
A New Differential Evolution Algorithm with Dynamic
Population Partition and Local Restart

Yuan-long Li and Jun Zhang (Corresponding Author)
Department of Computer Science, Sun Yat-sen University

Key Laboratory of Digital Life, Ministry of Education
Key Laboratory of Software Technology, Education Dept. of Guangdong

Province, P.R. China
junzhang@ieee.org

ABSTRACT
This paper will introduce a new differential evolution (DE) algorithm
called DE/cluster. DE/cluster applies a simple hierarchical clustering
model to mine the distribution information of the DE population
every K generations to make a dynamic partition of the population.
One special cluster formed by the single-individual clusters will use
a slower convergence mutation strategy to do the global search. The
other clusters will use more greedy searching strategy to do the local
search. As long as the subpopulations may be trapped by local
minima, the "dead" state is defined for a cluster and clusters will be
checked in every generation and the "dead" clusters will be restarted
in the current searching range. This local restart strategy can make
the performance of DE/cluster even be better than DE/rand on some
multimodal test functions that are not linearly separable. The
DE/cluster algorithm is tested on a test suite with 24 functions and it
shows promising performance compared with the current best DE
variants.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]:Problem Solving, Control Methods
and search-Heuristic methods; G.1.6 [Numerical Analysis]:
Optimization-Global optimization

General Terms: Algorithms.

Keywords
Differential Evolution; Cluster Analysis; Restart Strategy; Multiple
Populations; Evolution Computing.

1. Introduction
Differential Evolution algorithm [1]-[2] is one of the most promising
continuous optimization evolutionary algorithms. It has been studied
for the past decades since its first publish in 1995. In general DE
algorithm, for every generation, a population is maintained and
updated by the mutation operator, the crossover operator and the
selection operator in the mentioned order. In each generation, every
individual of the population will be taken as a target vector once. For

a target vector i, in the simplest cases, three distinct individuals 1r ,

2r and 3r from the population are selected randomly, and then a

mutant vector is generated in the following way:

),(
321 rrri xxFxv

 (1)

where F is a scale factor.

After the mutant vector iv is created, it will be combined with the

target vector ix to generate a trial vector iu by the crossover

operator. The most common crossover operator used in DE is the
binary crossover which works as (2):

otherwisejx

CRrandjrandjifjv
ju

i

i
i)(

||)(
)(. (2)

Where CR is the crossover rate and jrand is an index randomly
chosen from the D dimensions to ensure that at least one component

of iu is come from iv (which makes iu different with ix

whatever the value of CR is).

The trial vector iu will be evaluated and compared with the target

individual ix and the better one will enter the next generation.

The mutation strategy of DE algorithm is very important for its

performance. In the mutation operation as shown in (1), vector
1r

x

is called the base vector, while
32 rr xx is called the differential

vector. Thus a mutant vector of DE can be defined as the linear
combination of the base vector and the differential vector. There are
many different ways to choose the base vector and the number of the
differential vectors. DE/current-to-best algorithm applies a base
vector generated by the linear combination of the best vector and the
target vector.

Currently the study of DE has mainly focused on the following
aspects. The first is the parameter adaptation [5] for that it is critical
for DE algorithm to perform well on different kinds of test functions.
But something new has been proposed to further enhance the
performance of DE in the past year (2010). Among these new ideas,
DE with a mutating strategy pool (SaDE[6]) tries to use different
mutation strategies in the evolution procedure. In SaDE, each
individual will choose a mutation strategy according to a probability
which is adapted during the evolution procedure. The other new idea
of DE recently is trying to incorporate the local guidance information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07...$10.00.

1085

in DE. In JADE[8], the author modified the guiding individual “best”
in the “DE/current-to-best” strategy from “the global best of the
population” to “some individuals which are at the top p% of the
current population”. This can make more individuals the guiding
individuals with a larger p setting. Another DE variant proposed
recently with similar idea is DEGL[7]. DEGL applies a “local best”
individuals concept and uses these individuals to guide the mutation.
A local best individual is indentified in a storage neighborhood
structure (for individual i, its guiding vector is the best of individuals
indexed within the range [i-t, i+t]). DEGL actually do an implicit
partition of the current population and using the best individuals in
each subset to guide the evolution.

With the introduction on the most recent studies on DE, we think that
there are still some aspects which may be further improved:

a) In SaDE, the mutation strategy pool does not contain the fast
converging mutation strategy “DE/best”, which may greatly
accelerate the searching speed of the algorithm if it is well
restricted. Another problem is that different individuals may
need different kinds of mutation strategy while in SaDE the
probability to choose a mutation strategy is the same for every
individual.

b) In the idea of DEGL or JADE, the size of the subset to be
chosen for the selection of a “local best” or the top proportion
to be chosen as the guiding vector is locked and static during
evolution. Proper setting of the size for different kinds of
problems may be very different.

c) The topology of the subset partition of DEGL has been chosen
in a way which actually considers no information of the
distribution of the current population in the searching space.

With the above analysis, in this paper we will introduce a new DE
algorithm called DE/cluster which tries to use the cluster information
of the current population to dynamically partition the population and
choose proper mutation strategies for different individuals.

The simple hierarchical clustering algorithm is applied on the
population every K generations in DE/cluster for which the max size
of a cluster is limited. (Clustering in a bottom-up way, small clusters
will be combined together until the size of the maximum cluster will
exceed a predefined maximum size). The clustering results will be
further modified by combining all the single individual clusters and
make this cluster a special cluster. This cluster will apply the slower
convergence searching strategy DE/current-to-best while the other
clusters will apply the more greedy searching strategy DE/best. The
best individual in each cluster will lead the search of its cluster.
Clusters with some small number of individuals will get enough
individuals to generate differential vectors from a “pool” which
stores some additional individuals from the parent population. In this
way, the clustering partition results are used in DE/cluster.

In DE/cluster a local restart strategy is also proposed. The local
restart strategy will first check all the subpopulations with proper
size and if a subpopulation is not the best but highly converged, it
will be considered as “dead” and will reborn in the current searching
range. With the local restart strategy, DE/cluster is even able to
perform better than DE/rand on some rotated multimodal functions
that are not linearly separable (for which the algorithm are greatly
relying on the mutation strategy but not the CR adaptation).

Based on the above idea, the DE/cluster algorithm is proposed in this
paper. The DE/cluster algorithm achieves the balance of the global
search and local search by imposing different searching strategies to
different subpopulations. Cluster analysis provides the information to
partition the population dynamically and different subpopulation can

evolve independently with proper mutation strategies. The local
restart strategy can make the algorithm more robust.

The following part of this paper will be organized as following. In
section II, the DE/cluster algorithm will be introduced. In section III,
some experiments of DE/cluster will be carried out to prove its
performance. Section IV concludes the whole paper.

2. DE/cluster Algorithm
To achieve the balance of the searching speed and the diversity of
the population, it is important to make the base vectors contain both
the position information of the best individual and the whole
distribution of the population in the searching space. This is why [7]
applies an implicit partition of the population and make them evolve
with the base vector set as the best individuals in every
subpopulation. But how to partition the population is an important
problem.

Here we are going to using the cluster information to solve this
problem. Cluster information of the current population could be
useful for detecting the type of the function in the current searching
range. The DE population can adapt itself to the shape of the
function, so it is possible to use the cluster analysis to mining this
information and use it to get a dynamic partition of the current
population. Through some simple cluster analysis tools, the
population can be divided into different clusters, and every
individual in the population will select the best individual of its
cluster as the guiding vector (shows in Fig. 1).

Here the subsets will evolve for more than one generation until the
next time of clustering to reduce the cost of the cluster analysis,
while the re-clustering for every K generations makes it possible to
find new clusters. Still there are some other detailed problems in the
current showed framework and the following section will introduce
the detailed operations and some strategies to solve the problems
encountered.

Figure 1. Clusters of the population in DE/cluster. Every cluster
is guided by its best individual. Clusters may of different size.

2.1 Basic Cluster Analysis in DE/cluster
This part will introduce the basic cluster analysis applied to the
current population. As has been mentioned, this analysis will be
executed in every K generations, where K is a parameter which
controls the frequency of the cluster analysis. The data to be
clustered are the NP individuals in the current population. The
hierarchical clustering method is applied here to do the analysis.
Steps to do the analysis are as follows:

a) Calculate the Euclidean distances between every two

1086

individuals.
b) With the distance matrix and the function value of every

individual, the linkage tree for clustering is created in a bottom-
up way. At the beginning, every individual is set as a cluster and
set itself as its representative individual. Then choose the two
clusters with the smallest in-between distance and combine
them as one cluster, and set the representative individual as the
better one of the representative individuals of the original two
clusters. The distance between two clusters is calculated as the
distance of their representative individuals as following:

))(),((),(jiji GIGIdGGd . (3)

Where
iG stands for the i-th cluster,)(iGI stands for the

representative individual of the i-th cluster.

c) The bottom-up building iteration procedure will be stopped if
the current combination will generate a cluster that is large than
a predefined largest size S. This setting makes the population
never be clustered as a single cluster.

By now, the basic cluster analysis has been done and the clusters will
be further processed to be used to evolve independently.

2.2 Further Processing for Independent
Evolution
The results provided by the basic cluster analysis are far from direct
independent evolution. Some of the clusters may be too small to
evolve independently, because the evolution of DE population needs
enough individuals to generate differential vectors (at least 3, but
more vectors should be used to provide some different differential
vectors). So it is urgent to solve this problem. This problem could be
taken as the defect of the dynamical partition of the population,
compared to the static partition ways.

To solve this problem, we need to analyze the reason why some
clusters are too small. It could be explained as that some of the
individuals are more centralized than the others, which is possible
because the DE evolution procedure will make the population
converge to an extreme point. From this point of view, here the small
clusters are handled in the ways as following.

a) The clusters each with only one individual. For these clusters, it
could be distributed far away from the other individuals. In this
case the single individual clusters are actually maintaining a lot
of diversity information of the current population. To proper
handle this case, we will combine all these single-individual-
clusters as ONE large cluster and if the current best individual is
not belonging to this cluster, this cluster will be specially
marked as the SPEX cluster, because of its key roles in
maintaining the diversity of the current population. This SPEX
cluster will apply more global searching strategy than the other
clusters.

b) The clusters with more than one individual but still too small to
generate enough different differential vectors. Set the minimum
number of individuals to generate enough differential vectors as
M1. For the clusters with not enough individuals, we need to
find some other individuals which can help generate proper
differential vectors. DE/cluster maintains a pool for every
cluster to generate differential vectors. The pool is updated in
every generation before the evolution beginning. Firstly the
number of the individuals of each cluster is checked, and if the
number is no smaller than M1, the pool for this cluster will be
all the individuals in this cluster. If it is smaller than M1, the
individuals in the cluster will be put into the new pool first and
the nearest cluster pool of it in the last generation is found and

the individuals in that pool will be added into the new cluster
until its number of individuals is larger than M2. The best
individual in the pool will be taken as the representative
individual and the distance between clusters is calculated as the
distance of their representative individuals.

Then the cluster analysis module provides the following information:
a) For every individual i in the current population, the cluster

it belonging to T(i).

b) For every cluster k, the best individual best(k).

c) For every cluster k, its differential vector pool Pool(k).

d) For the special marked cluster, it is marked by a special
index SPEX.

2.3 Evolution Rules for Every Cluster in
DE/cluster
In the last part the cluster analysis has provided some useful
information. This section will show how the information is used,
mainly about the different iteration rules for different kinds of
clusters and the interaction among clusters.

2.3.1 Independent Evolution of Every Cluster
The population iteration is still working like original DE iterations,
but with different iteration strategies for different kinds of clusters.
There are two kinds of clusters generated by the cluster analysis
module. Overall the population iteration procedure is as follows:

For every individual i in the current population, according to the
cluster T(i) it belonging to,

a) If SPEXiT)(

Then the individual will use the DE/best/2 as the iteration strategy,
i.e.:

)(*)(* 5432))((rrrriTbesti xxFxxFxv . (4)

Where 432 ,, rrr xxx and 5rx are individuals randomly selected

from the differential pool of cluster T(i),))((iTbestx stands for the

best individual of cluster T(i).

b) If SPEXiT)(

When the pool for SPEX cluster has enough individuals:

)(*)(*6.0* 32)(rriSPEXbestii xxFxxFxv . (5)

Otherwise the iteration strategy is like this:

)(*)(* 32)(rriSPEXbestii xxFxxFxv . (6)

Noticed that when there not enough individuals in the pool for some
cluster (less than M1, at the beginning stage of the evolution); the
differential vectors are generated from the whole population.

Overall we can see that different DE strategies have been applied in
DE/cluster to gain advantage of their different convergence
characteristics. The searching strategy for the SPEX cluster will be
used to do the exploring job for the current searching range, while
the other clusters apply fast convergence DE/best strategy to exploit
some local minima. Here we use different DE strategies in a way
which is different from [6].

1087

2.3.2 “Dead” Clusters and Local Restart
The independent evolution of every cluster may cause a serious
problem that some clusters are trapped in local minima. Here we will
going to define the “dead” state for a cluster which shows barely
promising to find better solution than the current global best
individual. As no information of the best function value is known,
the quality of a cluster can only be defined by its comparison results
with the other clusters. So here we are going to define the “dead”
state for a cluster by the interaction among the clusters of current
population. If a cluster is converging, the difference among the
fitness of the individuals in the cluster will be smaller and smaller. If
proper conditions can be defined to find out such kind of local
trapped cluster, then these clusters should be reborn to release the
sources for other search space.

The “dead” state will be used to define such kind of state of a cluster.

Definition: Cluster k is defined as “dead” if

|)(|*1.0)(

&&)1/()))((()(

&&

&&)(

kFstFbestkFstd

ccbestTpcountNPkpcount

SPEXk

bestTk

 (7)

Where k is used to indicate the cluster to be checked; the best cluster
is indicated by T(best); the number of clusters is indicated by cc; the
standard deviation of the fitness value of cluster k is indicated by
Fstd(k); the fitness value of the best individual of cluster k is
indicated by Fst (k); the best fitness value of the current population is
indicated by Fbest; The number of the individuals in cluster k is
indicated by pcount(k); the total number of the individuals in the
population is indicated as NP.

In (7), line 1 and line 2 are used to exclude the best cluster and the
SPEX cluster; Line 3 is used to make sure that the size of the cluster
is above the average size of all the clusters except the best cluster;
Line 4 is used to exclude cluster which has gained little progress in
the last generation, with the threshold value set as 0.1. The standard
deviation of fitness value in a cluster can show its progress in the last
generation and if the progress is too small compared to the gap
between the best fitness value in this cluster and the global best, it is
reasonable to judge it as “dead”.

The dead state defined above is just an empirical conclusion, so the
“dead” cluster should be restarted in a soft way which will still be
able to search the space where it is concerned dead. The local restart
rules are as follows:

a) Find the current lower bound CLB and upper bound CUB in
every dimension of the whole population.

b) For every individual in the dead cluster, with a probability of
0.9 the new individual will be generated by the DE/rand/2
strategy with the base vector randomly selected not belonging
to the best cluster. Otherwise for its every dimension, 50%
probability its new value will be uniformly randomly generated
between [CLB, CUB],and another 50% it will be generated out
of the current searching range by a Gaussian distribution with a
standard deviation of CUB-CLB.

Here the restarting are only near the current searching space to make
sure that the population will converge eventually. Immediate cluster
analysis will be carried out when dead clusters have been restarted.
Then new clusters may be found, which means the population will
try to exploit new minima. Total iteration procedure of the population
iteration with cluster analysis is shown in Fig. 2.

Figure 2. Procedure of the DE/cluster main loop

2.4 Adaptation of F and CR
In DE algorithm, the setting of parameters F and CR is important to
achieve good performance. Many parameters adaptation methods
have been proposed recently [5][6][8]. In DE/cluster, we adopted the
F and CR adaptation strategy of [6]. The adaptation of F is just use a
random number generated by a preset Gaussian distribution
N(Fmean, Fstd), while the CR values are generated by a dynamically
adapted Gaussian distribution N(CRmean, CRstd). The value of
CRmean is updated by the mean value of the CRs performed well in
the last LP generations while CRstd is set as a static value. For
detailed adaptation procedure of F and CR, please look for [6].

Figure 3. Crossover strategy in DE/cluster

The CR adaptation strategy applied in DE/cluster has been slightly
modified. The crossover in DE is actually a way to improve the
quality of the solution by combining different values from different
individuals when the variables in different dimensions are
independent. In the standard DE algorithm crossover is only done
between the farther individual and its child. In DE/cluster this is
further extended by a GA [3] crossover operator, in which the
individual not only crossover with the newly generated individual,
but also with the individuals in the current population. This is based
on the idea that the other individuals in the current population may
have some “good values” which this individual does not. From this
motivation the GA mutation strategy is also introduced to DE/cluster.
Overall the crossover strategy of DE/cluster is shown in Fig. 3.

1088

Table 1. Test Functions

F1: Sphere :

shifted

D

i
ixxf

1

2
1)(

F2: Schwefel 1.2
shifted

D

i

i

j
jxxf

1

2

1
2)()(

F3: Rosenbrock

1

1

22
1

2
3))1()(100()(

D

i
iii xxxxf

F4: Schwefel 1.2
shifted with noise:

D

i

i

j
j Nxxf

1

2

1
4 |))1,0(|4.01(*))(()(

F5: Ackley shifted:
oxx

ex
D

x
D

xf
D

i
i

D

i
i

20))2cos(
1

exp()
1

2.0exp(*20)(
11

2
5

F6: Ackley shifted
rotated:)(oxMx

ex
D

x
D

xf
D

i
i

D

i
i

20))2cos(
1

exp()
1

2.0exp(*20)(
11

2
6

F7: Griewank shifted: 1)/cos(
4000

)(
11

2

7

D

i
i

D

i

i ix
x

xf

F8: Griewank shifted
rotated:)(oxMx 1)/cos(

4000
)(

11

2

8

D

i
i

D

i

i ix
x

xf

F9: Rastrigin shifted:

D

i
ii xxxf

1

2
9)10)2cos(10()(

F10: Rastrigin shifted
rotated:)(oxMx

D

i
ii xxxf

1

2
10)10)2cos(10()(

F11: Non-continuous
Rastrigin shifted:

,)10)2cos(10()(
1

2
11

D

i
ii yyxf

2/1||,2/)2(

2/1||,

ii

ii
i xxround

xx
y

F12: Schwefel

D

i
ii xxDxf

1

2/1
12)|sin(|*9829.418)(

F13: Schwefel’s
problem 2.22

D

i
i

D

i
i xxxf

11
13 ||||)(

F14: Schwefel’s
problem 2.21

}.1|,{|)(max14 Dixxf i
i

F15: Generalized
penalized function 1)1(

4

1
1),4,100,10,(

)1())(sin101()1()(sin10)(

1

2
1

1
1

22
1

2
15

ii

D

i
i

D

D

i
ii

xyxu

yyyy
D

xf

F16: Generalized
penalized function 2

D

i
i

D

i
DDii

xu

xxxxxxf

1

1

1

2
1

2
1

2
16

)4,100,5,(

)]2(sin1)[1()]3(sin1)[1()3(sin1.0)(

F17: Kowalik’s
function

11

1

2

43
2

2
2

1
17]

)(
[)(

i ii

ii
i xxbb

xbbx
axf

F18: Six-hump camel-
back function

.44
3

1
1.24)(4

2
2
221

6
1

4
1

2
118 xxxxxxxxf

F19: Branin function .10cos)
8

1
1(10)6

5

4

1.5
()(1

2
1

2
12219 xxxxxf

F20: Hartman’s
function 1

.])(exp[)(
4

1

3

1

2
20

i j

ijjiji pxacxf

F21: Hartman’s
function 2

4

1

6

1

2
21])(exp[)(

i j
ijjiji pxacxf

F22, 23 and 24:
Shekel’s family

m

i
ii

T
i caxaxxf

1

1])()[()(,with m=5,7

and 10 for F22, F23 and F24.

3. Experiments on DE/cluster
This section will present some experiments to show the performance
of DE/cluster in its efficiency and the effect of some key parameters
setting and the clustering component in DE/cluster. Experiment 1 is
designed to compare the efficiency of DE/cluster and the traditional
DE, SaDE, JADE. Experiment 2 is designed to show the ability the
DE/cluster on some test functions that are non-linearly separable to
demonstrate its ability of searching only based on its mutation
strategy. Experiment 3 shows the runtime characteristic of the cluster
information learned by DE/cluster on different kinds of test
functions. Experiment 4 do a simple analysis on the running time of
DE/cluster and simulations are carried out to prove that the time cost
of DE/cluster is under control.

3.1 Experiments Setting
In the following tests DE/cluster is configured as follows: the
population used NP=50, the generator of F is Gaussian(0.4,0.2). The
initial value of CR=0.65 and CRstd is set as 0.1. The generations LP
to store the memory of CR is set as 50. The probability to do GA
crossover Alpha=0.25/cc, where cc is the number of clusters. The
differential pool’s size is configured as M1=10, M2=20. The
maximum size of a cluster allowed S is set as 40% of the whole
population. The frequency to do cluster analysis is set as every K=5
generations.

The algorithms to be compared with DE/cluster are as follows:

a) Traditional DE: DE/rand/1/bin (F=0.5, CR=0.3) and
DE/rand-to-best/2 (F=0.5, CR=0.3).

b) Current most efficient DE variants: SaDE(2009) and JADE.

Test functions are shown in Table 1. (Test suite used in [6], for the
searching range and optimum information please refer to [6]). The
test functions which are indicated shifted means that the original best
solutions are shifted to new positions which are not central. Test
functions which are rotated means that the variables are firstly
rotated by a rotating matrix of certain condition number.

3.2 Comparison with Current Best DE
Variants
To compare the performance of different algorithms, here will let the
algorithms run several times on the same test suite to test whether
they can find good enough solutions within a maximum function
evaluations. Table 2 shows the performance comparison on the
average function evaluations (FEs) cost for these algorithms to
achieve a better function value on each test function than the known
best value plus 1E-5 within a predefined max number of FEs (1E+5
for lower than 30-dimensional test problems while 3E+5 for 30-
dimensional test functions). Results on test functions which no
algorithm can solve with 100% success rate are not shown in Table 2
(such a function like F8 is actually non-linear-separable. For such a
kind of problems, DE algorithms cannot perform well. In the next
part we show the results of the DE/cluster algorithm on F8 compared
with the other algorithms). The above tests results are all based on
the average performance of 50 tests for every test function.

From the results shown in Table 2 it can be see that DE/cluster
outperformed the other algorithms on most of the test functions. The
performance of DE/cluster is most significant on test function F1, F5,
F6, F9, F11 and F17~F24. The DE/cluster algorithm can perform
well on F1 shows that its convergence speed on simple unimodal test
functions is maintained while its global searching ability on the
multimodal test functions are quite well. The searching speed of
DE/cluster on low dimensional functions F17-F24 is impressive.

1089

Table 2. Performance comparison on the average function evaluations cost within a predefined max value. Best performance on each
test function is presented in “bold” font.

3.3 Test the Searching Ability of DE/cluster on
the Non-linearly-separable Test Function
Currently DE usually cannot perform well on some linearly
inseparable multimodal functions. In this experiment we will test the
performance of DE/cluster on F8 on lower dimensions to
demonstrate its performance on linearly inseparable multimodal
functions (with the dimension increasing the problem becomes more
and more difficult to solve). For the linearly inseparable multimodal
functions, the CR adaptation will not work and the algorithm will

mainly depend on its mutation strategy. Test is carried out on F8
(with D=3, 4 and 5) and the success rate for different algorithms
within maximum 2E+5 functions are showed in Table 3.

For all the test algorithms, CR is set as 1. The adaptation of F is
retained for the algorithms which apply F adaptation. For the
DE/rand algorithm, F is randomly generated by a Gaussian
distribution (0.5, 0.2). From the results we can see that for all the test
algorithms tested, their performance on F8 degenerates quickly with
the dimension increased from 3 to 5. This is because of the
exponential increasing of the number of local minima. To solve this

 DE/cluster
DE/rand/1/bin

(0.5,0.3)
DE/rand-to-best/2/bin

(0.5,0.3)
SaDE(2009) JADE

D f NFE SR NFE SR NFE SR NFE SR NFE SR

10 1 4687 100% 10291 100% 10058 100% 8375 100% 6852 100%

10 2 10352 100% 72436 100% 53658 100% 14867 100% 10930 100%

10 3 - 96% - 0% - 0% 42446 100% - 92%

10 4 17647 100% - 83% 71278 100% 15754 100% 11724 100%

10 5 7316.1 100% 15157 100% 15045 100% 12123 100% 10730 100%

10 6 7700.2 100% 16682 100% 16980 100% 12244 100% 10939 100%

10 7 - 90% 29961 100% 59205 100% 35393 100% 32019 100%

10 9 14456 100% 23155 100% 30621 100% 23799 100% 18017 100%

10 11 15459 100% 29559 100% 46592 100% 26945 100% 17886 100%

10 12 11973 100% 14698 100% 33091 100% 16663 100% 17460 100%

30 1 14326 100% 34687 100% 31470 100% 20184 100% 22226 100%

30 2 85450 100% - 0% - 0% 118743 100% 72884 100%

30 5 21074 100% 49822 100% 45948 100% 26953 100% 31450 100%

30 6 22664 100% 55108 100% 49961 100% 33014 100% 31286 100%

30 7 - 98% 39436 100% 41314 100% - 80% - 98%

30 9 49683 100% - 0% - 0% 58723 100% 1.09E+05 100%

30 11 49231 100% - 0% - 0% 77920 100% 1.09E+05 100%

30 12 46303 100% 73756 100% - 0% 44283 100% 1.08E+05 100%

30 13 19792 100% 39460 100% 18617 100% 25137 100% 37430 100%

30 14
1.46E+0

5
100% 149511 100% - 0% 88934 100% 1.65E+05 100%

30 15 16660 100% 32420 100% 14289 100% 18742 100% 21806 100%

30 16 20768 100% 31346 100% - 93% 19390 100% 22236 100%

4 17 5092.2 100% 31121 100% - 93% 6426 100% - 98%

2 18 644.02 100% 2178 100% 1416 100% 2076 100% 894 100%

2 19 764 100% 2246 100% 1593 100% 2614 100% 1492.2 100%

4 20 459.16 100% 926 100% 1004 100% 802 100% 484.2 100%

6 21 1158.6 100% 3970 100% 4759 100% 3080 100% - 76%

4 22 2616.5 100% 10468 100% 12381 100% 4947 100% - 82%

4 23 2040.1 100% 8653 100% 12921 100% 4173 100% - 96%

4 24 1738.4 100% 8742 100% 14933 100% 4267 100% - 92%

1090

kind of test functions, the algorithm must have good global search
ability. The tested algorithms are with different kinds of global
search ability enhancing strategies. For the traditional DE algorithms,
DE/rand has the best global searching ability and the slowest
searching speed because it uses randomly selected as the base vector.
JADE applies multiple top individuals as the guiding vector but with
a useful F adaptation strategy. SaDE can be taken as an algorithm
with mixed strategies which its performance should be tested in this
test.

The results shows that the performance on the tested functions
DE/cluster > JADE > SaDE > DE/rand. The reason why DE/cluster
can perform better than the other algorithms on F8 is that the local
restart module applied in DE/cluster can make a better balance of
searching speed and global search while the SPEX cluster can do a
good job on maintain the population diversity. The results showed
DE/rand performed the worst in opposite with the fact that it applies
the most global mutation strategy, this may caused by the
inefficiency of the mutation operator applied, i.e., it is global, but it
may be inefficient to generate a new promising result to help the
algorithm find a new minimum point.

3.4 Runtime Characteristic of the Clustering
Results of DE/cluster on Different Test
Functions
Here will study the cluster information DE/cluster mined in the
evolution procedure. Fig. 4 shows the number of clusters found in
every generation for different test functions (average results for 50
tests). Fig. 4 shows the clusters count for F1 during the evolution
procedure. It can be seen that the cluster count shows clearly
decreasing trend with certain concussion. This shows the DE/cluster
learned from the distribution the population and adapted it into the
searching mode of a unimodal function (with less clusters, the
algorithm will searching faster). The trend line of the clusters count
for F7 (Fig. 5) is quite different with that of F1. In the first stage the
trend line decreasing quickly while in the second stage the trend line
keeps climbing. This is actually because of the characteristic of F7:
at the beginning searching stage of F7 with the large beginning
searching range, the function is almost like a unimodal function
while when the searching range is small, many local minima
emerged and the function becomes to a multimodal function. The
trend line of F7 shows DE/cluster can adapt its searching mode
between unimodal and multimodal to a certain degree.

The performance of DE/cluster on F14 is not as good as the other DE
algorithms as shown above. The reason may be explained by Fig. 6.
It shows that the clusters count of F14 is in great vibrating from the
beginning to the end of the evolution procedure. This shows the
DE/cluster algorithm is confused by the distribution of the
population and cannot find an efficient mode for the test function.
The reason of this phenomenon should be further studied

Table 3. Comparison on linear inseparable function F8 (D=3, 4
and 5)

 Success rate within 2E+5 NFEs within 50 tests

 DE/cluster JADE SaDE DE/rand

F8 (d=3) 100% 100% 78% 68%

F8 (d=4) 78% 62% 16% 6%

F8 (d=5) 24% 2% 0% 0%

0 500 1000 1500 2000 2500 3000 3500 4000
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Generation

C
lu

st
 c

ou
nt

 i
n

ev
er

y
ge

ne
ra

ti
on

F1

Figure 4. Clusters count during evolution for F1.

0 500 1000 1500 2000 2500 3000 3500 4000
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

C
lu

st
 c

ou
nt

 i
n

ev
er

y
ge

ne
ra

ti
on

F7

Figure 5. Clusters count during evolution for F7.

0 500 1000 1500 2000 2500 3000 3500 4000
4

4.5

5

5.5

6

6.5

7

Generation

C
lu

st
 c

ou
nt

 i
n

ev
er

y
ge

ne
ra

ti
on

F14

Figure 6. Clusters count during evolution for F14

1091

3.5 Run time analysis of DE/cluster
The time cost of DE/cluster can be controlled greatly due to the fact
that the clustering of the population is changing slowly during the
evolution procedure. The usually changing pattern of the clusters of
the population is often suddenly-changing, i.e., with some new
promising individuals found, some individuals are attracted and form
a new cluster. For a single clustering process, its time complexity is
caused by computing the distance matrix and sorts the matrix to
some extent. The computation of the distance matrix, the time
complexity is about)*(2NPDO , which is because the distance

between every pair of individuals in the population is needed. For the
sorting part of clustering, at the worst case when a total sort of the

distance matrix is done, the time complexity is)log*(2 NPNPO .

Usually the number NP of individuals used for DE is set as D*10, so
the second part of the time cost is actually smaller than the first part.
Thus theoretically the time cost of the clustering process in
DE/cluster is mainly generated by computing the distance matrix.
Thus we concluded that it is acceptable to do the explicit clustering
analysis after the distance matrix is already computed on time
consuming aspect. As has been mentioned above, the time
consuming of DE/cluster can be greatly improved by doing cluster
analysis only when it is needed. Table 4 shows the time cost
comparison of DE/cluster with other algorithms. For DE/cluster, the
number K of generations to do re-clustering is set as 30. Form the
test results shown in Table 4 we can see that it is acceptable
(compared with the DE/rand algorithm and SADE). The time
consuming of doing cluster analysis can be further neglected when
function evaluation is time costly.

Table 4. Run time comparison

Time cost (s)

DE
variants

F9
(d=10)

F9
(d=30)

F1
(d=30)

F1
(d=10)

F21

DE/
cluster

0.4168 2.3075 0.6828 0.1682 0.0487

DE/
rand/1

0.3137 ~ 0.3634 0.0977 0.0666

SADE 0.5529 2.3721 0.6619 0.1765 0.0637

4. Conclusion
In this paper we have proposed a new DE algorithm called
DE/cluster. DE/cluster applies the simple hierarchical clustering
algorithm to mine the distribution information of the population and
use this information to partition the population dynamically. The
cluster analysis will be done for every some generations or when the
local restart has happened, so the time cost of cluster analysis can be
controlled. Clustering can make the algorithm be able to adapt the
partition at different searching phase and can make the
subpopulations searching for their local minima more efficiently.
DE/cluster applies a pool to provide individuals for the

subpopulations which have not enough individuals to generate
differential vectors. Different mutation strategies are chosen for
different kinds of clusters. The special cluster combined from all the
single-individual-clusters is used for global search with the
DE/current-to-best strategy and for the other clusters more greedy
mutation strategy DE/best are applied, thus different searching
strategies are used for different individuals in the current population
according to their distribution characteristics, which is not the same
as SaDE.

The local restart strategy applied in DE/cluster can make the
subpopulations which have converged to local minima restart and
searching the other space. This makes DE/cluster even perform better
than DE/rand on some non-linear-separable test functions.

5. ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science

Foundation of China (NSFC) No. 61070004, and by NSFC Joint
Fund with Guangdong under Key Project U0835002. The authors are
with the Key Lab of Digital Life, MoE, China, and the Key Lab. of
Softw. Tech, Edu. Depart of Guangdong Province. The
corresponding author is Jun Zhang, email: junzhang@ieee.org

6. References
[1] R. Storn and K. V. Price. Differential evolution–A simple and

efficient adaptive scheme for global optimization over
continuous spaces. Tech. Report TR-95-012, Institute of
Company Secretaries of India, Chennai, Tamil Nadu, 1995.

[2] R. Storn and K. V. Price. Differential Evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. J. Global Optimization, 11, 4 (1997), 341–359.

[3] J. H. Holland. Adaptation Natural and Artificial Syst. Ann
Arbor, MI: Univ. Michigan Press, 1975.

[4] J. Kennedy and R. Eberhart. Particle swarm optimization. in
Proc. IEEE Int. Conf. Neural Netw., 1995, 1942–1948.

[5] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer.
Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems. IEEE
Trans. Evol. Comput., 10, 6 (Dec. 2006), 646–657.

[6] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential
evolution algorithm with strategy adaptation for global
numerical optimization. IEEE Trans. Evol. Comput., 13, 2 (Apr.
2009), 398–417.

[7] Swagatam Das, Ajith Abraham, and Amit Konar. Differential
Evolution Using a Neighborhood-Based Mutation Operator.
IEEE Trans. Evol. Comput., 13, 3 (Jun. 2009), 526–552.

[8] Jingqiao Zhang, and Arthur C. Sanderson. JADE: Adaptive
Differential Evolution with Optional External Archive. IEEE
Trans. Evol. Comput. ,13, 5 (Jun. 2009), 945–958.

1092

