times optimized 3000 3000 4458 2923 5097 2899

f8

Mean 4.132078e+7 3.079968e+0 3.60471e+7 4.240595e+0 1.287568e+9 6.29461e+1
Median 3.053601e+7 6.576564e-1 2.553446e+7 7.968974e-1 6.013773e+7 3.697347e-1 0.2803 0.7515
Times optimized 3000 3000 3200 2989 3860 2959

Table 4: Empirical results of CBCC and DECC on f4 to f8 using ideal grouping with separate fitness values for non-separable and

separable subcomponents. The frequency that each subcomponent is selected for optimization is also recorded.

Ideal Grouping DECC-I CBCC1-I CBCC2-I CBCC1-I vs DECC-I
n = 1000 Non-sep Sep Non-sep Sep Non-sep Sep Non-sep Sep

f4

Mean 6.130147e+11 2.332101e+4 5.182743e+11 2.067237e+6 4.99486e+11 3.475966e+5
Median 5.822549e+11 3.629365e+3 5.551435e+11 2.839523e+5 4.85171e+11 2.260827e+5 0.0935 1.0000
Times optimized 30000 30000 39998.6 20001.4 40447.04 19554.16

f5

Mean 1.343821e+8 4.090196e+3 1.119111e+8 4.058337e+3 1.146796e+8 4.130307e+3
Median 1.367885e+8 4.064429e+3 1.146625e+8 4.048534e+3 1.159609e+8 4.115858e+3 0.0006 0.3708
Times optimized 30000 30000 39999.48 20000.52 40022.4 19978.6

f6

Mean 3.552714e-9 1.635790e+1 3.552714e-9 1.633141e+1 3.552714e-09 1.630051e+1
Median 3.552714e-9 1.634814e+1 3.552714e-9 1.617864e+1 3.552714e-9 1.622167e+1 1.0000 0.2803
Times optimized 30000 30000 39999.08 20000.92 40168.64 19832.36

f7

Mean 5.820803e-5 2.967570e+1 4.084439e-10 5.843126e+2 2.263991e-10 9.606294e+2
Median 2.677231e-5 4.335381e+0 2.411188e-10 3.426061e+2 1.064567e-10 2.8997e+2 0.0000 1.0000
Times optimized 30000 30000 39999.24 20000.76 40614.24 19387

f8

Mean 3.189299e+5 1.462483e+2 2.04991e-12 1.090707e+3 4.783949e+5 1.258563e+3
Median 6.022649e-15 5.7762e+0 5.965865e-13 3.908341e+2 1.583456e-12 7.575727e+2 1.0000 1.0000
Times optimized 30000 30000 39999.52 20000.48 40900.12 19100.84

components. Conversely, the fitness value of the contribution based
methods for the separable portion is higher than the corresponding
value of their round-robin counterpart. Based on Hr we expect the
test results for the non-separable portion to be close to zero and
for the separable portion it is expected to be close to one. With
a confidence interval of 90% (α = 0.1) only the non-separable
subcomponents of CBCC on f5 and f7 are significantly lower than
DECC (p-value < α). The reason for poor result of Wilcoxon test
might be due to inherent inaccuracy of delta grouping in captur-
ing interacting variables. Also note that in delta grouping there are
19 separable subcomponents, so the non-separable subcomponent
is executed approximately 10 times less than ideal grouping. This
might be another reason for poor results of Wilcoxon test. As a
result of this, we expect to see a boost in the performance of CBCC
when ideal grouping is employed.

Table 4 contains similar information to Table 3, however the
ideal grouping is used. The overall trend in Table 4 is that the con-
tribution based technique focuses most of the computational bud-
get on non-separable subcomponents. For this reason the fitness of
the non-separable portion is lower in CBCC-I implementations as
opposed to DECC-I. This observation holds with a significance of
90% confidence interval. However, by looking at Table 2 we can
see that this behavior does not necessarily result in a better overall
performance. The reason can be identified by a closer look at the
entries of f6 and f7 in Table 4. As it can be seen, the non-separable
portions of the fitness function are relatively easy to optimize and
the fitness value drops below the fitness value of the separable por-

tions. This behavior of the non-separable subcomponent causes its
fitness to be negligible with respect to the separable portion. On the
other hand, the round-robin implementation spends more time on
the separable subcomponent which has the maximum effect on the
global fitness value. This is why the overall fitness value of CBCC-
I on f6 and f7 is lower than DECC-I. This behavior shows that
CBCC is highly influenced by historical information in the early
stages of evolution and it is not capable of responding to the local
changes in fitness of the non-separable and separable subcompo-
nents. In the case of f6 and f7, the non-separable subcomponent
has the maximum initial contribution in the improvement of the
global fitness. However, the early convergence of its value be-
low the fitness value of the separable portion makes it negligible
as compared to the separable portion of the fitness. This behavior
can be clearly seen from the convergence plots of f6 and f7 in Fig-
ure 1(c) and 1(d) respectively. It is clear that the convergence graph
of the non-separable portion crosses the convergence graph of the
separable component relatively early in evolutionary process. In
such situations it is expected from CBCC to switch to the subcom-
ponent which has more contribution to the global fitness. This is
clearly not the case for CBCC. With a better adaptation technique it
is expected that contribution based method has the potential to out-
perform MA-SW-Chains on more functions. Overall, the conver-
gence plots of f6 and f7 show that the non-separable portion’s fit-
ness value of CBCC is generally lower than DECC and conversely,
the separable portion’s fitness of CBCC is generally higher than
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DECC. This is because of the emphasis that CBCC places on the
subcomponent with the most contribution to the global fitness.

Another interesting observation is the occasional increases in
the fitness of the separable component of the fitness. This can be
clearly seen in Figures 2(a) and 2(e). It is notable that the global
fitness is monotonically decreasing, however if we look at the fit-
ness for the separable and non-separable portions separately we
can see some occasional increases in their fitnesses. Interestingly,
this behavior only happens when the delta grouping method is em-
ployed. It should be realized that when delta grouping is used, there
are always a few non-separable variables mixed with the separable
variables in different subcomponents. For example when a non-
separable subcomponent undergoes mutation and crossover, since
some of the separable variables are mixed with the non-separable
ones, their value might also change in the process. These changes
in the separable variables is not guaranteed to improve the fitness of
the separable component, because the algorithm judges the fitness
of an individual based on its global fitness and it does not distin-
guish between the fitness of the separable and non-separable por-
tions. As a result of this, if there is a major improvement in the non-
separable portion and yet there is a smaller increase in the fitness
of the separable portion, the overall effect would be an improve-
ment in the global fitness. The reason that we see this behavior is
because we record the fitness of the separable and non-separable
components separately.

As it was mentioned earlier, this behavior never happens in an
ideal grouping situation. The reason is, when a subcomponent un-
dergoes mutation and crossover – under ideal grouping – it only
affects the separable or the non-separable portions at a time. This
observation by itself is yet another motivation that encourages re-
search in finding better decomposition strategies and moving to-
wards automatic ideal grouping of the decision variables. Under
such ideal decomposition the best individuals will be recognized
and preserved and the computational budget will not be wasted by
losing the best individuals in various subcomponents.

7. CONCLUSION
In this paper we have identified the issue of imbalance between

the contribution of different subcomponents in cooperative co-evolution.
Round-robin switching of subcomponents is only effective when
there is no imbalance between the subcomponents. However, in
many problems there may be an imbalance between the fitness
contributions of different subcomponents. In such situations, us-
ing round-robin switching strategy results in wasting considerable
amount of computational resources. To mitigate the imbalance is-
sue we proposed Contribution Based Cooperative Co-evolution that
– unlike ordinary cooperative co-evolution – selects the subcompo-
nents based on their contribution in the improvement of the global
fitness. By employing CBCC, less computational resources would
be allocated to the subcomponents with negligible contributions.

One major drawback of CBCC is its slow response to local changes
in the fitness value and relies on the information accumulated form
the early stages of evolution. This weakness of CBCC could be
resolved by using an adaptive technique that maintains a balance
between the local and global contributions of subcomponents. In
our future works, we are interested in investigating a proper adap-
tive strategy for CBCC in order to make it responsive to the local
changes in the fitness contributions of various subcomponents.

Contribution Based Cooperative Co-evolution relies on a group-
ing strategy that captures the non-separable variables in a com-
mon subcomponents. In this paper we used delta grouping and
ideal grouping for the analysis of CBCC. The promising results of

an ideal grouping motivates further investigation in finding better
grouping strategies for non-separable problems.

8. REFERENCES
[1] T. Bäck. Evolutionary Algorithms in Theory and Practice:

Evolution Strategies, Evolutionary Programming, Genetic

Algorithms. ser. Dover Books on Mathematics. Oxford
University Press, 1996.

[2] R. E. Bellman. Dynamic Programming. ser. Dover Books on
Mathematics. Princeton University Press, 1957.

[3] W. Chen, T. Weise, Z. Yang, and K. Tang. Large-scale global
optimization using cooperative coevolution with variable
interaction learning. In Parallel Problem Solving from Nature

- PPSN XI, volume 6239 of Lecture Notes in Computer

Science, pages 300–309. Springer Berlin / Heidelberg, 2011.

[4] D. E. Goldberg. Genetic Algorithms in Search, Optimization,

and Machine Learning. Addison-Wesley, 1989.

[5] W. S. Klug, M. R. Cummings, C. Spencer, C. A. Spencer,
and M. A. Palladino. Concepts of Genetics. Pearson, 9
edition, 2008.

[6] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi. Scaling up fast
evolutionary programming with cooperative coevolution. In
Proceedings of Congress on Evolutionary Computation,
pages 1101–1108, 2001.

[7] Z. Michalewicz. Genetic algorithms + data structures =

evolution programs (2nd, extended ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1994.

[8] D. Molina, M. Lozano, and F. Herrera. Ma-sw-chains:
Memetic algorithm based on local search chains for large
scale continuous global optimization. In Evolutionary

Computation (CEC), 2010 IEEE Congress on, pages
3153–3160, july 2010.

[9] M. N. Omidvar, X. Li, and X. Yao. Cooperative co-evolution
with delta grouping for large scale non-separable function
optimization. In Proceedings of IEEE Congress on

Evolutionary Computation (CEC), pages 1762–1769, 2010.

[10] M. A. Potter and K. A. De Jong. A cooperative
coevolutionary approach to function optimization. In
Proceedings of the Third Conference on Parallel Problem

Solving from Nature, volume 2, pages 249–257, 1994.

[11] R. Salomon. Reevaluating genetic algorithm performance
under coordinate rotation of benchmark functions - a survey
of some theoretical and practical aspects of genetic
algorithms. BioSystems, 39:263–278, 1995.

[12] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise.
Benchmark functions for the cec’2010 special session and
competition on large-scale global optimization. Technical
report, Nature Inspired Computation and Applications
Laboratory, USTC, China, 2009.
http://nical.ustc.edu.cn/cec10ss.php.

[13] F. van den Bergh and A. P. Engelbrecht. A cooperative
approach to particle swarm optimization. IEEE Transactions

on Evolutionary Computation 8 (3), 2:225–239, 2004.

[14] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary
optimization using cooperative coevolution. Information

Sciences, 178:2986–2999, August 2008.

[15] Z. Yang, K. Tang, and X. Yao. Self-adaptive differential
evolution with neighborhood search. In Proc. of IEEE

Congress on Evolutionary Computation (CEC), pages
1110–1116, 2008.

1120



 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 0  5000  10000  15000  20000  25000  30000

Iterations

DECC-I-Nonsep
DECC-I-Sep
CBCC2-I-Nonsep
CBCC2-I-Sep
CBCC1-I-Nonsep
CBCC1-I-Sep

(a) f4

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0  5000  10000  15000  20000  25000  30000

Iterations

DECC-I-Nonsep
DECC-I-Sep
CBCC2-I-Nonsep
CBCC2-I-Sep
CBCC1-I-Nonsep
CBCC1-I-Sep

(b) f5

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0  5000  10000  15000  20000  25000  30000

Iterations

DECC-I-Nonsep
DECC-I-Sep
CBCC2-I-Nonsep
CBCC2-I-Sep
CBCC1-I-Nonsep
CBCC1-I-Sep

(c) f6

 1e-10

 1e-05

 1

 100000

 1e+10

 1e+15

 0  5000  10000  15000  20000  25000  30000

Iterations

DECC-I-Nonsep
DECC-I-Sep
CBCC2-I-Nonsep
CBCC2-I-Sep
CBCC1-I-Nonsep
CBCC1-I-Sep

(d) f7

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 0  5000  10000  15000  20000  25000  30000

Iterations

DECC-I-Nonsep
DECC-I-Sep
CBCC2-I-Nonsep
CBCC2-I-Sep
CBCC1-I-Nonsep
CBCC1-I-Sep

(e) f8

Figure 1: Convergence plots of f4 to f8 using ideal grouping. The plots are based on average of 25 independent runs.
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Figure 2: Convergence plots of f4 to f8 using delta grouping. The plots are based on average of 25 independent runs.
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