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ABSTRACT

Coevolutionary algorithms are plagued with a set of problems re-
lated to intransitivity that make it questionable what the end prod-
uct of a coevolutionary run can achieve. With the introduction of
solution concepts into coevolution, part of the issue was alleviated,
however efficiently representing and achieving game theoretic so-
lution concepts is still not a trivial task. In this paper we propose
a coevolutionary algorithm that approximates behavioural strategy
Nash equilibria in n-player zero sum games, by exploiting the mini-
max solution concept. In order to support our case we provide a set
of experiments in both games of known and unknown equilibria.
In the case of known equilibria, we can confirm our algorithm con-
verges to the known solution, while in the case of unknown equi-
libria we can see a steady progress towards Nash.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Plan execution, formation, and generation

General Terms

Algorithms, Performance, Experimentation

Keywords

Coevolution, Nash Equilibrium, Tree Searches

1. INTRODUCTION

Artificial Coevolution [21], roughly speaking, is a process where
one agent improves relative to another set of agents, hopefully in a
never-ending arms-race [6]. There is a number of reasons why one
might prefer using coevolution rather than regular artificial evolu-
tion. The major one is that the environment adapts to the agent,
making any effort to adapt versus a snapshot of that environment
futile. This is typical in multi-agent settings. For example, if one
wanted to find an optimal tennis agent (player), the only available
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and optimal evolutionary solution would be to somehow evolve
against an optimal agent, which is logically self-defeating (in the
sense that if we already have an optimal agent, there may be little
point in evolving one). In coevolution, one would start with a se-
lection of players which would try to compete against each other,
ideally reaching good performance after some evolutionary cycles.
Another potential problem with the standard evolutionary (as op-
posed to coevolutionary) approach would be that the environment
is too hard to evolve against, and therefore one can hope that co-
evolution will provide a smoother learning curve. There is ample
evidence from artificial life and biology (for example [26]) that
learning it easier when the difficulty of the task progresses in an
incremental fashion. By trying to evolve against an optimal agen-
t/environment we run the risk of creating a situation where we never
get any meaningful gradient in order to warrant any progress. In
practice, there is often a simple solution to this latter problem of
reduced gradient by simply making a strong opponent weaker by
forcing it to make random moves.

Unfortunately, due to a set of issues, the situation is almost never
ideal in coevolutionary domains. The evolved agents are usually
stuck in suboptimal/mediocre solutions or cycle in the solution space,
never actually reaching a fully optimum strategy (ex. see [5, 27]).
This problem has been identified in a series of publications (see
next section), and it is directly related to optimality - in other words
when do we consider an agent optimal in a coevolutionary setting,
so that we get a gradient towards that solution. The major contri-
bution of this paper is a novel method for what we think is the
most popular solution concept, Nash equilibria in n-player zero
sum games. Compared to an alternative method of finding Nash
equilibria using coevolution proposed by Ficici [9] (see [17] for a
real game implementation), our algorithm does not require either an
archive nor solving linear programming equations; the end result of
the algorithm is just one agent, rather than a collection of agents;
we also think there are certain advantages we have compared to
non-evolutionary methods, mostly related to imperfect recall (i.e
when the agent forgets parts of the historical events that took place
in a game).

The rest of this paper is organised as follows: Section 2 provides
the necessary background in coevolution and game theory. Section
3 describes our algorithm. In Section 4 we perform a number of ex-
periments where we showcase the efficiency of our new algorithm
in a set of games. Finally, we provide some insights and conclude
this work at Section 5.



2. BACKGROUND

2.1 Evolution & Coevolution

In traditional artificial evolution each individual g; in a popula-
tion of individuals G is transformed to its corresponding phenotype
and assigned a value F' : X — R, G C X where function F' is
termed the fitness function, and X is the search space. A set of op-
erators is applied on the population (ex. mutation, crossover), and
we move to the next generation. The process continues until some
stopping criterion is met. Coevolution does almost the same thing,
with the exception that fitness is measured relative to other agents.
Thus, at least in competitive coevolution, we are trying to evolve
agents in multi-agent settings. This creates a situation where there
is no objective function to measure overall progress, but rather a
series of subjective tests [19]. In a quite large number of cases
it leads to mediocre performance from the evolved agents, mostly
due to intransitivity [7]. Agent A is able to outperform agent B, and
agent B outperforms agent C, but it might turn out that C is better
than A.

2.2 Single Agent Environments and Evolution

2.2.1 Markov Decision Process

Most policy searching problems can be conceptualised as a Markov

Decision Process (MDP). The MDP is a tuple (S, A, T, f) where:
S is aset of states, A a set of actions, T'(s'|s, a) is the probability of
moving from state s to s after action a, f(s, a), a reward function
at each state (although in practice lot’s of states might have one that
is 0). The MDP environment is the most commonly used environ-
ment when evolving agents. It assumes that we have a single agent
environment, fully observable to the agent. One can also think of
that as a singe player game. A learner’s goal in this setting is to
learn a controller, or a policy, that maximises reward. Evolution is
used a policy search method, tweaking some vital parameters of a
controller.

2.2.2  Partially Observable Markov Decision Process

A Partially Observable MDP (POMDP) [15] is described by a
tuple P = (S, A, T, f,O,N,bg). S are the world states, A is a
finite set of actions available to the agent, 7" is a transition function,
so that T'(s'|s, a) is the probability of moving from state s to s’
after action a. f(s,a) is a reward function. O is a finite set of
observations. N (a|s’, 0) is an observation function which denotes
the probability of receiving observation o if the agent applies action
a and the world moves to state s’. by is the agent’s initial belief,
such that bo(s) is the probability that the initial state is s. In the
POMDP setting, an agent needs to encode historical actions in the
environment as well, as he is having beliefs over possible states.
Again, one can use evolution in this setting as well, and beliefs
over states can either be explicitly given to the agent (transforming
the POMDP to an MDP) or hope that the evolutionary process will
uncover them.

2.2.3 Multi-Agent Environments and Coevolution

The MDP and POMDP formalisms described above cannot be
mapped directly to multi-agent settings, as they only account for
single agent dynamics. One has to look to game theory in order
to find suitable representations for multi-agent problems. Broadly
speaking a game' can be defined as the tuple (N, O, 0, fa, (Z;)
where N is the set of players, O are sequences of actions a, of each
player (Histories) drawn of A, o (h) a is a function that takes a his-
tory and outputs and action, f.(a|h) gives the payoffs, and , finally

"For exact definitions of games and strategies, please see [20]
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, (Z;), is an information set, i.e. the histories which an agent cannot
distinguish. For this paper, an agent and a strategy o are equivalent
notions. There is a number of ideas that we need to map from game
theory to evolution. The first one is the concept of a strategy. In
the case of evolution, one can intuitively think of the agent, agent
policy and strategy interchangeably. The second idea is the idea
of a solution concept. A solution concept is what one would deem
as solution to the game and it was transferred from game theory
to evolution by Ficici’s Ph.D thesis [9]. In normal (single agent)
evolution for example, a possible solution concept would be “the
individual with the highest fitness score”. In coevolution there is a
number of possible solution concepts (ex. Pareto dominance, Nash,
Maximum expected values, see [22]), and one has to make it ex-
plicit which one is aiming at.

2.2.4 Nash Equilibria Solution Concept in Coevolu-
tion

The Nash equilibrium is a solution concept that states that once
all players have reached a specified set of strategies, none has an
incentive to deviate from his strategy unilaterally. Formally , we
can define G : (S, f.(a|h)) as a game with n players, S; is all
possible strategies for player N;, S is the set of all possible strat-
egy profiles, defined as the Cartesian product between all possible
strategies for each player (.S = S1.X52XS5...X Sy, ). The payoff
function is as seen previously, fc(alh) = (fi(alh), ..., fa(a|h)).
Each player can choose a strategy o;, which creates a strategy pro-
file 0 = 01,02,03...,0,. Let o_; be a strategy profile that lacks a
strategy for player N;. A strategy profile o™ is a Nash equilibrium
if:

Vpi, 00 € Si,00 # 0] ¢ fi(o],0%;) > fi(oi,0;) (M

In the above (eq.1), wherever one sees a strategy, it can be re-
placed with agent/phenotype. Although the Nash equilibria is a
concept that applies to strategy profiles, i.e. collections of agents,
in this paper, if a strategy if part of a Nash profile, we will call this
strategy a Nash strategy.

Finding Nash equilibria might turn out to be harder than an-
ticipated, so we alternatively should aim towards the concept e-
Nash [29].

Vpi, 05 € Siyoi £ of e+ filoi,05;) > filoi,07)  (2)

2.2.5 Behavioural Strategies

It is not necessary that a single strategy for each player will suf-
fice for Nash equilibria, it has however been proven [18] that a
weighted probability over a number of pure strategies, known as a
mixed strategy, will always exist in zero sum games as part of the
Nash profile. In coevolution this has been solved by attributing a
probability distribution over a number of evolved solutions [8]. In
case an agent however has perfect recall, i.e. all past states can be
remembered by our agent, one can attribute probabilities to each
specific action [4] and create what is termed “behavioural strate-
gies”. Thus, at a specific state, if there are three possible actions,
an agent might need to perform action one with 0.2, action two
with 0.3 and action three with 0.5 probability in order to be part of
Nash profile.

One might question the ability of a real organism to perform
mixed strategies; it is not often that we think we might base a
decision on probabilities. The primary motivator for using mixed
strategies it to avoid becoming predictable. Once you become pre-
dictable, an opponent has a strong incentive to switch to a strategy
that exploits your traits. If however you maintain the right balance



between moves (while in Nash Equilibria), modelling you is not
beneficial any more and any effort of your opponents to actively
exploit one of your models will probably lead to bad performance
from their part. Behavioural Strategies do have biological motiva-
tion; for example in [12] one can see that animals explicitly mix
strategies, not just at a population level, but at personal level as
well. Finally there is a whole field of study dedicated to studying
human decision making at a neuronal level [14].

The advantage of using behavioural strategies rather than mixed
strategies has to do with the complexity of the problem. Even in a
trivial to solve game like one card poker with 13 cards, one has 225
pure strategies, which means at best we have to evolve that many
strategy weights. On the other hand, using behavioural strategies
we only have to search to search space of 26 * 4 x 3 real numbers
in order to find a possible solution®.

2.2.6 Zero Sum Games, Minimax and Nash

Intuitively, once a strategy profile (where all the strategies are
the same) is formed, one can measure a best response (BR) strategy
against the profile by calculating a pure counter strategy. We can
then modify our strategy so it can minimise the expect reward of
the BR(o;) strategy, and keep doing that process iteratively until
BR(0;) has approached zero expected reward (the player is not
exploitable). Another way to see this is that we are looking for
an agent that can solve the minmax problem (eq. 3), that is, we
are actively trying to minimise our opponents maximum payoff;
Nash equilibrium and minimax are equivalent concepts in zero sum
games (but not in general sum).

3

arg min max f (o1, 02)
o1ES oo €S

Effectively, we are looking to improve the worst case perfor-
mance of our agent. The importance of this cannot be overstated,

and it is the base of most successful game playing agents (ex. chess).

Unless we have a clear model of our opponents at each time step,
the best strategy we can afford is one where we assume the worst
possible opponent.

2.3 Tree Searches

By assuming that there are two ontologically different parts of
nature, other agents and the environment, and that our agent knows
both about this dichotomy and that is aware of the causality of na-
ture, we can start performing searches in the future in order to find
out an optimal set of actions. The reason why we need this di-
chotomy is because other agents are not only observed by us, but
they observe us as well. Thus they might have incentives to change
their strategies based on our actions. This would in turn lead us
to have an incentive to deviate from our own actions etc, ad infini-
tum. The process is captured in [28]. Alternatively, one can how-
ever make the assumption that the process described previously can
continue for ever, so it makes sense to start thinking of your oppo-
nent as the best opponent possible. This kind of thinking has lead
to wide array of algorithms that exploit the forward model mostly
using tree searches, and we briefly visit them below.

2.3.1 Minimax

Provided a problem has perfect and complete information, i.e.
there is no source of randomness in the world, all moves are ob-
servable, and a model of the world is encoded by the agent, one can
use the minimax [23] algorithm in order to choose which action

*This depends to a certain extend on the encoding we use, more
concerning this in the methodology section
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one should perform at each time step. The agent simulates a tree
of possible future states, at each level trying to identify moves that
minimise his potential loss against his opponents. The idea here is,
since we don’t have a model of the opponents in the world, but we
do have one of nature, we must try and find a worst case solution,
i.e. , the equivalent of playing against the strongest possible player.
Usually, because simulating the future indefinitely is computation-
ally expensive, the search is stopped at a certain depth and some
heuristic value function is used as the reward. Of course, it would
all be easier if our world model included a model of our opponents,
and we could simply extrapolate to the future, but in most scenar-
ios this model is simply not there. Thus, instead of trying to win,
we actively try not to lose, hoping that mistakes in our opponent
behaviour will lead to his demise. The algorithm, and variations of
it, have been proved extremely successful, effectively forming the
basis of a large number of game players (ex. Tron, Chess).

2.3.2  Expectimax

If the underlying world/game we are trying to reason in has an el-
ement of incompleteness, i.e randomness, we need some way of en-
coding this randomness to our future extrapolation process. Thus,
an expectimax tree is the same as a minimax tree, with the excep-
tion of random event nodes. We usually introduce, a third player,
explicitly termed nature, which takes turns modifying the world in
a random fashion. We now aim to find moves that minimises our
losses in expectation.

2.3.3  Miximax

Contrary to games of perfect information, in games of imper-
fect information none of the previous algorithms (i.e. minimax,
expectimax and their Monte Carlo approximations) can be used.
This is for two reasons: the first one is that there is nothing to min
or max, as we lack knowledge about the current state the world.
The second is that the nodes are not independent. Thus, even if
we have an opponent model, and thus no need to min/max, we
would end up solving a series of perfect information games (see
figure 3). In order to counter this, one can actively learn how oppo-
nents will behave, group sets of states into information sets, and try
to exploit this using perfect information tree searches. The oppo-
nent behaviour learning can potentially be done using any machine
learning method. The resulting tree is called miximax [3] and be-
haves like a tree search on a POMDP (after it has been transformed
on a MDP), although there is no explicit Bayesian belief update (a
machine learning algorithm gives the requested rewards/beliefs).

2.3.4 Monte Carlo Tree Searches

The trees presented above are usually extremely long and cannot
be analytically calculated, but for the smallest worlds. There are
various methods of pruning the tree, and terminating the search
early. Recently, a new way of approximating the tree searches
has been proposed, termed “Monte Carlo Tree Search” (MCTS).
In MCTS, each node in the tree is seen as multi-armed bandit [2].
The goal of the search is to “push” more towards areas of the search
space that seem more promising. Although there are slightly dif-
ferent versions of the algorithm, the one presented in [10] is the
“original” version. The algorithm can been summarised as follows;
starting from the root node, expand the tree by a single node. If
the node is a leaf node, back-propagate the value to the node’s an-
cestors in the tree. If not continue expanding into deeper nodes by
using a bandit strategy ex.

In(n)

nj
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Nature Chooses
Position

Figure 1: A sample poker tree using Bayesian updates. Observe
that there is no player 2, as we have converted the game to a sin-
gle player POMDP. Player two action probabilities are acquired
through some machine learning algorithm.

If the node is not a leaf node, keep exploring the tree until one
is reached. There have been many improvements on the algorithm
above, with some modern versions barely resembling the idea orig-
inally proposed, but the concept remains the same.

3. METHODOLOGY

3.1 Evolutionary Strategies

Whenever evolution is mentioned a (1, \) — CSA — ES [11]
Evolutionary Strategy is used, where the parents u for each gener-
ation are always half the offspring population A = 10. Our use of
CSA-ES is mainly motived by its excellent performance in previous
applications. In that respect, any evolutionary algorithm or genetic
algorithm that supports a real-valued encoding could be used. In
our experiments each state in the game is assigned a number of
genes that are necessary to describe it (see next subsection).

3.2 Treating Behavioural Strategies

3.2.1 Representing Behavioural Strategies

We present two ways of representing behavioural strategies. One
is by direct encoding. That is, for each tuple of histories (a=?,
at=t, a2, aff"fl) (or an abstraction of histories) we can
encode another tuple (01, 02, 03, 05 ) which describes the probabil-

ities for each action using equation 5:

Pa(k) =

2izo

04

&)

Another representation involves using Neural Networks(NNs).
NN are a category of universal function approximators [25] loosely
based on the function of biological neurons. In this paper we will
concern ourselves with one of their simpler incarnations, the multi-
layer perceptron. The multi-layer perceptron is an directed graph,
usually set-up in an input-hidden-output layer fashion. The input
vector presented to the neural network will be transformed to an
output vector using equation 6.

f(z) = G2 (b2 + W2 (G1 (b1 + Wix))) (6)
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In our case, G2 is the sigmoid function and G is tanh. The inputs
4; of the network can be histories (if we we have perfect recall) or
some other measurement we acquire from the game. Thus, for each
history/state we provide some inputs to the neural network (ex. past
histories, current state abstractions) and we get outputs which we
then feed equation 5 to turn into action probabilities.

3.2.2 Measuring the Expected Value of behavioural
Strategies

How can one evaluate an agent that encodes a behavioural strat-
egy? Even if there is no source of randomness in the environment,
we introduce such randomness by having our agents take actions at
random. Thus, there are two ways of measuring the expected value
of our agents. The first one would be pit the agents against each
other and keep playing games repeatedly for a number of iterations,
until we are satisfied that we have found the expected value. This
might even be necessary in case where the rewards, actions and
states are continuous as we might have trouble properly discretiz-
ing the resulting spaces. However if we can somehow get past this,
we can easily treat the game as an expectimax tree without the min
nodes. Instead of min nodes, we can now plug in the probability
of each action at each state/information set. This will result in very
fast and exact measurement of the expected values of all involved
agents, with the drawback of a much larger memory consumption.

3.3 Purely Evolutionary Solution

External Fitness

Generations

Figure 2: Imaginary progress of the purely evolutionary version
of the algorithm. The external evolutionary run tries to approach
0 (not exploitable by anyone), while the internal evolutionary runs
try to maximise their maximum score, thus providing “scaffolding”
(and a gradient) for the external run

We will present two methods of reaching Nash Equilibria. The
first one involves using just evolution. Both algorithms are pre-
sented in Algorithm 1. For the purely evolutionary version, in order
to evaluate each genome, we run a contra-evolutionary run, trying
to find out exactly the worst possible performance of the genome.
In short, the fitness of each genome in the outer loop is evaluated
by having someone evolve an agent against it in the inner loop. The
first heuristic that we use here is that we provide the inner loop a
good starting point, which in symmetric games would be either the
best candidate from the outer loop or the best candidate from the
previous run of the inner loop. Furthermore, it makes sense to in-
crease the number of generations in the inner loop as we progress
through the generations of the outer loop. Initially, we can accept
weak or mediocre response strategies, whereas in later stages we
need almost optimal agents in order to measure any meaningful
best response. In figure 2 we can see such an evolutionary run .



Algorithm 1 minmazx — coevolve()

function cocvolve()
Initialise Evolutionary Run
kou < The outer loop generations
kin < The inner loop generations
for1 < 0Oto! = ko, do
for each G;; in G do
if pureCoevolution then
F; < evaluate_inner_looop(Gij, kin)
else
Ph; < G; // Map to phenotype
F; < 0.5— expct-MCTS(Ph;, depth, node) // subtract
from 0.5 as we normalise for zero sum games
return MAX(F)
end function

function evaluate_inner_looop(Gi, kin)
Ginitial < Gl
Initialise Evolutionary Run
for1 < Oto! = k;, do
for each G;; in G do
Ph; < G; // Map to phenotype
Ph;j < Gi; // Map to phenotype
F;; < either play some games between the agents or eval-
uate exactly
return MAX(F)
end function

function expct-MCTS(Ph;, depth, node)
if node.isTerminal() then
return 3" P(h:)f (hi, a)
else if depth < 0 and node.isNotRandom() then
return MCTS(node, N N;) {perform normal single player
MCTS, with the same probabilities for each node as in the
non-MCTS part (see below)}
else if node.isNotRandom() then
a 4+ —00
for each child in node do
a < max(a, expct-MCTS(child, depth — 1))
else
if node.isNature() then
for each belief in node do
P(hPew) = SF  P(hS')P(hY'® — hI") {Ran-
dom Nature event. Initial beliefs are set to 1.0}
expct-MCTS(child, depth — 1)
if node.isNatureFromOtherPlayers() then
a<+ 0
for each child in node do
for each belief in node do

P(hslar) = Plaglhi) P(hs) {Bayesian belief update,

P(a
using strategy o, Wili}éil is encoded in the neural net-
work}
a + a + P(O,H)max(a, expct-MCTS(Ph;,child,
depth — 1))

return a
end function

1111

3.4 Tree Search solution

The problem with the previous solution is that it can take a long
time to converge in larger problems. We need at least |G|kinkout
function evaluations for each generation, which is indeed slow, with
|G| being the number of players at each generation. An alternative
would be to roll-out a tree and perform a tree search for the worst
case scenario. However, it could be the case that not all actions are
observable in our perspective environment, which makes things a
bit harder. At this point we can start using Bayesian reasoning in
order to form beliefs over the action space - which we no longer
observe. In other words, we can replace the internal evolutionary
run with a model-based tree search procedure, at least in the case
where we can effectively discretize the action space and the states.
Thus, we can use treat the “external® agent as nature. In that sense,
we have created a POMDP; We then try to find the expected value
for this POMDP by converting it to an MDP and performing Monte
Carlo tree searches in order to get the expected value of the worst
case opponent.

3.4.1 Converting the POMDP to an MDP

If the game is of perfect information, we can simply use the
natural MDP that arises from the tree representation of the single
player game. Assuming however that there are hidden actions, one
can convert the POMDP to an MDP [15]°. Hence, for each belief
hi; € H (eq.7) and the latest action ay:

P(ak|hi)P(h;)

P(hilak) == Plar)

)
Thus, assuming we have a model for our opponents, P(h;) (the
prior) becomes the probability of the hidden state in the current
node (initially, for example, the probability of dealing card in kuhn’s
poker), before we make the current observation. P(ay|h;) (the
likelihood) is the probability that one of our opponents would do
an action, given that state h; is true; this we obtain from our oppo-
nent model (if we include the histories/other observations as well).
P(ay) (the marginal) we get from the model again, by simply sum-
ming over all the probabilities for the last specific action in the tree.
Assuming now that nature performs a hidden action, and we are
to move to a new set of states for each h;, and with probability of
moving from belief state h2'? to A7'*™ via nature hidden action a
defined as P(h{'Y — A7), we can update our beliefs as follows
(eq. 8):
k
P") = 37 PR PR — )

=0

®)

Once we reach the terminal nodes, we now have the final proba-
bility of each hypothesis. Thus the rewards are simply (eq. 9):

n
f(s,a) =Y P(hi)f(hi,a) ©)
i=0

Once this game is in this form, we can now use expectimax to
find the reward that the best strategy would give us, the same way
that we can do it in games of perfect information. Since expecti-
max’s memory and speed requirements are huge, we only use ex-
pectimax to a certain depth, after which we use Monte Carlo Tree
searches in order to acquire the average reward. The full algorithm
is presented in Algorithml.

3We convert to a belief MDP the same way as [15], albeit using a
slightly different notation we think is more suitable for games



4. EXPERIMENTS

We have provided two sets of experiments; one where we just
confirm that the algorithm works if it is used in games of known
equilibria and another one where we try to evolve agents for full
scale two-player limit texas holdem.

4.1 Simple Experiments

In the first batch of experiments, we don’t use Monte Carlo tree
searches, as the trees are small enough to be searched exhaustively.
In the first experiment we use a vector representation of the actions
(we are effectively evolving a population of agents with genome
size three) using the purely evolutionary version of the algorithm
presented above. We used a biased version of Rock-Paper-Scissors,
first presented in [24]. The algorithm converges to the required
equilibrium

e P(rock) =0.0625
e P(paper) = 0.6250
e P(scissors) =0.3125

with arbitrary precision within milliseconds. We can easily get sim-
ilar results by evolving a neural network with 0 inputs* (none is
needed, as there is only a single state), 1 hidden neuron and three
output neurons (one for each probability of Rock, Paper or Scissor).

We can confirm that the algorithm does provide one of the solu-

tions to Kunh’s poker [16] ((1/3(0,0,3) +1/3(0,1,3) +1/3(2,0, 3)

=1/3(00,00,11) +1/3(00,01,11) +1/3(10, 00, 11)) (for player
two), using the original paper’s encoding. In our case the behavioural
strategies found after 2000 iterations(using a neural network repre-
sentation and full histories) are:

P&, [}, 4P

P[4 BB

fi=... fi=...

Figure 3: Part of Kuhn’s poker tree

e P(Bet|(1,0nBet)) = 0.001
e P(Bet|(2,0nBet)) = 0.333
o P(Bet|(3,0nBet)) = 0.999
e P(Bet|(1,0nCall)) = 0.333
e P(Bet|(2,0nCall)) = 0.001
o P(Bet|(3,0nCall)) = 0.999.

We can also confirm that for one of the solutions for 13 card
“one-card poker™, the tree search part of the algorithm measures
the total maximum exploitation value as 5 log-precisions close to

*A zero input neural network is the equivalent of a vector, we just
demonstrate here that it can be evolved

Shttp://www.cs.cmu.edu/ ~ggordon/poker/
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0. An example tree for both Kuhn’s poker and simple card poker
can be seen in figure 3. In all the card games above we evolved a
neural network with three inputs (current card, player one previous
action, player two previous action), 4 hidden neurons and 2 outputs
(one for raise/call and one for fold).

4.2 Full Scale two player limit Holdem

We will not describe limit-holdem here, as we think there is an
impressive amount of commercial publications tackling the subject.
However, it is worth saying that holdem is a card game of poker,
with multiple betting rounds. It is an imperfect game, with imper-
fection stemming from the fact that nature is performing hidden
moves. It is also incomplete, due to the existence of nature (the
card deck). The game, even in the 2 player abstracted version can
have a huge number of tree nodes (107 — 10%). In order to evolve
full scale poker players for heads up limit holdem, we performed
a number of heuristics so we could create a sensible abstraction.
The resulting miximax tree is still huge (tens of millions of nodes),
but it’s manageable by today’s computers. The process of abstrac-
tion followed is similiar to the one presented in [13]. First, we
abstracted the game into 6 buckets using K-Means++ [1] with only
one dimension. In order to extract features for each round, we map
the expected value of each 2-card, 5-card, 6-card and 7-card com-
bination in a probabilistic fashion, using Monte Carlo sampling.
We perform 4, 000, 000 for each of the 169 possible preflop hands,
100 iterations for each resulting sequence for flop and turn, while
we perform 10 random rollouts for each river combination. We then
associate each bucket with the probabilities of moving to another
bucket in the next round (see figure 5).

Game Start

<1
<]

| <
@1@@
B IPesE Ero S

river:0.6-0.8
showdown:0.0-0.4 showdown:0.7-1.0

Figure 5: 4 Bucket clusters for each round of poker (for illustration
purposes, we use 6-bucket clusters in our experiments). Please note
that due to K-Means++ there are different probabilities for each
each cluster, as it groups a different number of cards. Thicker lines
represent higher transition probabilities, while the number of each
circle represent the minimum and max expected value in a bucket.

river:0.3-0.5 river:0.8-1.0

showdown:0.4-0.7

For the agent, we evolve a set of tuples, each of which has three
possible actions (fold, call, raise). Each tuple contains the follow-
ing “inputs”

e The current bucket (i.e. from 0 to 5)
The current round (from O to 3)

The current position of the button (0 or 1)

The raises of our current player in this round

The opponent raises in this round.
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Figure 4: Intensity plots for agent actions (no raises at all on top row, 1 raise in current round from the opponents on bottom row)

We evolved the agent for 200 generations, with a population of
16, which took approximately 12 hours®. The resulting agent is
exploitable by 0.84 bets (with 1.5 bets being the the exploitabil-
ity of an always folding player). The bets are set to 1 in the first
two rounds (pre-flop and flop) and 2 during turn and river. For
MCTS we used a maximum expectimax depth of 9, from which
point onwards we used Monte Carlo tree searches for one thousand
iterations. The progress can be seen in figure 6.

In figure 4 we can see an intensity plot for each action on each
round, with darker colours meaning higher probability of an action.
On the top row, we can see the agent’s behaviour when there has
been no raise. The same agent’s behaviour can be observed in the
bottom row, but this time when when a single raise took place dur-
ing the current round. One can see that the agent is reasonable,
although there are obviously still some inconsistencies (for exam-
ple on the top row, an agent which hadn’t yet seen any action might
fold on preflop on some rare occasions, a senseless action).

We think its premature to compare directly with the best known
algorithm to date for finding equilibria in large games, Counterfac-
tual regret(CFR) [29]), as we have both imperfect recall and used
significantly less computing power than CFR. We do require sig-
nificantly less space for our policy (orders of magnitude) as we use
a function approximator. However it is our belief that we can now
attack larger games where the amount of computing resources re-
quired is currently prohibitive for CFR, albeit with less accuracy.

®We use a Core i7 950 machine in all experiments, with 8 parallel
threads

Fitness (best of generation)

Evolved Variables, recent (840-D)

0 I I L I I I 3 1
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000

Figure 6: CMA-ES converging towards towards Nash VS number
of function evaluations. The first graph on the left is the external
fitness, while the graph on the right portrays the evolved genome

S. DISCUSSION & CONCLUSION

We have presented a novel method for approaching Nash equilib-
ria in multi-player games. Two different algorithms were presented
and evaluated, one based purely on evolutionary methods, and one
mixing evolution with Monte Carlo tree searches. To the best of
our knowledge this is the first time behavioural strategies have been
directly attacked by coevolution (in the context of game-theoretic
optimal solutions) and the first time one can approach Nash equi-
libria with arbitrary precision using evolutionary methods alone.
Our method lacks convergence proofs, as it mostly depend on the
quality of the genetic algorithm/evolutionary strategy used, and this
might not be appealing to a number of game theory practitioners.
‘We think however that especially in A.L., clean cut and dry solutions



are not (or should not be) the aim. Our aim is to create methods that
can potentially scale to massive problems, and we think we are on
the right track with this one.

We understand that the second experiment required knowledge
outside the coevolutionary domain, but there is literally no way of
escaping the trivialities of most game theoretic problems without
moving to large domains that require coarser abstractions. This
requires bringing in multi-domain knowledge in order to even have
a chance to attack the problem successfully.

Although the algorithm was created with games of imperfect in-
formation in mind, there is no reason why it cannot be used in
games of complete/perfect information. We also think the algo-
rithm can be used in order to find robust solutions in any prob-
lem where there is some form of dynamical change at runtime and
we aim for robustness, as it directly attacks the minimax problem.
There are two obvious next steps; the first one is to scale in un-
solved games (ex. no limit holdem) and try to acquire strong agents
in games where this couldn’t be the case previously. The second
one is to try and understand what kinds of agent representations
are not only theoretically correct, but also produce strong agents
in practice. For example, multi-layer perceptrons are notoriously
hard to evolve for some games. It could be preferable that a dif-
ferent representation might be used, as to boost the performance of
the final agents.
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