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ABSTRACT

The performance of a memetic algorithm (MA) largely de-
pends on the synergy between its global and local search
counterparts. The amount of global exploration and lo-
cal exploitation to be carried out, for optimal performance,
varies with problem type. Therefore, an algorithm should in-
telligently allocate its computational efforts between genetic
search and local search. In this work we propose an adaptive
local search method that adjusts the effort for local tuning
of individuals, taking feedback from the search. We imple-
mented an MA hybridizing this adaptive local search method
with differential evolution algorithm. Experimenting with a
standard benchmark suite it was found that the proposed
MA can utilize its global and local search components adap-
tively. The proposed algorithm also exhibited very compet-
itive performance with other existing algorithms.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Unconstrained
optimization, Stochastic programming, Global optimization

General Terms

Algorithms

Keywords

Differential Evolution, Memetic Algorithm, Adaptive MA,
Adaptive Local Search

1. INTRODUCTION
The term“memetic algorithm”(MA) was coined by Moscato

[11], that refers to an evolutionary algorithm (EA) coupled
with local search (LS) within the evolutionary framework.
Hybridization of EAs with LSs is also known as hybrid ge-
netic algorithms [7], genetic local searches [3], Lamarckian
GAs [10], Baldwinian GAs [21] etc. MAs are recent devel-
opment in the field of EA and are acknowledged as very
effective search meta-heuristics.
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EAs are population based stochastic search algorithms
competent for locating (pseudo) optimum solutions through
exploration and exploitation of the search space. However,
EAs are often criticized for not being suitable for fine tuning
as they might take too much time to locate the exact solu-
tion [12, 14]. On the other hand LS algorithms get easily
trapped in local minima, though they can locate the local
optimum very quickly. Therefore, hybridization of EA with
LS forms a very effective search framework by taking ad-
vantage of both paradigms of global search (GS) and local
search (LS) [16].

Although MAs can serve as effective tools for global op-
timization, the success depends on the balance between the
exploration, by the global search component, and the ex-
ploitation, by the local search process [5]. And the tradeoff
between GS and LS is very critical for the performance of
MAs, because they interact with the search space very dif-
ferently. Failing to strike a balance between GS and LS not
only wastes computational effort (fitness evaluations) but
also results in premature convergence.

Previous studies have shown that the performance of MAs
is dependent on LS operator [6, 15], frequency of LS [5],
choice of individuals for LS [4] and intensity of LS [14, 8].
The influence of these design issues on the performance of
MAs has motivated the design of self-adaptive MAs.

Ishibuchi et al. tried to adjust the balance between GS
and LS by using three parameters: local search probability
(PLS), intensity of LS (k) and local search application in-
terval (T ) in their MOGLS algorithm [5] and showed that
improper choice of these parameters may drive their algo-
rithm to perform very poor. Ong and Keane [15] proposed
an adaptive choice of LS operators to ensure robustness in
MAs. In their method they used a pool of LSs and based
on the online performance of different LSs in the pool, the
selection of LS is biased. Bambha et al. [1] introduced a sim-
ulated heating framework that systematically incorporates
parameterized LS into the framework of GS.

Lozano et al. [8] used a crossover based LS (XLS) method
and an adaptation mechanism to decide which individual
should undergo LS process. In this way, they attempted to
adjust the global/local search ratio. Capino et al. [2] pro-
posed an adaptive control to balance the needs of exploration
and exploitation dynamically using a dynamic parameter
setting and adaptive use of two LS with different structures.
Smith proposed a framework for coevolving memes encoding
definitions used in an MA for creating a robust scalable op-
timization platform [18]. Noman and Iba [14] tried to adjust
the intensity of LS length by using a hill-climbing method.
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Within the framework of cellular genetic algorithm (cGA),
Nguyen et. al [13], proposed a stratified adaptation method
for selecting suitable individuals to undergo LS operation.
Nguyen et. al [12] proposed a probabilistic framework for
MA for deciding online whether evolution or individual learn-
ing should be favored for accelerating the algorithm. They
also derived a theoretical bound for LS intensity that was
incorporated in their framework. Molina et al. [9] proposed
the concept of local search chain in order to use intense con-
tinuous LS operators effectively in MAs.

All these recent work highlight the importance of adapta-
tion in MA. Following this recent trend in MA, in this work
we propose an adaptive local search for dynamically balanc-
ing the degree of GS and LS. Based on online search perfor-
mance, the adaptive LS scheme selects the number of indi-
viduals that should undergo LS operation and also adjusts
the maximum intensity of the local tuning of each selected
individual. We hybridized this adaptive LS scheme with
differential evolution (DE), a prominent real-valued EA, in
the general template of MA. We evaluated the proposed MA
with a standard benchmark suite consisting of ten test prob-
lems with different characteristics. The experimental results
show that the proposed MA can adaptively favor its evo-
lutionary and local improvement counterparts and thereby
balance the exploration and exploitation capacity of the al-
gorithm. Comparing with other MAs the performance of
the proposed algorithm was found to be very competitive.

2. THE CANONICAL MA AND DE
This section reviews the framework of canonical memetic

algorithms (MAs) and then overviews the differential evolu-
tion (DE) algorithm briefly. This recap will help to formalize
our proposed adaptive MA which will be presented next.

2.1 Memetic Algorithm
Apart from a few disagreements, most people recognize

the term “memetic algortihm” as some sort of hybridization
between EAs and LSs. Generally, the LS is incorporated
within the template of EA such that both components work
cooperatively to explore the search space for global opti-
mum [11, 18]. A very general framework of MA is shown in
Algorithm 1.

Algorithm 1 MA

1: P = initialize population randomly
2: P = applyLS(P )
3: while termination criteria not satisfied do
4: Select parent individuals from P

5: Apply crossover and mutation to generate offspring C

from parents
6: P = Select (P ,C)
7: P = applyLS(P )
8: end while

The template of Algorithm 1 gives the impression of MA
that incorporates the LS within its evolutionary loop. How-
ever, this simple “applyLS()” operation actually is an over-
simplified representation of integrating LS in the evolution-
ary cycle. It hides all the design issues: when to apply,
whom to apply, how long to apply, what to apply etc., that
are crucial for the performance of the algorithm. Neverthe-
less, from Algorithm 1, it is evident that an MA is actually

an interplay between EA and LS whose success depends on
useful cooperation and beneficial competition between them.

2.2 Differential Evolution
Differential Evolution (DE) is a very powerful and reli-

able optimizer for continuous search spaces [19, 20]. The
algorithm has many attractive characteristics compared to
other EAs, such as simple and easy-to-understand structure,
few controlling parameters, superior convergence character-
istics and robust performance. DE has proven to be very ef-
fective in solving non-linear, non-differentiable, non-convex
and multi-modal optimization problems. Due to its robust
performance, DE has found many applications in real world
problems.

DE works with a population of N -dimensional vectors x
i
G,

i = 1, 2, · · · , P . Each vector x
i
G represents a solution in the

N dimensional search space. P denotes the number of indi-
viduals in the population and G denotes the current genera-
tion. Initial population is created by randomly creating the
vectors in appropriate search ranges. Then each individual
is evaluated to determine its fitness.

DE does not apply selection pressure for selecting par-
ents. Rather, in each generation, every individual x

i
G, once

becomes the principal parent to breed it own offspring mat-
ing with other parents. These auxiliary parents are cho-
sen randomly. Formally, for every principal parent x

i
G, i =

1, 2, · · · , P , three other auxiliary parents x
r1
G , x

r2
G , x

r3
G are

selected randomly such that r1, r2, r3 ∈ {1, 2, · · · , P} and
i 6= r1 6= r2 6= r3. Then these three auxiliary parents take
part in differential mutation operation to create a trial in-
dividual x

trial
G as follows:

x
trial
G = x

r1
G + F (xr2

G − x
r3
G ) (1)

where F is the amplification factor, a positive real number
typically less than 1 [17].

Then the trial vector, x
trial
G , with the principal parent

x
i
G, participates in a crossover operation to generate the

offspring x
child
G . Two different crossover operations, bino-

mial and exponential, were suggested for DE in its original
proposal [20], though in principle any real-valued crossover
operation is possible. Both of the above mentioned crossover
operations are administrated by another parameter called
crossover probability, Cr ∈ [0, 1.0]. In binomial crossover,
genes of x

child
G are inherited from either x

trial
G or x

i
G with

probability Cr. In exponential crossover, Cr determines how
many consecutive genes of the trial vector, x

trial
G , on average

are copied to the offspring x
child
G . The exponential crossover

was used in our implementation of DE in this work.
The selection scheme used in DE is also known as parent-

child competition. As the name suggests, in order to select
the survivor DE employs a deterministic binary knock-out
competition between each individual x

i
G and its offspring

x
child
G as follows:

x
i
G+1 =



x
child
G if f(xchild

G ) is better than f(xi
G)

x
i
G otherwise

(2)

Besides, several other variants of DE, with different learn-
ing strategies, exist about which can be learnt from [17].

3. DE WITH ADAPTIVE LS
A new adaptive LS scheme to balance the exploration and

exploitation ratio in an MA, is presented in this section.
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Later we describe how this LS is incorporated within DE to
implement an adaptive MA. The success of an MA lies in the
synergy between its GS and LS components so that the ex-
ploration and exploitation capabilities of the algorithm can
be balanced. However, the performance of GS and/or LS
heavily depends on the problem type. Even their perfor-
mances may vary at different stages of the search. There-
fore, it should be profitable if the GS or LS components’
CPU share can be adjusted according to their performance.

Driven by the above notion, here we propose an adaptive
LS scheme that controls the maximum exploitation allowed
for LS based on its online performance. We keep track of the
performance of both GS (GSperf ) and LS (LSperf ) in recent
generations. If LS is performing better than GS then we in-
crease our preference to exploitation and if LS is performing
poor then we reduce our favor for LS. We regulate our pref-
erence to LS by adjusting the number of individuals that
will receive LS (NLS) and the maximum LS intensity (ILS).
The adaptation scheme is shown in Algorithm 2. It should
be noted that by adjusting NLS and ILS we can reciprocally
administer our preference to LS or GS.

Algorithm 2 AdaptLS

1: Calculate LSperf and GSperf

2: if LSperf > GSperf then
3: Increase ILS by q%
4: Increase NLS by q%
5: if NLS > 0.5 × |P | then
6: Set NLS = 0.5 × |P |
7: end if
8: else
9: Decrease ILS by q%

10: Decrease NLS by q%
11: if NLS < 1 then
12: Set NLS = 1
13: end if
14: end if

In order to implement this adaptive LS algorithm we need
to measure the performance of the search components. To
estimate the performance of a search algorithm we keep
track of the total number of search operations (fitness evalu-
ations) applied and the total fitness improvement achieved in
these search operations. Each time a child has better fitness
than its parent, the absolute value of their fitness difference
is added to fitness improvement. Then the performance of
a search algorithm (S) can be defined as follows:

Sperf =
Total fitness improvement achieved by S

Total fitness evaluation used in S
(3)

Another issue involved in the design of this adaptive LS
operation is the choice of individuals to receive LS. The
most favorable candidates for LS operation are the individ-
uals with higher fitness as they are perhaps the individuals
closer to the basin of attraction [8, 14]. On the other hand
too much exploitation of elite individuals may result into
premature convergence. In order to balance between these
two contradictory criteria, we first include the best individ-
ual and then other (NLS − 1) random individuals from the
current generation in our LS pool.

The final decision is about choosing the LS operator. In
some recent work, it has been shown that the Davies, Swann,
and Campey method with Gram-Schmidt orthogonalization

(DSCG) is a very good choice as an LS operator in con-
tinuous domain [15]. Moreover, some very recent MAs have
been implemented using DSCG [13]. Therefore, in this work
we used DSCG as our LS operator which also gives us the
opportunity to compare our algorithm with these MAs more
fairly.

Algorithm 3 DEaLS

1: PG = initialize population randomly
2: Initialize NLS and ILS

3: PG = applyLS(PG)
4: while termination criteria not satisfied do
5: for each individual xi in PG do
6: Select auxiliary parents
7: Create offspring xc using mutation and crossover
8: PG+1 = PG+1∪Best(xc,xi)
9: end for

10: Set G = G + 1
11: PG = applyLS(PG)
12: if G mod GADJ == 0 then
13: Call AdaptLS

14: end if
15: end while

The adaptive LS scheme was integrated within the frame-
work of DE to implement an adaptive MA. The newly de-
veloped MA is called DEaLS which is shown in Algorithm 3.
DEaLS works with DE’s genetic operators and DSCG is used
as LS operator. The algorithm also keeps track of fitness
evaluation and fitness improvement achieved by its GS and
LS operators. And after each GADJ generations, it adapts
its degree of exploration and exploitation based on the per-
formance track of GS/LS in last GADJ generations.

4. EXPERIMENTAL RESULTS
In this section we present the numerical study done on

the newly proposed DEaLS algorithm to evaluate its perfor-
mance. In order to justify the effectiveness of the proposed
adaptive LS scheme we compared it with another static LS
scheme where the NLS and ILS parameters were initialized
with the same values as in DEaLS but were kept constant
throughout the search. And all the NLS individuals, receiv-
ing LS, were chosen randomly. We call this algorithm DE
with fixed LS (DEfLS). We also compared the newly pro-
posed algorithm with the original DE algorithm under the
same parameter settings. Additionally, to justify the com-
petitiveness of the proposed algorithm we compared it with
the multi start DSCG (MS-DSCG) and two other adaptive
MAs (ACMA5 and ACMA10) proposed in [13]. In all of
these MAs, DSCG was used as the LS operator. And the
experimental results of MS-DSCG, ACMA5 and ACMA10,
presented here, are collected from [13].

4.1 Test Suite and Performance Measure
Before presenting the results of numerical study we de-

scribe the benchmark suite and the evaluation criteria used
to compare different algorithms. The test suite consists
of ten benchmark functions commonly used for algorithms’
performance evaluation. Three of these benchmark func-
tions are unimodal problems: Sphere (fsph), Elliptic (fell)
and Schwefel1.2 (fsch); six are multimodal problems: Ack-
ley (fack), Rastrigin (fras), Griewank (fgrw), Rosenbrock
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Table 1: Performance comparison for fsph (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success

MS-DSCG † 0.0 (344) 0.0 (6070) 0.0 (1365) 0.0 (1111) 100%
ACMA5 † 0.0 (435) 0.0 (2857) 0.0 (742) 0.0 (603) 100%
ACMA10 † 0.0 (429) 0.0 (4345) 0.0 (700) 0.0 (805) 100%

DE 1.38E-37 (91023) 1.26E-36 (95125) 4.76E-37 (93189.4) 2.18E-37 (909.17) 100%
DEfLS 7.17E-39 (343) 2.10E-38 (376) 1.35E-38 (361.0) 2.56E-39 (8.07) 100%
DEaLS 3.08E-67 (334) 9.87E-66 (372) 1.89E-66 (356.5) 1.54E-66 (8.48) 100%

† In [13] error values is assumed to be 0.0 if < 10−8

Table 2: Performance comparison for fell (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 0.0 (344) 0.0 (8191) 0.0 (1688) 0.0 (1686) 100%
ACMA5 0.0 (448) 0.0 (4454) 0.0 (1675) 0.0 (1139) 100%
ACMA10 0.0 (442) 0.0 (4312) 0.0 (1124) 0.0 (964) 100%

DE 4.41E-34 (116162) 4.93E-33 (121413) 1.69E-33 (118656.8) 8.73E-34 (1100.23) 100%
DEfLS 5.38E-35 (346) 2.05E-34 (376) 1.19E-34 (360.6) 3.60E-35 (6.94) 100%
DEaLS 7.08E-63 (335) 2.79E-61 (375) 5.92E-62 (358.1) 5.14E-62 (9.08) 100%

† In [13] error values is assumed to be 0.0 if < 10−8
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Figure 1: Convergence curve for fsph function.
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Figure 2: Convergence curve for fell function.

(fros), Weierstrass (fwrs) and Schaffer (fscf ); and the last
one is a real world problem, the frequency modulation sound
(ffms). All these problems were studied at 30 dimension
except the real world problem which is a six-dimensional
problem. This is the same test suite used in [13] and the
definition of these benchmark functions can be found in [13]
and in many other places in literature.

Each of these problems was solved in 50 independent trial
runs starting from different random initial solutions. In each
of these trials, we allowed an algorithm N ∗ 10, 000 fitness
evaluations at maximum to solve a problem. We recorded
the best error value (fitness value) achieved at the end of the

trial and also kept track of the number of fitness evaluation
required to achieve the error value < 10−8 if the algorithm
could achieve that. Then the minimum, maximum, aver-
age, and standard deviations of these error values and the
required fitness evaluations were used for comparison. The
notation used in comparison tables is xxx(yyy) which indi-
cates that an algorithm could reach this xxx error value at
the end of the search and it took yyy fitness evaluations to
reach an error value < 10−8. We also compared in terms
of success rate which is the rate of reaching the error value
< 10−8.

4.2 Results and Analysis
The experimental setup for DE, DEfLS and DEaLS was

as follows: population size P = 100, amplification factor
F = 0.5, crossover probability Cr = 0.9, initial values for
NLS = 5, ILS = 300, q = 10 and GADJ = 10. The function-
wise comparative results are presented in Table 1 to 10 and
Fig. 1 to 10. The best results are marked in boldface.

For fsph and fell functions, which are unimodal, symmet-
ric functions without epistasis, the MS-DSCG could locate
the global optimum very quickly as shown in Table 1 and 2
respectively. When this LS was hybridized with EAs the re-
sulting MAs reasonably performed better than the LS alone.
But the convergence rate of canonical DE was slow as shown
in Fig. 1 and 2. In terms of fitness evaluations (FE) the per-
formance of DEaLS and DEfLS was similar. This is because
both algorithms reached the error value < 10−8 before any
adaptation could take place in DEaLS. But because of the
inclusion of elite individual in adaptive LS scheme, DEaLS
performed little better than DEfLS. However, in terms of
final fitness value the performance of DEaLS was far better
than DEfLS as well as than other algorithms.

The other unimodal function, fsch, is asymmetric and par-
tially separable. Therefore, this problem was difficult for
MS-DSCG to solve. It was also difficult for DE and after
hybridizing the fixed LS with DE the performance (of DE-
fLS) deteriorated. Only the DEaLS scheme could solve the
problem in every trial run and the benefit of adaptation in
LS is understandable from both Table 3 and Fig. 3. It seems
from the graph of Fig. 3 that using adaptation DEaLS per-
formed at least as good as DE in the initial stage of search
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Table 3: Performance comparison for fsch (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 25017.911043 46222.875190 36613.290116 4981.768773 0%
ACMA5 0.000694 0.084662 0.013748 0.016618 0%
ACMA10 0.017464 3.542390 0.509196 0.548611 0%

DE 1.89E-04 1.39E-03 4.32E-04 2.01E-04 0%
DEfLS 5.43E+01 8.29E+02 3.06E+02 1.83E+02 0%
DEaLS 9.74E-24 (74734) 1.83E-13 (118506) 3.66E-15 (85849.8) 2.59E-14 (7216.52) 100%

Table 4: Performance comparison for fack (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 0.064219 2.561123 1.098980 0.672054 0%
ACMA5 0.0 (14775) 0.0 (24435) 0.0 (21027) 0.0 (1846) 100%
ACMA10 0.0 (26780) 0.0 (39853) 0.0 (33909) 0.0 (3074) 100%

DE 2.66E-15 (140402) 6.22E-15 (147350) 4.23E-15 (144219.2) 1.78E-15 (1383.24) 100%
DEfLS 0.00E+00 (20956) 0.00E+00 (58309) 0.00E+00 (43044.5) 0.00E+00 (9046.05) 100%
DEaLS 0.00E+00 (6648) 0.00E+00 (10569) 0.00E+00 (7601.8) 0.00E+00 (890.91) 100%
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Figure 3: Convergence curve for fsch function.

and then the synergic effect of LS and GS could drive the
search towards global optimum.

Among the multimodal problems the fack is non-separable
and symmetric. Hence, MS-DSCG could not solve it alone
but when DSCG was hybridized with some GS, the MA
could locate the optimum in every trial. Although DE itself
could locate the global optimum, the convergence speed was
relatively very slow. Table 4 and Fig. 4 show that DEfLS
could perform better than DE and DEaLS outperformed all
other algorithms by far.

The Rastrigin function (fras) is separable and symmet-
ric. Therefore, it was solvable by MS-DSCG algorithm and
the hybridization of DSCG with some GS made the search
performance even better. Again DE could solve fras but at
a very low speed (Table 5). Since DSCG could solve fras

easily, the performance of DEfLS was pretty good in solving
this function (Fig.5). But the performance of DEaLS was
significantly better than that of DEfLS in statistical mea-
sure.

Being non-separable and asymmetric, the Griewank func-
tion (fgrw) is the most difficult problem among the three
multimodal functions considered so far. Because of its epistatic
and asymmetric characteristics, MS-DSCG could not solve
the function at all. However, hybridization of DSCG with
other GS was helpful in locating the global optimum of this
benchmark. Once again this function was tractable for DE
but at a lower speed. The performance of DEaLS in solv-
ing this problem was slightly better than DEfLS in terms
of required fitness evaluation. However, both ACMA5 and
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Figure 4: Convergence curve for fack function.

ACMA10 exhibited better performance compared to DE
variants and the ACMA5 algorithm performed the best.

Rosenbrock is an asymmetric multimodal function with
strong epistacity. The strong epistatic nature of this func-
tion makes it very challenging to any optimization algo-
rithm. Therefore, all the algorithms considered here failed
to locate the global optimum of this function. The data
presented in Table 7 show that improper hybridization of
LS with GS may cause the MA to perform even worse than
the original GS alone. The similar observation has also been
reported in [13]. As a result DEfLS perform even worse than
canonical DE. However, among the all search algorithms the
best performance was exhibited by DEaLS, though it could
not locate the global optimum either. The better perfor-
mance of DEaLS over DE and DE over DEfLS, highlights
that intelligent and adaptive exploitation is necessary to
solve this problem and mere hybridization of LS with GS
may unnecessarily waste function evaluation and degrade
the overall performance of the algorithm.

The high multimodality and non-separability make Weier-
strass function (fwrs) a challenge for both global search and
local search algorithms. The MS-DSCG got easily trapped
in the large number of basins and could not find the opti-
mum solution. Tactless hybridization of DSCG with some
EA could not help in directing the search towards global op-
timum. Therefore, using a fixed LS scheme the DEfLS algo-
rithm could not locate the global optimum of the function.
Even other adaptive MAs such as ACMA5 and ACMA10
failed to solve the problem. However, DE itself showed bril-
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Table 5: Performance comparison for fras (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 0.0 (239) 0.0 (34266) 0.0 (9645) 0.0 (8302) 100%
ACMA5 0.0 (336) 0.0 (5291) 0.0 (2511) 0.0 (1111) 100%
ACMA10 0.0 (332) 0.0 (4297) 0.0 (2695) 0.0 (1797) 100%

DE 0.00E+00 (211212) 0.00E+00 (229919) 0.00E+00 (219935.1) 0.00E+00 (4728.08) 100%
DEfLS 0.00E+00 (242) 0.00E+00 (6109) 0.00E+00 (1712.1) 0.00E+00 (1464.22) 100%
DEaLS 0.00E+00 (233) 0.00E+00 (4448) 0.00E+00 (1091.2) 0.00E+00 (1051.81) 100%

Table 6: Performance comparison for fgrw (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 5.792934 35.850984 12.249027 4.521426 0%
ACMA5 0.0 (7788) 0.0 (32194) 0.0 (15053) 0.0 (4962) 100%
ACMA10 0.0 (12057) 0.0 (34789) 0.0 (20027) 0.0 (6302) 100%

DE 0.00E+00 (93688) 0.00E+00 (111072) 0.00E+00 (99695.0) 0.00E+00 (3829.43) 100%
DEfLS 0.00E+00 (3223) 0.00E+00 (53113) 0.00E+00 (23858.9) 0.00E+00 (11618.48) 100%
DEaLS 0.00E+00 (2600) 0.00E+00 (52493) 0.00E+00 (20296.3) 0.00E+00 (14432.84) 100%

liant performance by pinpointing the global optimum in ev-
ery trial runs. But when DE was hybridized with static LS
the DEfLS failed to locate the optimum in any trial. The
possible reason behind the failure of DEfLS is the wasting of
fitness evaluation by DSCG in fruitless exploitation. But in
DEaLS the adaptive LS was successful in forming a synergy
with DE and located the global optimum though at a higher
cost of fitness evaluation compared to DE.

The convergence curves of Fig. 8 can explain these results
better. Looking at the convergence curves of DE and DEaLS
it was found that both of the curve have exactly the same
shape but with a deflection along the x-axis. This is be-
cause starting with the same parameter settings DEfLS and
DEaLS show similar search performance at the beginning of
the search as the convergence curves suggest in Fig. 8. How-
ever, since DSCG was performing poor compared to DE, our
adaptive scheme gradually reduced its CPU allocation close
to zero. Then only the global search explored the search
space and eventually showed DE like search characteristics.
However, while the algorithm adjusts its parameters some
fitness evaluations were wasted which cause DEaLS to con-
verge using more fitness evaluation. Nevertheless, Fig. 8
helps to establish our claim that the proposed adaptive MA
can favor GS or LS based on their online search performance.
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Figure 5: Convergence curve for fras function.

The Schaffer function (fscf ) is another non-separable prob-
lem with high multimodality. It was not solvable using MS-
DSCG or the canonical DE algorithm. And the performance
of DEfLS was poor compared to DE. The analogous rela-
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Figure 6: Convergence curve for fgrw function.
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Figure 7: Convergence curve for fros function.

tionship among the graphs in Fig. 8 and 9 suggests that
once again DEaLS was successful to favor DE over LS and
hence DEaLS performed better than DEfLS. Nevertheless,
the best performance in terms of error value was exhibited
by ACMA10 although none of the algorithms could find the
global optimum.

The ffms problem is highly multimodal and strongly epistatic.
Therefore, even this low dimensional problem put a chal-
lenge all optimization algorithms. DE could solve this prob-
lem in 16 runs out of 50 trials. But when DSCG was hy-
bridized with DE in a static fashion, the performance of DE-
fLS dropped drastically in terms of robustness. The search
traces in Fig.10 suggest that due to too much exploitation
possibly the algorithm converged too fast. However, when
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Table 7: Performance comparison for fros (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 145.614786 2681.761437 681.762756 390.338469 0%
ACMA5 0.000072 16.184286 2.288657 3.677642 0%
ACMA10 0.000466 15.473135 1.230378 2.738209 0%

DE 2.70E-02 4.16E+00 1.52E+00 1.09E+00 0%
DEfLS 5.56E+00 2.09E+01 1.71E+01 3.22E+00 0%
DEaLS 2.65E-08 3.99E+00 3.40E-01 7.53E-01 0%

Table 8: Performance comparison for fwrs (N = 30) Error Value (Fitness Evaluation)
Algorithm Best Worst Average SD Success
MS-DSCG 35.269832 41.501266 39.144839 1.360618 0%
ACMA5 0.002177 0.897336 0.035927 0.161454 0%
ACMA10 0.001824 0.986958 0.097758 0.287558 0%

DE 0.00E+00 (165204) 0.00E+00 (171159) 0.00E+00 (168748.9) 0.00E+00 (1449.98) 100%
DEfLS 6.65E-02 1.06E-01 8.52E-02 7.69E-03 0%
DEaLS 0.00E+00 (223485) 0.00E+00 (232261) 0.00E+00 (227641.7) 0.00E+00 (2015.75) 100%
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Figure 8: Convergence curve for fwrs function.
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Figure 9: Convergence curve for fscf function.

DSCG was incorporated with DE in a adaptive scheme the
performance of DEaLS was comparatively better than DE-
fLS though still worse than the classic DE. The adaptive
scheme was successful to mediate between the GS and LS
and could find a better synergy between them compared to
arbitrary hybridization. Nevertheless, both ACMA10 and
ACMA5 showed better performance compared to DE vari-
ants in solving ffms.

We also examined the results using statistical analysis
(Student’s t-test) at the 99% confidence level. In our anal-
ysis DEaLS was found significantly better than DEfLS in
8 benchmark functions and in other 2 benchmarks (fgrw,
ffms) no significant difference was observed between these
two algorithms. Again comparing with DE, DEaLS was
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Figure 10: Convergence curve for ffms function.

found significantly better in 7 benchmark functions. DEaLS
was also significantly better than ACMA10 and ACMA5 in
7 and 6 benchmarks functions, respectively.

5. CONCLUSION
An adaptive memetic algorithms should be capable of ad-

justing its degree of exploration and exploitation. In this
work we propose an local search (LS) scheme that tunes
its extent of LS based on its online performance. In other
words, based on its relative performance with GS, the num-
ber of individuals to undergo LS and the intensity of LS on
them are adapted. This adaptation reciprocally favors GS
or LS and thereby tries to find a synergy between them.

The LS scheme was implemented using DSCG and was hy-
bridized with differential evolution. The resulted memetic
algorithm, called DEaLS, was evaluated using ten standard
benchmark problems. The results show that the DEaLS al-
gorithm can favor its DE or DSCG components based on
their online performance. Performance comparison with the
canonical DE and some other MAs also highlight the supe-
riority of the newly proposed algorithm.

In future, the adaptation policy, the adaptation rate and
other parameters should be studied in greater detail to make
the algorithm more robust to a wider range of problems.
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