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ABSTRACT 
This paper will introduce a new differential evolution (DE) algorithm 
called DE/cluster. DE/cluster applies a simple hierarchical clustering 
model to mine the distribution information of the DE population 
every K generations to make a dynamic partition of the population. 
One special cluster formed by the single-individual clusters will use 
a slower convergence mutation strategy to do the global search. The 
other clusters will use more greedy searching strategy to do the local 
search. As long as the subpopulations may be trapped by local 
minima, the "dead" state is defined for a cluster and clusters will be 
checked in every generation and the "dead" clusters will be restarted 
in the current searching range. This local restart strategy can make 
the performance of DE/cluster even be better than DE/rand on some 
multimodal test functions that are not linearly separable. The 
DE/cluster algorithm is tested on a test suite with 24 functions and it 
shows promising performance compared with the current best DE 
variants.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods 
and search-Heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization-Global optimization 

General Terms: Algorithms. 

Keywords 
Differential Evolution; Cluster Analysis; Restart Strategy; Multiple 
Populations; Evolution Computing. 

1. Introduction 
Differential Evolution algorithm [1]-[2] is one of the most promising 
continuous optimization evolutionary algorithms. It has been studied 
for the past decades since its first publish in 1995. In general DE 
algorithm, for every generation, a population is maintained and 
updated by the mutation operator, the crossover operator and the 
selection operator in the mentioned order. In each generation, every 
individual of the population will be taken as a target vector once. For 

a target vector i, in the simplest cases, three distinct individuals 1r , 

2r and 3r  from the population are selected randomly, and then a 

mutant vector is generated in the following way: 
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where F is a scale factor. 

After the mutant vector iv is created, it will be combined with the 

target vector ix to generate a trial vector iu by the crossover 

operator. The most common crossover operator used in DE is the 
binary crossover which works as (2): 
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Where CR is the crossover rate and jrand is an index randomly 
chosen from the D dimensions to ensure that at least one component 

of iu  is come from iv (which makes iu  different with ix  

whatever the value of CR is). 

The trial vector iu will be evaluated and compared with the target 

individual ix and the better one will enter the next generation. 

The mutation strategy of DE algorithm is very important for its 

performance. In the mutation operation as shown in (1), vector 
1r

x  

is called the base vector, while 
32 rr xx   is called the differential 

vector. Thus a mutant vector of DE can be defined as the linear 
combination of the base vector and the differential vector. There are 
many different ways to choose the base vector and the number of the 
differential vectors. DE/current-to-best algorithm applies a base 
vector generated by the linear combination of the best vector and the 
target vector. 

Currently the study of DE has mainly focused on the following 
aspects. The first is the parameter adaptation [5] for that it is critical 
for DE algorithm to perform well on different kinds of test functions. 
But something new has been proposed to further enhance the 
performance of DE in the past year (2010). Among these new ideas, 
DE with a mutating strategy pool (SaDE[6]) tries to use different 
mutation strategies in the evolution procedure. In SaDE, each 
individual will choose a mutation strategy according to a probability 
which is adapted during the evolution procedure. The other new idea 
of DE recently is trying to incorporate the local guidance information 
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in DE. In JADE[8], the author modified the guiding individual “best” 
in the “DE/current-to-best” strategy from “the global best of the 
population” to “some individuals which are at the top p% of the 
current population”. This can make more individuals the guiding 
individuals with a larger p setting. Another DE variant proposed 
recently with similar idea is DEGL[7]. DEGL applies a “local best” 
individuals concept and uses these individuals to guide the mutation. 
A local best individual is indentified in a storage neighborhood 
structure (for individual i, its guiding vector is the best of individuals 
indexed within the range [i-t, i+t]). DEGL actually do an implicit 
partition of the current population and using the best individuals in 
each subset to guide the evolution. 

With the introduction on the most recent studies on DE, we think that 
there are still some aspects which may be further improved: 

a) In SaDE, the mutation strategy pool does not contain the fast 
converging mutation strategy “DE/best”, which may greatly 
accelerate the searching speed of the algorithm if it is well 
restricted. Another problem is that different individuals may 
need different kinds of mutation strategy while in SaDE the 
probability to choose a mutation strategy is the same for every 
individual. 

b) In the idea of DEGL or JADE, the size of the subset to be 
chosen for the selection of a “local best” or the top proportion 
to be chosen as the guiding vector is locked and static during 
evolution. Proper setting of the size for different kinds of 
problems may be very different. 

c) The topology of the subset partition of DEGL has been chosen 
in a way which actually considers no information of the 
distribution of the current population in the searching space. 

With the above analysis, in this paper we will introduce a new DE 
algorithm called DE/cluster which tries to use the cluster information 
of the current population to dynamically partition the population and 
choose proper mutation strategies for different individuals. 

The simple hierarchical clustering algorithm is applied on the 
population every K generations in DE/cluster for which the max size 
of a cluster is limited. (Clustering in a bottom-up way, small clusters 
will be combined together until the size of the maximum cluster will 
exceed a predefined maximum size). The clustering results will be 
further modified by combining all the single individual clusters and 
make this cluster a special cluster. This cluster will apply the slower 
convergence searching strategy DE/current-to-best while the other 
clusters will apply the more greedy searching strategy DE/best. The 
best individual in each cluster will lead the search of its cluster. 
Clusters with some small number of individuals will get enough 
individuals to generate differential vectors from a “pool” which 
stores some additional individuals from the parent population. In this 
way, the clustering partition results are used in DE/cluster. 

In DE/cluster a local restart strategy is also proposed. The local 
restart strategy will first check all the subpopulations with proper 
size and if a subpopulation is not the best but highly converged, it 
will be considered as “dead” and will reborn in the current searching 
range. With the local restart strategy, DE/cluster is even able to 
perform better than DE/rand on some rotated multimodal functions 
that are not linearly separable (for which the algorithm are greatly 
relying on the mutation strategy but not the CR adaptation). 

Based on the above idea, the DE/cluster algorithm is proposed in this 
paper. The DE/cluster algorithm achieves the balance of the global 
search and local search by imposing different searching strategies to 
different subpopulations. Cluster analysis provides the information to 
partition the population dynamically and different subpopulation can 

evolve independently with proper mutation strategies. The local 
restart strategy can make the algorithm more robust. 

The following part of this paper will be organized as following. In 
section II, the DE/cluster algorithm will be introduced. In section III, 
some experiments of DE/cluster will be carried out to prove its 
performance. Section IV concludes the whole paper. 

2. DE/cluster Algorithm 
To achieve the balance of the searching speed and the diversity of 
the population, it is important to make the base vectors contain both 
the position information of the best individual and the whole 
distribution of the population in the searching space. This is why [7] 
applies an implicit partition of the population and make them evolve 
with the base vector set as the best individuals in every 
subpopulation. But how to partition the population is an important 
problem. 

Here we are going to using the cluster information to solve this 
problem. Cluster information of the current population could be 
useful for detecting the type of the function in the current searching 
range. The DE population can adapt itself to the shape of the 
function, so it is possible to use the cluster analysis to mining this 
information and use it to get a dynamic partition of the current 
population. Through some simple cluster analysis tools, the 
population can be divided into different clusters, and every 
individual in the population will select the best individual of its 
cluster as the guiding vector (shows in Fig. 1). 

Here the subsets will evolve for more than one generation until the 
next time of clustering to reduce the cost of the cluster analysis, 
while the re-clustering for every K generations makes it possible to 
find new clusters. Still there are some other detailed problems in the 
current showed framework and the following section will introduce 
the detailed operations and some strategies to solve the problems 
encountered. 

 

Figure 1. Clusters of the population in DE/cluster. Every cluster 
is guided by its best individual. Clusters may of different size. 

2.1 Basic Cluster Analysis in DE/cluster 
This part will introduce the basic cluster analysis applied to the 
current population. As has been mentioned, this analysis will be 
executed in every K generations, where K is a parameter which 
controls the frequency of the cluster analysis. The data to be 
clustered are the NP individuals in the current population. The 
hierarchical clustering method is applied here to do the analysis. 
Steps to do the analysis are as follows: 

a) Calculate the Euclidean distances between every two 
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individuals. 
b) With the distance matrix and the function value of every 

individual, the linkage tree for clustering is created in a bottom-
up way. At the beginning, every individual is set as a cluster and 
set itself as its representative individual. Then choose the two 
clusters with the smallest in-between distance and combine 
them as one cluster, and set the representative individual as the 
better one of the representative individuals of the original two 
clusters. The distance between two clusters is calculated as the 
distance of their representative individuals as following: 

))(),((),( jiji GIGIdGGd  .   (3) 

Where 
iG  stands for the i-th cluster, )( iGI  stands for the 

representative individual of the i-th cluster. 

c) The bottom-up building iteration procedure will be stopped if 
the current combination will generate a cluster that is large than 
a predefined largest size S. This setting makes the population 
never be clustered as a single cluster.  

By now, the basic cluster analysis has been done and the clusters will 
be further processed to be used to evolve independently.  

2.2 Further Processing for Independent 
Evolution 
The results provided by the basic cluster analysis are far from direct 
independent evolution. Some of the clusters may be too small to 
evolve independently, because the evolution of DE population needs 
enough individuals to generate differential vectors (at least 3, but 
more vectors should be used to provide some different differential 
vectors). So it is urgent to solve this problem. This problem could be 
taken as the defect of the dynamical partition of the population, 
compared to the static partition ways. 

To solve this problem, we need to analyze the reason why some 
clusters are too small. It could be explained as that some of the 
individuals are more centralized than the others, which is possible 
because the DE evolution procedure will make the population 
converge to an extreme point. From this point of view, here the small 
clusters are handled in the ways as following. 

a) The clusters each with only one individual. For these clusters, it 
could be distributed far away from the other individuals. In this 
case the single individual clusters are actually maintaining a lot 
of diversity information of the current population. To proper 
handle this case, we will combine all these single-individual-
clusters as ONE large cluster and if the current best individual is 
not belonging to this cluster, this cluster will be specially 
marked as the SPEX cluster, because of its key roles in 
maintaining the diversity of the current population. This SPEX 
cluster will apply more global searching strategy than the other 
clusters.  

b) The clusters with more than one individual but still too small to 
generate enough different differential vectors. Set the minimum 
number of individuals to generate enough differential vectors as 
M1. For the clusters with not enough individuals, we need to 
find some other individuals which can help generate proper 
differential vectors. DE/cluster maintains a pool for every 
cluster to generate differential vectors. The pool is updated in 
every generation before the evolution beginning. Firstly the 
number of the individuals of each cluster is checked, and if the 
number is no smaller than M1, the pool for this cluster will be 
all the individuals in this cluster. If it is smaller than M1, the 
individuals in the cluster will be put into the new pool first and 
the nearest cluster pool of it in the last generation is found and 

the individuals in that pool will be added into the new cluster 
until its number of individuals is larger than M2. The best 
individual in the pool will be taken as the representative 
individual and the distance between clusters is calculated as the 
distance of their representative individuals. 

Then the cluster analysis module provides the following information: 
a) For every individual i in the current population, the cluster 

it belonging to T(i). 

b)  For every cluster k, the best individual best(k). 

c)  For every cluster k, its differential vector pool Pool(k). 

d)  For the special marked cluster, it is marked by a special 
index SPEX. 

2.3 Evolution Rules for Every Cluster in 
DE/cluster 
In the last part the cluster analysis has provided some useful 
information. This section will show how the information is used, 
mainly about the different iteration rules for different kinds of 
clusters and the interaction among clusters. 

2.3.1 Independent Evolution of Every Cluster 
The population iteration is still working like original DE iterations, 
but with different iteration strategies for different kinds of clusters. 
There are two kinds of clusters generated by the cluster analysis 
module. Overall the population iteration procedure is as follows: 

For every individual i in the current population, according to the 
cluster T(i) it belonging to, 

a) If SPEXiT )(  

Then the individual will use the DE/best/2 as the iteration strategy, 
i.e.: 

)(*)(* 5432))(( rrrriTbesti xxFxxFxv  . (4) 

Where 432 ,, rrr xxx and 5rx are individuals randomly selected 

from the differential pool of cluster T(i), ))(( iTbestx  stands for the 

best individual of cluster T(i). 

b) If SPEXiT )(  

When the pool for SPEX cluster has enough individuals:  

 

)(*)(*6.0* 32)( rriSPEXbestii xxFxxFxv  . (5) 

Otherwise the iteration strategy is like this: 

 )(*)(* 32)( rriSPEXbestii xxFxxFxv  . (6) 

Noticed that when there not enough individuals in the pool for some 
cluster (less than M1, at the beginning stage of the evolution); the 
differential vectors are generated from the whole population. 

Overall we can see that different DE strategies have been applied in 
DE/cluster to gain advantage of their different convergence 
characteristics. The searching strategy for the SPEX cluster will be 
used to do the exploring job for the current searching range, while 
the other clusters apply fast convergence DE/best strategy to exploit 
some local minima. Here we use different DE strategies in a way 
which is different from [6]. 
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2.3.2 “Dead” Clusters and Local Restart 
The independent evolution of every cluster may cause a serious 
problem that some clusters are trapped in local minima. Here we will 
going to define the “dead” state for a cluster which shows barely 
promising to find better solution than the current global best 
individual. As no information of the best function value is known, 
the quality of a cluster can only be defined by its comparison results 
with the other clusters. So here we are going to define the “dead” 
state for a cluster by the interaction among the clusters of current 
population. If a cluster is converging, the difference among the 
fitness of the individuals in the cluster will be smaller and smaller. If 
proper conditions can be defined to find out such kind of local 
trapped cluster, then these clusters should be reborn to release the 
sources for other search space. 

The “dead” state will be used to define such kind of state of a cluster. 

Definition: Cluster k is defined as “dead” if 

|)(|*1.0)(

&&)1/()))((()(

&&

&&)(

kFstFbestkFstd

ccbestTpcountNPkpcount

SPEXk

bestTk







       (7) 

Where k is used to indicate the cluster to be checked; the best cluster 
is indicated by T(best); the number of clusters is indicated by cc; the 
standard deviation of the fitness value of cluster k is indicated by 
Fstd(k); the fitness value of the best individual of cluster k is 
indicated by Fst (k); the best fitness value of the current population is 
indicated by Fbest; The number of the individuals in cluster k is 
indicated by pcount(k); the total number of the individuals in the 
population is indicated as NP. 

In (7), line 1 and line 2 are used to exclude the best cluster and the 
SPEX cluster; Line 3 is used to make sure that the size of the cluster 
is above the average size of all the clusters except the best cluster; 
Line 4 is used to exclude cluster which has gained little progress in 
the last generation, with the threshold value set as 0.1. The standard 
deviation of fitness value in a cluster can show its progress in the last 
generation and if the progress is too small compared to the gap 
between the best fitness value in this cluster and the global best, it is 
reasonable to judge it as “dead”. 

The dead state defined above is just an empirical conclusion, so the 
“dead” cluster should be restarted in a soft way which will still be 
able to search the space where it is concerned dead. The local restart 
rules are as follows: 

a) Find the current lower bound CLB and upper bound CUB in 
every dimension of the whole population. 

b) For every individual in the dead cluster, with a probability of 
0.9 the new individual will be generated by the DE/rand/2 
strategy with the base vector randomly selected not belonging 
to the best cluster. Otherwise for its every dimension, 50% 
probability its new value will be uniformly randomly generated 
between [CLB, CUB],and another 50% it will be generated out 
of the current searching range by a Gaussian distribution with a 
standard deviation of CUB-CLB. 

Here the restarting are only near the current searching space to make 
sure that the population will converge eventually. Immediate cluster 
analysis will be carried out when dead clusters have been restarted. 
Then new clusters may be found, which means the population will 
try to exploit new minima. Total iteration procedure of the population 
iteration with cluster analysis is shown in Fig. 2. 

 

Figure 2. Procedure of the DE/cluster main loop 

2.4 Adaptation of F and CR 
In DE algorithm, the setting of parameters F and CR is important to 
achieve good performance. Many parameters adaptation methods 
have been proposed recently [5][6][8]. In DE/cluster, we adopted the 
F and CR adaptation strategy of [6]. The adaptation of F is just use a 
random number generated by a preset Gaussian distribution 
N(Fmean, Fstd), while the CR values are generated by a dynamically 
adapted Gaussian distribution N(CRmean, CRstd). The value of 
CRmean is updated by the mean value of the CRs performed well in 
the last LP generations while CRstd is set as a static value. For 
detailed adaptation procedure of F and CR, please look for [6]. 

 

Figure 3. Crossover strategy in DE/cluster 

The CR adaptation strategy applied in DE/cluster has been slightly 
modified. The crossover in DE is actually a way to improve the 
quality of the solution by combining different values from different 
individuals when the variables in different dimensions are 
independent. In the standard DE algorithm crossover is only done 
between the farther individual and its child. In DE/cluster this is 
further extended by a GA [3] crossover operator, in which the 
individual not only crossover with the newly generated individual, 
but also with the individuals in the current population. This is based 
on the idea that the other individuals in the current population may 
have some “good values” which this individual does not. From this 
motivation the GA mutation strategy is also introduced to DE/cluster. 
Overall the crossover strategy of DE/cluster is shown in Fig. 3.  
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3. Experiments on DE/cluster 
This section will present some experiments to show the performance 
of DE/cluster in its efficiency and the effect of some key parameters 
setting and the clustering component in DE/cluster. Experiment 1 is 
designed to compare the efficiency of DE/cluster and the traditional 
DE, SaDE, JADE. Experiment 2 is designed to show the ability the 
DE/cluster on some test functions that are non-linearly separable to 
demonstrate its ability of searching only based on its mutation 
strategy. Experiment 3 shows the runtime characteristic of the cluster 
information learned by DE/cluster on different kinds of test 
functions. Experiment 4 do a simple analysis on the running time of 
DE/cluster and simulations are carried out to prove that the time cost 
of DE/cluster is under control. 

3.1 Experiments Setting 
In the following tests DE/cluster is configured as follows: the 
population used NP=50, the generator of F is Gaussian(0.4,0.2). The 
initial value of CR=0.65 and CRstd is set as 0.1. The generations LP 
to store the memory of CR is set as 50. The probability to do GA 
crossover Alpha=0.25/cc, where cc is the number of clusters. The 
differential pool’s size is configured as M1=10, M2=20. The 
maximum size of a cluster allowed S is set as 40% of the whole 
population. The frequency to do cluster analysis is set as every K=5 
generations. 

The algorithms to be compared with DE/cluster are as follows: 

a) Traditional DE: DE/rand/1/bin (F=0.5, CR=0.3) and 
DE/rand-to-best/2 (F=0.5, CR=0.3). 

b) Current most efficient DE variants: SaDE(2009) and JADE. 

Test functions are shown in Table 1. (Test suite used in [6], for the 
searching range and optimum information please refer to [6]). The 
test functions which are indicated shifted means that the original best 
solutions are shifted to new positions which are not central. Test 
functions which are rotated means that the variables are firstly 
rotated by a rotating matrix of certain condition number. 

3.2 Comparison with Current Best DE 
Variants 
To compare the performance of different algorithms, here will let the 
algorithms run several times on the same test suite to test whether 
they can find good enough solutions within a maximum function 
evaluations. Table 2 shows the performance comparison on the 
average function evaluations (FEs) cost for these algorithms to 
achieve a better function value on each test function than the known 
best value plus 1E-5 within a predefined max number of FEs (1E+5 
for lower than 30-dimensional test problems while 3E+5 for 30-
dimensional test functions). Results on test functions which no 
algorithm can solve with 100% success rate are not shown in Table 2 
(such a function like F8 is actually non-linear-separable. For such a 
kind of problems, DE algorithms cannot perform well. In the next 
part we show the results of the DE/cluster algorithm on F8 compared 
with the other algorithms). The above tests results are all based on 
the average performance of 50 tests for every test function. 

From the results shown in Table 2 it can be see that DE/cluster 
outperformed the other algorithms on most of the test functions. The 
performance of DE/cluster is most significant on test function F1, F5, 
F6, F9, F11 and F17~F24. The DE/cluster algorithm can perform 
well on F1 shows that its convergence speed on simple unimodal test 
functions is maintained while its global searching ability on the 
multimodal test functions are quite well. The searching speed of 
DE/cluster on low dimensional functions F17-F24 is impressive. 
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Table 2. Performance comparison on the average function evaluations cost within a predefined max value. Best performance on each 
test function is presented in “bold” font. 

3.3 Test the Searching Ability of DE/cluster on 
the Non-linearly-separable Test Function 
Currently DE usually cannot perform well on some linearly 
inseparable multimodal functions. In this experiment we will test the 
performance of DE/cluster on F8 on lower dimensions to 
demonstrate its performance on linearly inseparable multimodal 
functions (with the dimension increasing the problem becomes more 
and more difficult to solve). For the linearly inseparable multimodal 
functions, the CR adaptation will not work and the algorithm will 

mainly depend on its mutation strategy. Test is carried out on F8 
(with D=3, 4 and 5) and the success rate for different algorithms 
within maximum 2E+5 functions are showed in Table 3. 

For all the test algorithms, CR is set as 1. The adaptation of F is 
retained for the algorithms which apply F adaptation. For the 
DE/rand algorithm, F is randomly generated by a Gaussian 
distribution (0.5, 0.2). From the results we can see that for all the test 
algorithms tested, their performance on F8 degenerates quickly with 
the dimension increased from 3 to 5. This is because of the 
exponential increasing of the number of local minima. To solve this 

    DE/cluster 
DE/rand/1/bin 

(0.5,0.3) 
DE/rand-to-best/2/bin 

(0.5,0.3) 
SaDE(2009) JADE 

D f NFE SR NFE SR NFE SR NFE SR NFE SR 

10 1 4687 100% 10291 100% 10058 100% 8375 100% 6852 100% 

10 2 10352 100% 72436 100% 53658 100% 14867 100% 10930 100% 

10 3 - 96% - 0% - 0% 42446 100% - 92% 

10 4 17647 100% - 83% 71278 100% 15754 100% 11724 100% 

10 5 7316.1 100% 15157 100% 15045 100% 12123 100% 10730 100% 

10 6 7700.2 100% 16682 100% 16980 100% 12244 100% 10939 100% 

10 7 - 90% 29961 100% 59205 100% 35393 100% 32019 100% 

10 9 14456 100% 23155 100% 30621 100% 23799 100% 18017 100% 

10 11 15459 100% 29559 100% 46592 100% 26945 100% 17886 100% 

10 12 11973 100% 14698 100% 33091 100% 16663 100% 17460 100% 

30 1 14326 100% 34687 100% 31470 100% 20184 100% 22226 100% 

30 2 85450 100% - 0% - 0% 118743 100% 72884 100% 

30 5 21074 100% 49822 100% 45948 100% 26953 100% 31450 100% 

30 6 22664 100% 55108 100% 49961 100% 33014 100% 31286 100% 

30 7 - 98% 39436 100% 41314 100% - 80% - 98% 

30 9 49683 100% - 0% - 0% 58723 100% 1.09E+05 100% 

30 11 49231 100% - 0% - 0% 77920 100% 1.09E+05 100% 

30 12 46303 100% 73756 100% - 0% 44283 100% 1.08E+05 100% 

30 13 19792 100% 39460 100% 18617 100% 25137 100% 37430 100% 

30 14 
1.46E+0

5 
100% 149511 100% - 0% 88934 100% 1.65E+05 100% 

30 15 16660 100% 32420 100% 14289 100% 18742 100% 21806 100% 

30 16 20768 100% 31346 100% - 93% 19390 100% 22236 100% 

4 17 5092.2 100% 31121 100% - 93% 6426 100% - 98% 

2 18 644.02 100% 2178 100% 1416 100% 2076 100% 894 100% 

2 19 764 100% 2246 100% 1593 100% 2614 100% 1492.2 100% 

4 20 459.16 100% 926 100% 1004 100% 802 100% 484.2 100% 

6 21 1158.6 100% 3970 100% 4759 100% 3080 100% - 76% 

4 22 2616.5 100% 10468 100% 12381 100% 4947 100% - 82% 

4 23 2040.1 100% 8653 100% 12921 100% 4173 100% - 96% 

4 24 1738.4 100% 8742 100% 14933 100% 4267 100% - 92% 
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kind of test functions, the algorithm must have good global search 
ability. The tested algorithms are with different kinds of global 
search ability enhancing strategies. For the traditional DE algorithms, 
DE/rand has the best global searching ability and the slowest 
searching speed because it uses randomly selected as the base vector. 
JADE applies multiple top individuals as the guiding vector but with 
a useful F adaptation strategy. SaDE can be taken as an algorithm 
with mixed strategies which its performance should be tested in this 
test.  

The results shows that the performance on the tested functions 
DE/cluster > JADE > SaDE > DE/rand. The reason why DE/cluster 
can perform better than the other algorithms on F8 is that the local 
restart module applied in DE/cluster can make a better balance of 
searching speed and global search while the SPEX cluster can do a 
good job on maintain the population diversity. The results showed 
DE/rand performed the worst in opposite with the fact that it applies 
the most global mutation strategy, this may caused by the 
inefficiency of the mutation operator applied, i.e., it is global, but it 
may be inefficient to generate a new promising result to help the 
algorithm find a new minimum point. 

3.4 Runtime Characteristic of the Clustering 
Results of DE/cluster on Different Test 
Functions 
Here will study the cluster information DE/cluster mined in the 
evolution procedure. Fig. 4 shows the number of clusters found in 
every generation for different test functions (average results for 50 
tests). Fig. 4 shows the clusters count for F1 during the evolution 
procedure. It can be seen that the cluster count shows clearly 
decreasing trend with certain concussion. This shows the DE/cluster 
learned from the distribution the population and adapted it into the 
searching mode of a unimodal function (with less clusters, the 
algorithm will searching faster). The trend line of the clusters count 
for F7 (Fig. 5) is quite different with that of F1. In the first stage the 
trend line decreasing quickly while in the second stage the trend line 
keeps climbing. This is actually because of the characteristic of F7: 
at the beginning searching stage of F7 with the large beginning 
searching range, the function is almost like a unimodal function 
while when the searching range is small, many local minima 
emerged and the function becomes to a multimodal function. The 
trend line of F7 shows DE/cluster can adapt its searching mode 
between unimodal and multimodal to a certain degree. 

The performance of DE/cluster on F14 is not as good as the other DE 
algorithms as shown above. The reason may be explained by Fig. 6. 
It shows that the clusters count of F14 is in great vibrating from the 
beginning to the end of the evolution procedure. This shows the 
DE/cluster algorithm is confused by the distribution of the 
population and cannot find an efficient mode for the test function. 
The reason of this phenomenon should be further studied 

Table 3. Comparison on linear inseparable function F8 (D=3, 4 
and 5) 

  Success rate within 2E+5 NFEs within 50 tests 

  DE/cluster JADE SaDE DE/rand 

F8 (d=3) 100% 100% 78% 68% 

F8 (d=4) 78% 62% 16% 6% 

F8 (d=5) 24% 2% 0% 0% 
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Figure 4. Clusters count during evolution for F1. 
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Figure 5. Clusters count during evolution for F7. 
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Figure 6. Clusters count during evolution for F14 
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3.5 Run time analysis of DE/cluster 
The time cost of DE/cluster can be controlled greatly due to the fact 
that the clustering of the population is changing slowly during the 
evolution procedure. The usually changing pattern of the clusters of 
the population is often suddenly-changing, i.e., with some new 
promising individuals found, some individuals are attracted and form 
a new cluster. For a single clustering process, its time complexity is 
caused by computing the distance matrix and sorts the matrix to 
some extent. The computation of the distance matrix, the time 
complexity is about )*( 2NPDO , which is because the distance 

between every pair of individuals in the population is needed. For the 
sorting part of clustering, at the worst case when a total sort of the 

distance matrix is done, the time complexity is )log*( 2 NPNPO . 

Usually the number NP of individuals used for DE is set as D*10, so 
the second part of the time cost is actually smaller than the first part. 
Thus theoretically the time cost of the clustering process in 
DE/cluster is mainly generated by computing the distance matrix. 
Thus we concluded that it is acceptable to do the explicit clustering 
analysis after the distance matrix is already computed on time 
consuming aspect. As has been mentioned above, the time 
consuming of DE/cluster can be greatly improved by doing cluster 
analysis only when it is needed. Table 4 shows the time cost 
comparison of DE/cluster with other algorithms. For DE/cluster, the 
number K of generations to do re-clustering is set as 30. Form the 
test results shown in Table 4 we can see that it is acceptable 
(compared with the DE/rand algorithm and SADE). The time 
consuming of doing cluster analysis can be further neglected when 
function evaluation is time costly. 

Table 4. Run time comparison 

Time cost (s) 

DE 
variants 

F9 
(d=10) 

F9 
(d=30) 

F1 
(d=30) 

F1 
(d=10) 

F21 

DE/ 
cluster 

0.4168 2.3075 0.6828 0.1682 0.0487 

DE/ 
rand/1 

0.3137 ~ 0.3634 0.0977 0.0666 

SADE 0.5529 2.3721 0.6619 0.1765 0.0637 

4. Conclusion 
In this paper we have proposed a new DE algorithm called 
DE/cluster. DE/cluster applies the simple hierarchical clustering 
algorithm to mine the distribution information of the population and 
use this information to partition the population dynamically. The 
cluster analysis will be done for every some generations or when the 
local restart has happened, so the time cost of cluster analysis can be 
controlled. Clustering can make the algorithm be able to adapt the 
partition at different searching phase and can make the 
subpopulations searching for their local minima more efficiently. 
DE/cluster applies a pool to provide individuals for the 

subpopulations which have not enough individuals to generate 
differential vectors. Different mutation strategies are chosen for 
different kinds of clusters. The special cluster combined from all the 
single-individual-clusters is used for global search with the 
DE/current-to-best strategy and for the other clusters more greedy 
mutation strategy DE/best are applied, thus different searching 
strategies are used for different individuals in the current population 
according to their distribution characteristics, which is not the same 
as SaDE. 

The local restart strategy applied in DE/cluster can make the 
subpopulations which have converged to local minima restart and 
searching the other space. This makes DE/cluster even perform better 
than DE/rand on some non-linear-separable test functions. 
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