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ABSTRACT
Mate selection is a key step in evolutionary algorithms which
traditionally has been panmictic and based solely on fit-
ness. Various mate selection techniques have been published
which show improved performance due to the introduction
of mate restrictions or the use of genotypic/phenotypic fea-
tures. Those techniques typically suffer from two major
shortcomings: (1) they are fixed for the entire evolutionary
run, which is suboptimal because problem specific mate se-
lection may be expected to outperform general purpose mate
selection and because the best mate selection configuration
may be dependent on the state of the evolutionary run, and
(2) they require problem specific tuning in order to obtain
good performance, which often is a time consuming man-
ual process. This paper introduces two versions of Learning
Individual Mating Preferences (LIMP), a novel mate selec-
tion technique in which characteristics of good mates are
learned during the evolutionary process. Centralized LIMP
(C-LIMP) learns at the population level, while Decentral-
ized LIMP (D-LIMP) learns at the individual level. Results
are presented showing D-LIMP to outperform a traditional
genetic algorithm (TGA), the Variable Dissortative Mating
Genetic Algorithm (VDMGA), and C-LIMP on the DTRAP
and MAXSAT benchmark problems, while both LIMP tech-
niques perform comparably to VDMGA on NK Landscapes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.6 [Artificial Intelligence]: Learn-
ing; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

Keywords
Reinforcement Learning, Mate Selection, Evolutionary Al-
gorithm
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1. INTRODUCTION
Mate selection strategies in evolutionary algorithms (EAs)

are traditionally panmictic. These strategies allow recombi-
nation between any individuals regardless of their genotypic
or phenotypic differences. As a result, individuals tend to
become increasingly similar over time, which can cause the
population to converge to local optima [15]. Additionally,
EAs have typically required that the individuals encoding
better solutions be used more often in the mate selection
process [15]. This is based on the understanding that com-
bining higher quality solutions is more likely to result in
better offspring. However, using some individuals to create
offspring more often than others can also reduce the diversity
of the population and lead the EA to prematurely converge
on a suboptimal solution.

In nature, another mechanism for mate selection based on
the genotypic or phenotypic traits of individuals is frequently
observed. This mechanism encompasses various strategies
based on the ancestry or likeness of individuals involved in
reproduction. For example, humans are known to mate out-
side their family tree (in most cultures). In EAs, this type
of mating would be based in some fashion on the ancestry or
a distance measurement between individuals. Many of the
published mate selection techniques based on pre-selected
genotypic or phenotypic preferences use fixed preferences for
the entire run of the EA. The inability to change mating
preferences can result in suboptimal solutions due to prob-
lem specific details that a fixed method cannot adjust to
handle. Additionally, the best configuration of genotypic or
phenotypic preferences may depend on the current state of
the population and the corresponding trade-off between ex-
ploration and exploitation. These mate selection techniques
also need to be tuned correctly for problems, as mating re-
strictions or preferences are likely not universally helpful.
Sexual selection can be considered an extension of genotypic
or phenotypic trait-based selection, which appears in nature
among animals. This type of selection involves developing
more elaborate preferences for selecting a mate based on
additional features of other individuals.

This paper introduces Learning Individual Mating Pref-
erences (LIMP), which provides individuals a chance to de-
velop an understanding of the best features to look for in a
mate. This idea borrows from the concept of sexual selection
in nature, where features of good mates are learned during
the evolutionary process. Decentralized LIMP (D-LIMP)
allows every individual to develop a genotypic preference
for other individuals in the population by learning from the
results of their prior reproductions. Centralized LIMP (C-
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LIMP) develops a population wide genotypic preference for
mates relative to the possible gene values. In D-LIMP, each
individual examines the fitness of the offspring it produces
and then modifies its mating preference based on the re-
sults. The individual likes the genes of the mate it selected
if the offspring had a higher fitness than itself or dislikes
the genes of the selected mate if the offspring was of lower
quality than itself. Likewise, C-LIMP updates a population
wide genotypic preference based on offspring fitness. The
obtained knowledge in D-LIMP is passed on to the offspring
generated, while in C-LIMP the knowledge is already known
to all individuals. Both techniques allow the mate selection
process to become more refined as evolution occurs.

2. RELATED WORK
Several nature-inspired alternatives to traditional panmic-

tic mate selection schemes for EAs have been examined by
the EA community [1, 2, 4, 5, 6, 8, 9, 12, 13]. The concept of
niching in EAs derives from nature - where creatures evolve
into distinct species in different areas of the environment. In
EAs, niching is implemented via splitting populations into
niches based on a predefined notion of distance. Individuals
in these niches only mate with others in the same niche [1].
This reduces the loss of genetic diversity in the population
due to genetic drift, but requires an a priori distance mea-
surement. Unlike niching, LIMP uses a measurement of the
similarity of an individual’s learned preferred genes to po-
tential mates’ genes, and mating is not restricted, just less
likely to occur between less incompatible individuals.

LIMP is similar to assortative mating techniques, which
have individuals select a mate based on similarity (posi-
tive assortative mating) or dissimilarity (negative assorta-
tive mating) of their genotypes or phenotypes. Negative as-
sortative mating is known to increase the genetic diversity of
the population by increasing the frequency of heterozygous
genotypes. The Variable Dissortative Mating Genetic Algo-
rithm (VDMGA) was introduced as an adaptable method
of negative assortative mating that implements a hamming
distance threshold restriction on mating. The restriction
tends to loosen over time but can become stricter as well [4].
LIMP is similarly a non-random mating technique for select-
ing mating pairs. However, rather than strictly comparing
genotypes with a threshold value, LIMP compares a learned
vector of desirable features developed from past experience
to the genotype of potential mates. Also, LIMP learns about
what genes individuals want to see in a mate, rather than
assuming more dissimilarity between their genes is better.

Estimation of Distribution Algorithms (EDAs), use an
estimation of the distribution of good solutions based on
known solutions to probabilistically generate new solutions
that are likely to be high quality [14]. Comparably, LIMP
estimates the distribution of potential mates in the popula-
tion that are likely to result in improved offspring quality.
The results of previous matings are used to determine supe-
rior mating partners for the current generation. C-LIMP has
more in common with EDAs than D-LIMP because C-LIMP
uses population wide learning. EDAs and LIMP use a dis-
tribution of known features to select new features. However,
EDAs use the distribution to generate new solutions, while
LIMP uses the distribution to rate potential mates. In addi-
tion, EDAs use a distribution built from the entire popula-
tion and lack some of the characteristic EA concepts of mate
selection and recombination, while individuals in D-LIMP

each have a separate distribution of good mating character-
istics and traditional EA recombination methods are used
to generate new solutions for both LIMP algorithms.

The use of offspring quality as a means to learn which
individuals produce good offspring together has been exam-
ined in Reinforcement Learning for mate selection in Cellular
Genetic Algorithms [12]. In this type of cellular genetic al-
gorithm, individuals are more likely to mate with neighbors
located near them on the topological grid of a cellular genetic
algorithm. Reinforcement learning is used to reposition in-
dividuals on the grid so that individuals that produce good
offspring are moved closer together and individuals that pro-
duce bad offspring are moved further apart. LIMP also looks
at offspring fitness to update the pairing preferences for fu-
ture mate selection. However, in LIMP each gene of an
individual is considered in the search for a mate and the
desirability of each gene is updated, while in Reinforcement
Learning for mate selection in Cellular Genetic Algorithms
the entire genotype is considered as a single unit.

The concept of LIMP is based on two prior mate selection
algorithms [8, 9]. The original concept of Learning Offspring
Optimizing Mate Selection [9] required every individual that
is selected for mating to evaluate every other individual in
the population to determine a compatible mate, resulting
in significant overhead time for the algorithm. An alter-
nate version of this algorithm that focused on reducing the
overhead, Estimated Learning Offspring Optimizing Mate
Selection probabilistically selected good enough mates for
each individual in the population [8]. Instead of a proba-
bilistic method, LIMP uses a tournament to select mates
and does not require that mate to reciprocate an interest in
mating. The tournament process reduces the overhead of
LIMP compared to the original concept, as the probabilistic
method does, but creates more compatible mating pairs as
well. Additionally, the values representing mate quality and
desirable features used in the original methods converge to
intermediate values, reducing the information that can be
discovered about potential mates. LIMP avoids this pitfall
by updating the desirable features for potential mates in a
way that allows possible convergence of mate quality and
feature desirability values to one extreme or the other.

While many effective mate selection methods exist in lit-
erature, mate selection based on specific genotypic features
learned during evolution has only recently been examined
as an option [9, 8]. Other related algorithms base mate se-
lection on genotypic features preselected by the algorithm
designer. In this paper, we study the effects of D-LIMP and
C-LIMP compared to a successful assortative mating algo-
rithm, VDMGA, and a traditional genetic algorithm (TGA)
using tournament mate selection methods on several prob-
lems with binary string-based representation.

3. LIMP METHODOLOGY
LIMP incorporates two additional components into a tra-

ditional EA. The first component, at the mate selection stage
of an EA, involves examining a limited number of potential
mates for an individual j by comparing the desired genes of
j to other individuals’ genotypes. The most suitable exam-
ined individual is selected to produce an offspring with j.
The second component entails updating the desired genes
of j and its mate, for D-LIMP, or the desired genes of the
population, for C-LIMP, based on the fitness of the offspring
relative to each parent.
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Table 1: Example of individuals employing D-LIMP
and their MACD−LIMP (j, k) values

k
j sj dj 1 2 3 4

1 0101 .7 .6 .7 .2 .350 .650 .300 .450

2 1010 .3 .4 .8 .6 .475 .525 .525 .375

3 0001 .9 .5 .8 .4 .300 .700 .300 .500

4 1101 .2 .6 .6 .6 .600 .400 .550 .450

Table 2: Example of mate selection with D-LIMP
using the MAC values of Table 1

Parent Event MAC Result
1 examine 3 .300

examine 2 .650 mate pair (1,2)
4 examine 1 .600

examine 3 .550 mate pair (4,1)
2 examine 4 .375

examine 1 .475 mate pair (2,1)

3.1 Mate Selection
At the mate selection stage of LIMP, λ randomly selected

individuals are given the opportunity to examine the suit-
ability of potential mates, with each examining a limited
number of potential mates and selecting the most suitable
individual found to mate with. The order in which potential
mates are examined is arbitrary.

3.1.1 D-LIMP
To estimate the suitability of a potential mate in D-LIMP,

each individual j maintains a real-valued vector dj , in ad-
dition to a bit string genotype encoding individual j’s trial
solution to a problem, sj . Let dj be referred to as the de-
siredFeatures vector of individual j. The length of dj equals
the length of sj , and each element i of dj , dj [i], represents
how much individual j wants the ith bit of its potential mate
to be a one. All elements of dj are initialized to ¬sj .
The Mate Acceptance Chance (MAC), first defined in [9],

for an individual j examining an individual k in D-LIMP is
defined as:

MACD−LIMP (j, k) =

∑L
i=1 1− (|sk[i]− dj [i]|)

L
(1)

where L is the length of the bit string solution and sk[i] is the
ith bit of k’s trial solution. The value of each element of dj is
in the range [0,1], so the value of MACD−LIMP (j, k) is also
in the range [0,1]. This way MACD−LIMP (j, k) estimates
the suitability of k as a potential mate for j.
The following example demonstrates how D-LIMP works.

Suppose the population consists of the 4 individuals shown
in Table 1. The values of MACD−LIMP (j, k) for all j, k =
1, . . . , 4 are also shown in Table 1. At the parent selection
stage, λ parents are randomly sampled with replacement
from the population and each looks for a mate. For each
parent looking for a mate, tMAC , the tournament size for
the MAC value, individuals are randomly selected from the
population, and the one with the highest MAC value is
chosen to be the mating partner for that individual. An
example of the mate selection process with tMAC = 2 and
λ = 3 is shown in Table 2.

Table 3: Example of individuals employing C-LIMP
and their MACC−LIMP (j, k) values

k
j sj 1 2 3

dP0 : .3 .1 .8 1 010 .60 .40 .33
2 101 .53 .47 .80

dP1 : .2 .9 .3 3 000 .47 .67 .60

Table 4: Example of mate selection with C-LIMP
using the MAC values of Table 3

Parent Event MAC Result
3 examine 3 .60

examine 2 .67 mate pair (3,2)
2 examine 1 .53

examine 2 .47 mate pair (2,1)

3.1.2 C-LIMP
To estimate the suitability of a potential mate in C-LIMP,

the population maintains real-valued vectors dP0 and dP1

indicating how much any individual with a gene value of 0
at i or 1 at i respectively wants the ith bit of its potential
mate to be one. All elements of dP1 are initialized to 0 and
all elements of dP0 to 1.

The MAC for individual j examining individual k in C-
LIMP is defined as:

MACC−LIMP (j, k) =

∑L
i=1 adj[i]

L
(2)

where

adj[i] =

{
1− (|sk[i]− dP1[i]|) if sj [i] = 1

1− (|sk[i]− dP0[i]|) if sj [i] = 0
(3)

Table 3 provides an example similar to the D-LIMP ex-
ample demonstrating how C-LIMP works with a population
of three. An example of the mate selection process with
tMAC = 2 and λ = 2 is shown in Table 4.

3.2 Learning desirable mate qualities
When offspring are created via recombination in D-LIMP,

the corresponding desiredFeatures vectors of the parents are
recombined in the same fashion. Specifically, if an offspring
obtained the ith bit of its solution from parent A, then the
ith element of the offspring’s desiredFeatures vector is copied
from the corresponding data of parent A. This process en-
sures that the parents’ knowledge about desirable mate qual-
ities relevant to their offspring’s genotype is passed on to
their offspring.

Knowledge about desirable mate qualities is obtained by
observing the outcome of reproduction. Each time an indi-
vidual participates in reproduction, it updates its desired-
Features vector in D-LIMP, or the population desiredFea-
tures vector in C-LIMP, depending on how the offspring’s
fitness compares to his own.

Let j and k be the sets of two parents described in Table 1
and identified as mating pairs in Table 2. Possible offspring,
m, from each mating pair’s recombination are described in
Table 5.

The update of the desiredFeatures vectors depends on
tracking which parent contributed each gene that child re-
ceived in recombination. The following method describes
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Table 5: Examples of offspring m created by the
mating pairs from Table 2

m inherited genes sm dm
1 s1s1s2s2 0110 .7 .6 .8 .6

2 s4s4s4s1 1100 .3 .6 .7 .6

3 s2s1s1s2 1101 .2 .6 .6 .2

how to update the desiredFeatures vectors for possible uni-
form and n-point crossover, where the origin of the child’s
genes can be determined.

Let F (j), F (k), and F (m) be the fitness values of indi-
viduals j, k, and m respectively where m is the offspring
of j and k. There are two general cases for updating the
desiredFeatures in LIMP:

Case 1: The child has an equal or lower fitness than
a given parent. If F (m) ≤ F (j) then k was not a suit-
able mate for j. Specifically, j should avoid mating with
individuals having the same genes that k gave to m. Cor-
respondingly, if F (m) ≤ F (k) then j was not a suitable
mate for k and k should avoid mating with individuals
having the same genes that j gave to m.
Case 2: The child has a higher fitness than a given
parent. If F (m) > F (j) then individual j selected a
suitable mate. Specifically, j should consider the genes
k gave to m more suitable in future mates. Similarly, if
F (m) > F (k) then individual k found j to be a suitable
mate and k should consider the genes j gave to m more
suitable in future mates.

For D-LIMP, in all cases, each individual updates its de-
siredFeatures vector to consider individuals with more suit-
able genotypic qualities. For individual j,dj is updated only
for the gene locations that k gave to the child and the rest of
dj remains unchanged. The dj values are updated such that
in the next generation, the value of MAC(j, k) is higher if j
found k to be a suitable mate and lower if j found k to be a
bad mate.

Updates in C-LIMP are performed in the same fashion,
except that all updates that would happen to location i in
dj instead happen to dP1[i] if sj [i] = 1 or happen to dP0[i]
if sj [i] = 0 and all updates that would happen to a location
in dk instead happen to dP1 if sk[i] = 1 or dP0 if sk[i] = 0.
The size of the updates, uj and uk for each location re-

ceiving an update in dj and dk are defined as:

uj =

∣∣∣∣1− F (m)

F (k)

∣∣∣∣ (4)

and

uk =

∣∣∣∣1− F (m)

F (j)

∣∣∣∣ (5)

where F (j) and F (k) are not allowed to be zero, and the fit-
ness range must be positive values. The equations indicate
the degree to which j found k to be a suitable mate or a bad
mate and the reverse for k considering j by calculating the
percentage change of the child’s fitness relative to the par-
ent’s fitness. Using these calculations for updating the de-
siredFeatures allows offspring that are much better or worse
than the parent to more drastically change the desiredFea-
tures of the parent or population. Consequently, offspring

Table 6: Example of updating d vectors in D-LIMP
with m receiving s[1], s[2] from j and s[3] from k

j k m
s 101 110 100

d(old) .7 .2 .7 .4 .3 .8 .7 .2 .8

fit 20 15 18
u 0.1 0.2 −

d(new) .7 .2 .8 .6 .1 .8 .7 .2 .8

that are only slightly better or worse than the parent will
only be allowed to slightly change the desiredFeatures of the
parent or population, as they provide less significant infor-
mation about what the parent or population actually prefers
in a mate. The range of all values in desiredFeatures is
[0, 1], so any update that causes a value to fall outside that
range is limited to setting the value to 0 or 1.

For D-LIMP, if j found k to be a suitable mate, for all
gene locations i that k gave to m, if sk[i] = 1, the value of
dj [i] is increased by uj ; otherwise sk[i] = 0 and the value
of dj [i] is decreased by uj . In C-LIMP, if sk[i] = 1 then
either dP0[i] or dP1[i] (depending on sj [i]) is increased by
uj ; otherwise sk[i] = 0 and the value of dP0[i] or dP1[i] is
decreased by uj . This ensures that in the next generation
the value of MAC(j, k) is higher than it was in the current
generation.

For D-LIMP, if j found k to be a bad mate, for all gene
locations i that k gave to m, if sk[i] = 0, the value of dj [i] is
increased by uj ; otherwise sk[i] = 1 and the value of dj [i] is
decreased by uj . In C-LIMP, if sk[i] is 0 then either dP0[i]
or dP1[i] (depending on sj [i]) is increased by uj ; otherwise
sk[i] is 1 and the value of dP0[i] or dP1[i] is decreased by
uj . This ensures that in the next generation the value of
MAC(j, k) is lower than it was in the current generation.

Table 6 provides an example of the desiredFeatures up-
dating process for D-LIMP, while C-LIMP updates different
desiredFeatures vectors likewise. If mutation is applied to
an offspring’s candidate solution after crossover, the updates
to the desiredFeatures vectors are performed after mutation
took place to avoid evaluating offspring fitness twice. Note
that desiredFeatures vectors are always updated determinis-
tically and are never mutated. Thus mutation of candidate
solutions may occasionally introduce inaccuracies in desired-
Features vectors, as the updates are based on the crossover
operator only, while the offspring fitness value depends on
both crossover and mutation.

4. EXPERIMENTAL SETUP
D-LIMP and C-LIMP were compared to a traditional ge-

netic algorithm (TGA) and a recent adaptive assortative
mating algorithm VDMGA [4] on a 4-bit fully deceptive trap
problem, unrestricted NK Landscapes, and MAXSAT.

4.1 Test Problems
This section describes the test problems use for experi-

mental comparison in this paper.

4.1.1 Deceptive Trap (DTRAP)
In a DTRAP with a trap size of four, a binary string is

separated into groups of 4 bits each that are considered inde-
pendently for calculating fitness [3]. The fitness of a candi-
date solution is the sum of the fitnesses of each of the traps.
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Each trap has a fitness that is a function of the number of
ones in the trap and is computed as:

f(n) =

{
3− n if n < 4
4 if n = 4

(6)

where n is the number of 1s in the trap string of 4 bits. The
objective is to maximize the sum of these trap functions.
These tests considered concatenated DTRAP problems with
overall lengths L = 100, L = 300, and L = 500. The best
performing n in n-point crossover for each DTRAP prob-
lem length was used for all algorithms. The values for n
corresponding to increasing L are noted in Table 7.

In addition to concatenated DTRAP problems, a 4-bit
trap (L = 100) where the bits of each trap are maximally dis-
tanced throughout the genotype is examined. By splitting
the bits of the trap apart, the usefulness of positional bias
from n-point crossover is eliminated, allowing the examina-
tion of the usefulness of a properly biased crossover operator
for each algorithm. Concatenated DTRAP instances are re-
ferred to as DTRAP1 (DT1) problems and the maximally
split DTRAP type is referred to as DTRAP2 (DT2).

4.1.2 NK Landscapes
An NK Landscape [11] is a tunable fitness landscape based

on the length of the problem, n, and the number of inter-
actions between genes, k. The fitness of a genotype is the
sum of the contributions from each gene. The contribution
of each gene to the overall fitness depends on its own value
and the value of k other genes without restrictions. Because
finding a global optimum for unrestricted NK Landscapes
is NP-complete for k > 1 and the optimum is not prede-
termined, the best fitness found through any of the exper-
iments on a given NK Landscape is used as the optimum
fitness for scaling mean best fitness (MBF) values in graphs.
This method is more likely to be accurate with smaller k val-
ues, but is useful to approximate the global optimum for NK
Landscapes that are not small enough to have the global op-
timum calculated exactly. These experiments evaluated the
algorithms on unrestricted NK Landscapes with n = 50 and
k = 2, k = 3, k = 4, and k = 5.

4.1.3 MAXSAT
The maximum satisfiability problem (MAXSAT) entails

determining the maximum number of clauses in a conjunc-
tive normal form (CNF) formula that can be satisfied by
an assignment of the variables. Our experiments were per-
formed on randomly generated 3-CNF formulas with 200
variables and clause-to-variable ratios of r = 2, r = 3, r = 4,
and r = 5. MAXSAT for 3-CNF formulas is an NP-complete
problem [10] and has qualities that are typically difficult for
EAs, such as deceptiveness and high multimodality.

4.2 Tested Algorithms
All three of the algorithms in these experiments use a

traditional EA structure where a population of candidate
solutions is generated uniform randomly. In these experi-
ments we terminate each run when the global optimum has
been found or a maximum number of evaluations has been
reached. Convergence of the algorithms was measured by
tracking the number of evaluations used at point when the
entire population converged on a single genotype. For parent
selection, D-LIMP and C-LIMP use a tournament on MAC
values for comparing mates with size tMAC . TGA and VD-

Table 7: Parameters used in the experiments
Parameter DT1 DT2 NK MAXSAT

μt 1000 500
μRTR 500 100
λ 50
tp(TGA,V DMGA) 2
tc 5
tRTR 20 10
tMAC 20
recombination n-pt (3,7,13) uniform
mutation bit flip
mutation prob. 1/L
max evals 200000

MGA both employ tournament parent selection with size
tp. For survival selection, two types of selection are consid-
ered. A tournament selection keeping the best of tc individ-
uals in each tournament is considered for all problems. The
other method examined is restricted tournament replace-
ment (RTR) [7] where offspring replace the most similar of
tRTR individuals in the population, measured in hamming
distance between genotypes, only if the offspring is better
than the most similar individual. RTR typically reduces the
population size required for an EA by preserving diversity,
so smaller population sizes are used for RTR. Overall pa-
rameters used are given in Table 7. All results are based
on 60 runs of the specified algorithm and statistical com-
parisons are done using a one-way ANOVA at a .05 level of
significance.

5. EXPERIMENTAL RESULTS

5.1 DTRAP
The mean best fitness (MBF), standard deviation, and

success rate (SR) for the selected algorithms on DTRAP1
are given in Table 8. Comparisons of the algorithms on MBF
and number of evaluations needed to converge on a solution
are shown in Figure 1. D-LIMP exhibited the best perfor-
mance across all problem sizes, and notably scaled very well
compared to the other algorithms on larger problem sizes.
D-LIMP was the only algorithm to successfully find the op-
timum with L = 500. C-LIMP and VDMGA performed
and scaled similarly and required comparable numbers of
evaluations to converge. D-LIMP produced the best over-
all results with tournament selection, but also required the
most evaluations to get those results. TGA performed and
scaled poorly compared to the other algorithms. For a prob-
lem with little disruption due to crossover, D-LIMP clearly
outperforms C-LIMP and the other algorithms. Using RTR
selection proved to only be beneficial to TGA, with tourna-
ment selection producing statistically better results for all
other algorithms on the larger problem sizes. The smaller
population size used with RTR – a typical benefit of RTR
over tournament selection – likely contributed to this result.

The results on DTRAP2 for examining the importance of
an appropriate crossover operator are shown in Table 9. All
algorithms performed significantly worse than in DTRAP1,
where positionally biased n-point crossover aided the algo-
rithms’ performances. While D-LIMP and C-LIMP pro-
vided the best results of the algorithms on DTRAP2, overall
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Table 8: Results on DTRAP1
stat TGA VDMGA D-LIMP C-LIMP

L100 SR 81.8 100 100 100
Tour. MBF 99.85 100 100 100

st. dev 0.376 0 0 0
L100 SR 93.46 100 100 100
RTR MBF 99.94 100 100 100

st. dev 0.242 0 0 0

L300 SR 0 28.9 91.3 26.2
Tour. MBF 97.51 99.73 99.98 99.41

st. dev 2.199 0.859 0.236 1.261
L300 SR 1.3 19.5 91.7 19.3
RTR MBF 98.25 99.49 99.97 99.33

st. dev 1.834 1.357 0.212 1.661

L500 SR 0 0 79.4 0
Tour. MBF 95.89 98.73 99.95 98.55

st. dev 2.822 2.211 0.478 2.645
L500 SR 0 0 26.2 0
RTR MBF 96.03 98.94 99.78 97.36

st. dev 3.845 2.130 1.528 4.964

Table 9: Results on DTRAP2
stat TGA VDMGA D-LIMP C-LIMP

L100 MBF 79.78 82.58 78.92 80.99
Tour. st. dev 1.883 5.911 2.016 1.973
L100 MBF 83.64 70.21 87.98 86.65
RTR st. dev 2.048 1.532 1.783 1.462

performance was poor and indicative of a need to examine
more advanced crossover methods in conjunction with these
algorithms. The benefit of RTR is more noticeable in these
results since the same population size was used for both
RTR and tournament selection. Except for the VDMGA,
which did not interact well with RTR on this problem, the
algorithms performed statistically better with RTR.

5.2 NK Landscapes
The algorithms’ performances on NK Landscape problems

are provided in Table 10, and comparisons of the algorithms
are shown for MBF and evaluations until convergence in
Figure 2. VDMGA was the best performing algorithm at
larger values of k, but scaled poorly for the number of eval-
uations required to converge on NK Landscapes. D-LIMP
and C-LIMP had similar results and scaled comparably in
evaluations required for all values of k, but C-LIMP had
significantly better performance than D-LIMP using RTR.
This could indicate that RTR is of more use to a centralized
learning mechanism than a decentralized one. VDMGA and
C-LIMP performed similarly with both replacement meth-
ods, while D-LIMP and TGA scale worse with RTR com-
pared to tournament selection. TGA was again the worst
performing algorithm with all other algorithms statistically
outperforming it for k > 3. The anomaly of increased per-
formance for k = 5 for some algorithms is likely due to
the global optimum going undiscovered. Consequently, the
MBF over the best found fitness was higher than it would
be if the best found fitness was the optimum.
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Figure 1: DTRAP1 problem results comparing
MBF (a,b) and convergence speed (c,d) of the
tested algorithms with the indicated survival selec-
tion method

5.3 MAXSAT
Results of the algorithms on MAXSAT problems are listed

in Table 11 and MBF and number of evaluations until con-
vergence comparisons are plotted in Figure 3. These results
show D-LIMP performing slightly, statistically better than
VDMGA for the higher values of r, and both scale similarly.
The superior performance of D-LIMP comes at the cost of
requiring more evaluations to converge on a solution, but
this appears to scale better than the other algorithms as
r increases. C-LIMP performs the worst on MAXSAT for
all values of r, and TGA also produces poor results. The
inferior performance of C-LIMP can be explained by the
method’s lack of scaling with the number of bits in the prob-
lem, as the MAXSAT problems used the longest bitstrings
of any of the test problems.

6. DISCUSSION
The results indicate that both D-LIMP and C-LIMP are

promising mate selection techniques, with D-LIMP espe-
cially performing well on DTRAP and MAXSAT and C-
LIMP performing well on NK Landscapes. D-LIMP on
DTRAP and MAXSAT problems outperforms all other mate
selection techniques examined. C-LIMP produced better re-
sults than TGA and D-LIMP on NK Landscapes, but VD-
MGA performed the best. Despite similarities in design, D-
LIMP and C-LIMP appear to have different strengths and
weaknesses. D-LIMP is able to scale well with larger prob-
lem sizes, but C-LIMP performs better on the smaller prob-
lem size of NK Landscapes with difficult linkages between
the bits. The ability of D-LIMP to maintain more diversity
in desiredFeatures and thus more diversity in the popula-
tion compared to C-LIMP could explain this difference in
scalability. The problem size of NK Landscapes was small
enough that C-LIMP did not need the additional diversity
preservation provided by D-LIMP.
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Table 10: Results on NK Landscapes
stat TGA VDMGA D-LIMP C-LIMP

k = 2 MBF 37.54 37.38 37.39 37.26
Tour. st. dev 0.241 0.003 0.002 0.318
k = 2 MBF 37.32 37.37 37.37 37.37
RTR st. dev 0.152 0.089 0.090 0.092

k = 3 MBF 37.41 37.50 37.49 37.47
Tour. st. dev 0.179 0.086 0.095 0.126
k = 3 MBF 37.44 37.51 37.50 37.48
RTR st. dev 0.143 0.074 0.083 0.106

k = 4 MBF 38.68 39.15 39.11 39.07
Tour. st. dev 0.602 0.081 0.205 0.216
k = 4 MBF 38.95 39.14 38.92 39.05
RTR st. dev 0.336 0.197 0.420 0.292

k = 5 MBF 38.29 38.79 38.61 38.63
Tour. st. dev 0.467 0.073 0.258 0.290
k = 5 MBF 38.12 38.67 38.16 38.51
RTR st. dev 0.514 0.173 0.486 0.324

Table 11: Results on MAXSAT
stat TGA VDMGA D-LIMP C-LIMP

r = 2 MBF 99.99 100 100 99.92
Tour. st. dev 0.053 0 0 0.142
r = 2 MBF 99.96 99.99 100 99.98
RTR st. dev 0.088 0.033 0 0.086

r = 3 MBF 99.63 99.80 99.79 99.49
Tour. st. dev 0.137 0.145 0.122 0.259
r = 3 MBF 99.57 99.76 99.79 99.54
RTR st. dev 0.198 0.132 0.133 0.222

r = 4 MBF 99.16 99.58 99.62 98.91
Tour. st. dev 0.193 0.132 0.117 0.352
r = 4 MBF 98.94 99.42 99.47 99.01
RTR st. dev 0.258 0.185 0.146 0.252

r = 5 MBF 98.41 98.79 98.85 98.13
Tour. st. dev 0.198 0.135 0.119 0.283
r = 5 MBF 98.27 98.72 98.83 98.33
RTR st. dev 0.251 0.203 0.142 0.276

In general, D-LIMP produced better results with tourna-
ment selection, while C-LIMP performed either comparably
or better using RTR selection. Because RTR helps preserve
diversity, this adds further support to C-LIMP maintaining
less diversity in the population. D-LIMP preserves diversity
sufficiently on its own in many cases and thus does not ben-
efit as much from RTR. An extensive examination of why
this occurs would be beneficial in considering the useful-
ness of each algorithm and would provide insight into these
methods’ impact on the mate selection process. D-LIMP’s
overall performance was better than C-LIMP’s overall per-
formance, suggesting that decentralized learning for mate
selection may outperform centralized learning. Further test-
ing is necessary to confirm this hypothesis.

The number of evaluations needed to converge on a so-
lution was typically less for VDMGA than for C-LIMP or
D-LIMP, but VDMGA has additional scaling overhead not
measured in the number of evaluations that can be signif-
icant if the time to evaluate a solution is relatively small.
VDMGA searches through μ/2 members of the population
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Figure 2: NK Landscape problem results compar-
ing MBF (a,b) and convergence speed (c,d) of the
tested algorithms with the indicated survival selec-
tion method

to look for an individual’s mate, which means that μ affects
the number of hamming distance calculations that must be
performed. C-LIMP and D-LIMP examine fewer members
of the population in searching for a mate, and do not scale
the search on population size.

A possible explanation for VDMGA’s better performance
on NK Landscapes than either C-LIMP or D-LIMP is that
VDMGA does not have to produce the full number of off-
spring each generation, which can allow VDMGA to perform
more exploitation than exploration. Focusing more on ex-
ploitation can be beneficial, especially on smaller problem
sizes; so examining methods that have a similar impact on
C-LIMP and D-LIMP could be useful.

The importance of a proper recombination operator and
an understanding of the linkages between variables can be
seen from the results of DTRAP1 compared to DTRAP2.
From those results, as well as the suboptimal results on NK
Landscapes and MAXSAT, both D-LIMP and C-LIMP ap-
pear likely to benefit from learning the linkages between
variables. Not only could learning variable linkages allow
the algorithms to implement a crossover operator based on
those linkages, but also the variable linkages could be used to
improve the accuracy of the learning process for determining
what types of mates are good for an individual.

While the method of updating which features are bene-
ficial in mates in C-LIMP and D-LIMP appeared to gener-
ally be successful in the experiments performed, other pos-
sibilities for updating these features should be explored. In
particular, methods that allow adapting the size of the up-
dates based on characteristics of the population indicating
the usefulness of exploration versus exploitation could prove
useful. D-LIMP could be modified to work with real-valued
vectors assuming a measurement of the distance between a
desired feature and the value of a gene and an appropriate
calculation for the size of updates to desired features. How-
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Figure 3: MAXSAT problem results comparing
MBF (a,b) and convergence speed (c,d) of the
tested algorithms with the indicated survival selec-
tion method

ever, C-LIMP is dependent on the possible values of genes,
making a direct extension to real-valued vectors infeasible.

7. CONCLUSION
This paper introduces Learning Individual Mating Pref-

erences (LIMP), which provides individuals a chance to de-
velop an understanding of the best features to look for in a
mate. This paper describes two versions of LIMP, namely
C-LIMP and D-LIMP, for learning the mating preferences of
individuals in an EA based on the quality of offspring pro-
duced to improve the mate selection process. These meth-
ods were compared to a traditional tournament selection
for picking parents and VDMGA, which adaptively restricts
mating to individuals as dissimilar as possible in the popula-
tion. Two different replacement methods, tournament and
RTR, were examined for each algorithm as well.

The results show D-LIMP with tournament selection out-
performing the other algorithms on MAXSAT and DTRAP
problem instances, although it tends to require more eval-
uations to converge. VDMGA produced the best results
on NK Landscapes, while C-LIMP produced good results
with RTR selection on NK Landscapes. D-LIMP and VD-
MGA were more successful using tournament selection re-
placement, while C-LIMP was more successful using RTR.

Results comparing a concatenated trap problem to one
with the trap bits maximally split in the genotype showed
the significance of using a crossover operator that is cor-
rectly biased for the problem structure, and the algorithms
should be examined using methods of determining problem
structure to aid in recombination and learning.
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