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ABSTRACT
The use of niching methods for solving real world
optimization problems is limited by the difficulty to obtain
a proper setting of the speciation parameters without
any a priori information about the fitness landscape.
To avoid such a difficulty, we propose a novel method,
called Adaptive Species Discovery, that removes the
basic assumption of perfect discrimination among peaks
underlying Fitness Sharing and, consequently, allows to
overcome the drawbacks of the most performing sharing-
based methods. This is achieved through an explicit
mechanism able to discover the species in the population
during the evolution. The method does not require any
a priori knowledge, in that it makes no assumption about
the location and the shape of the peaks, while it exploits
information about the ruggedness of the fitness landscape,
dynamically acquired at each generation. The proposed
method has been evaluated on a set of standard functions
largely adopted in the literature to assess the performance
of niching methods. The experimental results show that our
method has a better ability to discover and maintain all the
peaks with respect to other methods proposed so far.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: I.2.8—Problem Solving,
Control Methods, and Search

General Terms
Algorithms

1. INTRODUCTION
The need for adequate models describing the evolutionary

dynamics that governs the process of transformation
of living beings has always been a main goal of the
Evolutionary Computation community. In this context, one
of the main interest is devoted to the factors governing the
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emergence of speciation phenomena, with the aim to develop
methods able to simulate such phenomena in an artificial
environment. The rationale behind such interest is that the
expected behavior of an Evolutionary Algorithm (EA) may
differ significantly from the natural evolutionary process.
Indeed, natural evolution leads to the formation of a wide
variety of species co-existing within an ecosystem, wherein
such a multitude of different species evolve at the same time
and compete for using the environmental resources. On
the contrary, a canonical EA inevitably converges towards
a population composed by just one fit individual and its
close mutants [5, 15]. The loss of genetic diversity is
mainly due to the genetic drift resulting from both the
selection process and the working mechanisms on which EAs
are based upon [7, 9, 13]. To overcome such a difficulty,
a relevant research activity has been devoted to Niching
[15] which is able to trigger in EAs a process similar to
natural speciation. As a consequence, Niching is essential
to counteract the tendency of a canonical EA to converge
towards only one optimal solution, hopefully the best, even
when dealing with a multimodal domain made of many
different peaks in term of size and height. The basic idea
most of the niching methods are based upon draws from the
analogy with natural ecosystems. In Nature, an ecosystem
is composed by different physical spaces (niches) exhibiting
different features and allows both the formation and the
maintenance of different types of life that compete to survive
(species). For each niche, the physical resources are finite
and must be shared among the individuals belonging to it
[4, 16]. By analogy, Niching promotes genetic diversity by
encouraging the emergence of species in different sub-spaces
of the environment (niches), each commonly referred to as an
optimum of the domain. The fitness represents the resources
(carrying capacity) of the niche, while species can be defined
as similar individuals in terms of a similarity metrics. With
the aim to promote genetic diversity, speciation is achieved
by dividing, either implicitly or explicitly, the population
into different subpopulations that are prone to occupy
distinct areas of the search space [8, 15].

A large variety of niching methods have been proposed in
the literature [8, 15, 17, 20, 23, 24]. Generally, they differ
for the speciation parameters needed, e.g., niche radius,
population size, etc., and for the assumptions made on
the fitness landscape, i.e., perfect discrimination hypothesis.
Unfortunately, the use of such methods in solving real world
optimization problems is limited by the difficulty to obtain
a proper setting of the speciation parameters without any
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a priori information about the fitness landscape [12, 15].
Speciation parameters are typically related to topological
information of the fitness landscape corresponding to the
problem at hand, such as the location, the shape and the
distance of the peaks in the landscape. As a consequence,
making a proper setting is not trivial, and the use of niching
methods in real applications typically require an expert
that, through repeated executions, establishes the best
configuration of the parameters to be applied [1, 18, 21]. In
addition, the expected behavior of these methods is strongly
sensitive to slight changes of the values of these parameters:
small changes can lead to discover an inadequate number of
optimal solutions, or even to the loss of the best solutions.

In this paper, we propose a novel niching method, called
Adaptive Species Discovery (ASD), that removes the basic
assumption of perfect discrimination underlying the Fitness
Sharing (FS). Consequently, unlike many sharing-based
methods, it is more effective in dealing with irregular
and unevenly spaced peaks in a multimodal landscape.
ASD is based on an explicit mechanism to discover the
species in the population during the evolution that does not
require any a priori knowledge and makes no assumption
about the fitness landscape. The sharing mechanism
is applied separately to each niche at the end of each
generation. Every niche, moreover, is identified explicitly by
a representative individual, i.e., the species master, which
is chosen among its members. The explicit knowledge
about the number of niches and their location in the search
space at each generation allows to encapsulate a k-elitist
strategy to copy the species masters from one generation to
the next, so improving the ability of maintaining a given
number of niches. The method has been evaluated on
a set of standard functions largely adopted to assess the
performance of niching techniques on multimodal functions.
The experimental results show that ASD has a better ability
to find and to maintain all peaks with respect to other
niching methods proposed in the literature.

The remainder of the paper is organized as follows:
Section 2 describes the background of the FS and some
of the best sharing-based methods, while Section 3 gives
the fundamentals of Adaptive Species Discovery. The
experimental results are illustrated and discussed in Section
4, while some conclusions are reported in Section 5.

2. NICHING METHODS
Fitness Sharing [8] is one of the most well-known and

widely used niching methods. It modifies the fitness
landscape by reducing the payoff in densely populated
regions to counteract the genetic drift. The basic idea is to
treat the fitness as a resource so as to force all individuals
within a niche to share the fitness among them. This is
achieved by reducing the fitness of each individual by an
amount nearly equal to the number of similar individuals in
the population. The adjusted fitness is called shared fitness
and represents the fitness landscape the selection mechanism
works with. Formally, at time t, the shared fitness φsh,t(τ )
of an individual τ is computed according to:

φsh,t(τ ) =
φ(τ )

mt(τ )
, (1)

where φ(τ ) is the raw fitness and mt(τ ) is the niche
count providing information about the crowding in the
neighborhood of τ . In other words, mt(τ ) is an estimate

of the number of individuals belonging to the same niche:
and it is computed as follows:

mt(τ ) =
∑
ω∈Pt

Sh(τ ,ω) (2)

Sh(τ, w) =

{
1−

(
d(τ ,ω)
σsh

)α

if d < σsh

0 otherwise.
(3)

Sh(·, ·) is the triangular sharing function which measures the
similarity among individuals, d(τ ,ω) is the distance between
τ and ω and α is a control parameter that determines
the shape of Sh(·, ·) and it is typically set to 1. Eq. (3)
shows that the triangular sharing function relies on the
niche radius σsh, which is the maximum distance between
two individuals so that they can be considered similar
and, therefore, belonging to the same niche. The niche
radius and the population size play a key role for the
discovery and the maintenance of all the niches in the search
space. In fact, it has been proved that, when the peaks
are perfectly discriminable (all niches can be represented
by an hypersphere with the same radius), the population
size is large enough and the niche radius is properly set,
FS provides as many species in the population as the
number of peaks in the fitness landscape, thus populating
all the niches [14]. Unfortunately, setting proper values for
the above parameters involves the need of some a priori
knowledge about the fitness landscape. In order to reduce
such a difficulty, various techniques have been introduced
to obtain a reliable estimate of the speciation parameters.
The method proposed by Deb et al. [12] expect the number
of peaks and the dimensionality of the problem to set a
proper value for the niche radius. Mahfoud [15] suggests,
instead, a method for determining a lower bound for the
population size, which requires an estimate of the number
of niches to be maintained and their heights. However, is
unlikely that in real problems the assumptions made by
these two techniques are satisfied, making FS very hard
to apply. In [1], Della Cioppa et al. have introduced an
iterative approach for learning the optimal niche radius and
population size without a priori information on the width,
number, height, and position of the peaks in the fitness
landscape. Nevertheless, the method still requires that the
perfect discrimination hypothesis is verified, in that the
niches are obtained by using a single niche radius.

Many other sharing based methods have been proposed
for improving the ability of FS to find and maintain all
peaks in hard domains. The Dynamic Niche Sharing (DNS)
of Miller et al. [3] was the first method to introduce an
explicit mechanism to dynamically identify the species in
the population during the evolution. The method, however,
is based upon two assumptions which are difficult to satisfy
in practice: the number of peaks in the fitness landscape is
known and the perfect discrimination hypothesis holds. At
each generation, DNS identifies all niches in the population
and uses this information to classify individuals as belonging
to one of the identified niches or as belonging to a unique
class, called nonspecies. This is achieved through an
algorithm called Dynamic Peak Identification (DPI). After
the niche identification phase, FS is applied by using two
different sharing mechanisms. The shared fitness of an
individual belonging to a niche is computed by dividing
its raw fitness by the number of individuals populating
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his same niche (occupation number), while standard FS is
applied to the individuals belonging to the nonspecies class.
The authors advocate the use of the occupation number as
niche count because it reduces the tendency of FS to keep
individuals too spread within the niche. Moreover, this
leads to a benefit in terms of computational cost, in that
the occupation number is computed only once for all the
members belonging to a niche, while the niche count has
to be computed for each individual in the population. It is
obvious that DNS suffers the same drawbacks of FS about
the population size and niche radius.

Dynamic Fitness Sharing (DFS) was suggested by Della
Cioppa et al. [2] to further improve DNS. The method
adopts a method (Dynamic Species Identification) to
identify the species in every generation that does not require
to know the number of peaks in the landscape, and uses FS
to ensure that each niche will be populated proportionally to
the fitness of its peak. Unlike DNS, moreover, DFS adopts
a more biological plausible definition of species, because it
is assumed that a species consists of a subpopulation of
at least two individuals and is represented by its species
master, i.e. the most representative individual. The only
assumption made is the perfect discrimination hypothesis.
Consequently, it is unable to deal with irregular unevenly
spaced peaks in the search space and, as authors notice,
DFS suffers the same drawbacks as FS when wrong values
for either the niche radius or the population size are chosen.

Dynamic Niche Clustering (DNC), introduced by Gan et
al. [10], tries to solve this latter problem by using a set of
overlapping fuzzy niches with independent radius (nicheset).
Each niche is described by some parameters that vary during
evolution: the current midpoint in decoded parameter space,
the current niche radius, the original midpoint where the
niche was spawned, the generation at which the niche was
spawned, and a list of references to the individuals that
are currently members of the niche. DNC allows for an
individual to be a member of more than one niche, so the
niches themselves may overlap to a certain degree in the
search space. To counteract the excessive growth or decrease
of the number of the niches discovered during evolution,
both a minimum and a maximum value for the niche radius
are required. The possibility of allowing an individual to
belong to more than one niche leads to an effect called
striation. Striation occurs when two niches, traversing up
the slope on either side of the peak, start to overlap but
don’t converge due to the heavy penalization incurred by
individuals from being a member of two niches. In order
to solve this problem, Gan et al. have introduced in [11]
the outer niche radius, defined as twice the current niche
radius. Every niche maintains a separate list of references
to individuals that lie within its outer radius, but outside
the niche radius. When two niches overlap, individuals
belonging to both of them are penalized less than in the
previous case. DNC is based on the assumption that the
search space must have bounds of the same magnitude,
hence, when this condition does not hold, a wrong value for
the niche radius could be selected. The initial population
size is another important issue, because it determines the
initial value, the upper and the lower bounds of the niche
radius. Moreover, DNC spreads the individuals in a niche
around the top of a peak, rather than cluster them tightly
at the very apex. Consequently, the average niche fitness is
slightly lower when compared to other niching techniques.

As regards to the last version of DNC [11], a very
interesting improvement is the introduction of a fitness
topology function, which is used together with the upper
and the lower bound of the niche radius, to decide whether
to merge and/or to split niches during the evolution. In
fact, this function is useful to determine if two points in the
fitness landscape belong to the same peak by checking the
fitness of a fixed number of inner points which lie on the
line between them. If none of the inner points has a lower
fitness than the points at the ends, it is assumed that there is
no valley between end ponts and, hence, they belong to the
same peak. In our opinion, the major criticism about the
methods employing a topology function is the introduction
of a fixed threshold on the niche size (in DNC a niche could
be split only if it has a population size greater then 10%
of the total population size) as well as the use of a fixed
number of inner points to evaluate. About this latter, is
obvious that a wrong setting of the number of inner points
can reduce the effectiveness of this method: low values can
lead to an insufficient exploration, while high values can lead
to a high computational cost.

Recently, niching methods have also been investigated
in the Evolution Strategies (ES) framework [5]. Very
interesting is the proposal of Shir et al. [18], which
introduces the new concepts of adaptive niche radius and
niche shapes into the framework of niching with the
covariance matrix adaptation evolution strategy ((M-)S-
CMA). This is done through the definition of a self-adaptive
niche radius and the application of the Mahalanobis distance
for the adaptation of the niche shapes. The major feature
of this method is the relaxation of speciation parameters in
the fixed-radius CMA niching algorithm [17], which permits
to make less assumptions on the topology of the fitness
landscape. More specifically, CMA embeds the DPI routine
for classifying the entire population into niches. However, it
requires to set the number of desired niches. Shir et al. try to
reduce this drawback by adopting a self-adaptive approach
without any influence on the algorithmic behavior [18]. Each
individual, that is a feasible solution, carries and adapts a
niche radius along with its adaptive strategy parameters
at every generation [19]. Niche radius is coupled to the
global step size σ through an individual learning coefficient,
and the indirect selection of the niche radius is governed
by the objective that every niche should ideally consist of
λ individuals. This is implemented by means of a quasi-
dynamic fitness sharing mechanism. This latter permits
to enforce the requirement of having a fixed resource of λ
individuals for every niche. The main drawback is that the
function of the learning coefficients has to be tuned through
two parameters α and γ, which seem to be dependent on
the the strategy adopted and the fitness landscape. As the
authors notice, this is an undesirable situation, but they
stress that the proposed setting for α and γ applies to a
wide range of practically relevant landscapes.

Finally, along the line of thought adopted by us, Stoean et
al. [22] have proposed a speciation method integrating the
conservation of the best species masters with a topological
subpopulations separation mechanism. ASD, however,
dynamically adapts the number of inner points needed to
check if two individuals lie or not on the same peak, adopts
an explicit method for merging subspecies and does not
require any explicit limit on the number of species to discover
and maintain.
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Figure 1: Hill-Valley Function in 1-D.

3. ADAPTIVE SPECIES DISCOVERY
The analysis of the main niching methods indicates that

we find ourselves once again facing the problem of a
proper speciation parameters setting. Moving from such a
consideration, we propose a novel niching method, called
Adaptive Species Discovery, developed for overcoming the
main difficulties of the methods introduced so far. ASD
removes the perfect discrimination hypothesis and does
not require any kind of a priori knowledge about the
fitness landscape. Furthermore, differently from many other
sharing-based methods, it does not require to set the values
of the speciation parameters. Its most prominent feature
is the presence of an explicit mechanism for discovering
the species in the population, so that the species naturally
emerge during the evolution. This is possible because ASD
does not require a parameter like the niche radius to describe
a niche, nor tries to estimate it dynamically during the
evolution: simply it does not need any niche radius.

The discovery mechanism is based upon a limited set
of information referring to the ruggedness of the fitness
landscape. This information is dynamically acquired at each
generation through an Hill-Valley function. This function
was firstly proposed by Ursem [23] as a method to verify
whether two points ip and iq lie or not on the same peak
in the landscape. This is done by checking several inner
sampling points on the line between ip and iq . If none of
the inner points has a lower fitness than both ip and iq , it is
concluded that there is no valley between them and, hence,
they belong to the same peak (Fig. 1). Hill-Valley function
allows to detect genetic divergence phenomena[16] (which
are the principal promoters of speciation in Nature) that
occur within an artificial population. The basic idea for
adopting the Hill-Valley function is to prevent individuals
with very different phenotypic (or genotypic) features from
being considered as belonging to the same species. Only
to bootstrap ASD, we perform a partitioning of the initial
population (for example, by using a clustering method) in
order to identify the initial set of species. After the current
population has been partitioned taking into account the set
of species, the Hill-Valley function is used to check whether
a species can be separated in two new species or it can be
merged with another species. During the evolution, the
sharing mechanism is applied separately to each niche by
using the occupation number as niche count. Every species
is identified explicitly by a representative individual, i.e.,
the species master, which is chosen among its members
similarly to DFS. No assumption on the minimum number
of individuals constituting a species is adopted. The explicit
knowledge about the number of species and their location in

Algorithm 1 Adaptive Species Discovery
Require: S: the species set, P : the population

repeat
{Determine the species individuals belong to}
for all τ in P do

determine the species τ belongs to
end for
{Find the masters of the species}
for all s in S do

find the master of the species s
end for
{Separation of the species}
for all s in S do

check if species s can be separated into two new species
end for

until (there was a separation)
{Fusion of the species}
for all si,sj in S ∧ i �= j do

check if si and sj can be merged together
end for

the search space at each generation, allows to easily realize
a k-elitist strategy. The species set discovered is preserved
from one generation to the next one by copying the species
masters into the new population. Such a choice improves the
ability of maintaining all the species and the computational
efficiency as well. The elitist strategy, moreover, reduces the
lower limit on the population size needed to maintain a given
number of species. This also allows for defining a simple
and efficient mechanism to dynamically adapt the number
of inner points to check with the Hill-Valley function during
the fusion phase. The skeleton of ASD is outlined in Alg. 1,
while in the following we describe the main algorithm steps.

Determine the species individuals belong to. At time
t, for each individual τ in the population P , the Euclidean
distance between τ and all the species masters found at
t − 1 is computed. The individual τ is then marked as
belonging to the species which corresponds the minimum
distance d(·, ·) according to:

d(τ , si) = min{d(τ , si)
si∈S

} → τ ∈ M(si), (4)

where d(τ , si) is the Euclidean distance between τ and the
species master of si, while M(si) are the members of si.
Find the masters of the species. For each species si,
the master is chosen as the best individual belonging to si.
Separation of the species. For each species si at time t,
the following steps are applied:

1. ksi pairs of individuals are randomly chosen in M(si);

2. for each pair of individuals (μ,ν) ∈ ksi, the Hill-Valley
function is applied to μ and ν;

3. if a valley is detected between μ and ν, the species si

is separated into two new species. In particular, the
pair of individuals (μ,ν) corresponding to the deepest
valley is chosen, and two new species with μ and ν
as species masters are inserted into the species set S.
Subsequently, all members of si are reallocated with
reference to the new species. Finally, the masters of
the new species are recomputed, and the species si is
removed from S.

As regards the above separation mechanism, it should
be noted that our strategy is based on the idea that a
crowded niche can potentially cover more than one peak
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Algorithm 2 EA with Adaptive Species Discovery
t← 0
randomly initialize a population Pt of N individuals
randomly initialize the species set S choosing m distinct
individuals from Pt

while (termination condition is not satisfied) do
evaluate the raw fitness of each individual
apply the Adaptive Species Discovery algorithm
for all s in S do

apply the FS among the individuals belonging to s
end for
copy the species masters in Pt+1

apply the selection mechanism
apply the crossover operator
perform mutation on the offsprings
t← t + 1

end while

of the fitness landscape. Hence, it is more promising to
apply the Hill-Valley function to such a niche. Keeping the
mechanism independent of any form of foreknowledge of the
problem and considering that the sharing mechanism does
not provide any information to understand when a niche is
overcrowded, we have decided to use only the information
available, i.e. the number of species m maintained by
the algorithm during the evolution. At time t, a species
si ∈ S is considered by the separation mechanism only if

n(si) >
⌊

N
m

⌋
, where N is the population size and n(si)

is the occupation number of si. This means that ASD
uses the most simple assumption that we can do about
a totally unknown fitness landscape. i.e., all the peaks
carry the same amount of resources and, consequently, all
individuals should be equally distributed among the niches.
If si satisfies the above equation, the number of pairs ksi is

set to �n(si)
2

�, with the restriction that each individual can
be selected at most once. For each pair (μ,ν) ∈ ksi, only
one inner point is evaluated with the Hill-Valley function.
Such a point is not the middlepoint, but it is generated
randomly on the line between μ and ν.
Fusion of the species. Assuming that, after the separation
step, m species have been discovered and S = {s1, ..., sm}.
For each pair (si,sj) with i, j ∈ [1, m] and i �= j, the
following steps are applied:

1. the Hill-Valley function is applied to the masters of si
and sj ;

2. if no valley is detected between si and sj , the two
species are merged. All the members of sj are
marked as members of si. Finally, the master of si
is recomputed and the species sj is removed from S.

To counteract generic drift the sharing mechanism is
adopted. The shared fitness φsh,t(τ ) of an individual τ is
computed by using the occupation number n(τ ) as in DNS:

φsh,t(τ ) =
φ(τ )

n(τ )
. (5)

The skeleton of an EA with ASD is outlined in Alg.
2. The initialization of the species set S is made either
by randomly choosing m members from Pt=0 or by using
a clustering method as the k-means algorithm. Obviously,
a proper value for m and the strategy to be used for the
selection of individuals can be defined according to the
degree of a priori knowledge, if this latter is available. For
example, an estimate of the number of peaks in the fitness

landscape can be very useful to set m. Similarly, it can be
chosen a selection mechanism for S favoring either the fittest
individuals or individuals lying in certain areas of the search
space. It should be remarked here that the choice effected for
the initialization method of S is not critical for our method.
However, a proper choice certainly has a beneficial influence
on the convergence time.

3.1 Hill-Valley Function
The ability of our method to discover and maintain

different species during the evolution depends on how
effectively the phases of separation and fusion are
accomplished. These two phases are based upon the
extraction of reliable information from the fitness landscape.
So, the effectiveness of Hill-Valley function becomes critical
for the success of ASD. Given that the Hill-Valley function
works on the fitness landscape, if the cost of decoding
parameters is expensive, the computational effort may be
high. Moreover, it requires to set the number of inner
sampling points h to check. Setting a proper value for this
latter is not trivial because the ability to take right decisions
is highly dependent on h. In fact, Hill-Valley function is
effective only when it detects a valley between two points.
If no valley is detected, there is no confidence that there
isn’t an actual valley there. For example, given two points
ip and iq, and h = 3, Fig. 1 shows a typical problem of Hill-
Valley function. The fitness of ip and iq is not lower than
the fitness of all inner points, so no valley is detected. If ip
and iq were two species masters, such undesirable behavior
would lead to merge the two species.

To assess the effectiveness of the Hill-Valley function, we
have chosen to adopt two different algorithms. During the
fusion phase the original algorithm proposed by Ursem is
used, whilst Gar’s algorithm is used for the separation phase
[11]. The reasons are related to the type of information
necessary for these two phases. In the fusion phase, the
relevant information is just the presence of a valley between
two niches, not its depth. Hence, Ursem’s algorithm is
more suitable, because it returns its decision when the first
point with lower fitness is discovered. Conversely, in the
separation phase, the relevant information is the maximum
depth of the valley detected. In such a case, Gar’s algorithm
is more suitable, because all the h inner points are checked
and the point with the lowest fitness is returned. It is then
evident that by adopting a fixed value for h is not certainly
the best solution, since it is necessary to have some a priori
knowledge. As a consequence, we propose a new method to
dynamically adapt the number of inner points in the fusion
phase through the explicit knowledge about the location and
the number of niches during the evolution. It is based upon
a very simple concept: the optimal number of inner points
to be used for the Hill-Valley function should be computed
according to the distance between points ip and iq , and the
value of h must be sufficient to ensure that these points
are spaced by a value not exceeding dmin, where dmin is the
minimum distance between two species of the species set S.
By assuming that, at time t, S = {s1, ..., sm} species have
been found and that it is necessary to check if a valley lies
between the species si and sj , h is computed as:

h =
⌊d(si, sj)

dmin

⌉
, (6)

where dmin = min
sm,sn∈S,m�=n

{d(sm, sn)}.
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4. EXPERIMENTAL RESULTS
The proposed method has been tested on a wide set of

multimodal functions with increasing degree of complexity,
largely adopted in the literature for performance assessment
of niching methods. However, here we present only the
results achieved on the most significant functions. In
Table 1 are summarized the unconstrained multimodal test
functions as well as their main features. The evolutionary
algorithm adopted is a Genetic Algorithm in which the
genotype has been encoded by using a Gray code of 30 bits
for each variable. As genetic operators we have adopted the
one-point crossover and the bit-flip mutation, with pc = 0.8
and pm = 1

�
, respectively, where � is the total length of the

genome. Finally, the selection mechanism adopted is the
tournament selection with continuously update sharing [6].

As performance criteria we report the effective number
of peaks maintained (ENPM), the maximum peak ratio
(MPR) [4] and the generations after which the 99% of their
saturation values are achieved (GE and GM ). For each
function we have executed 50 runs with different randomly-
generated initial populations. In addition, to evaluate the
performance of our method in the worst conditions, we
have chosen to initialize the size of S to 1 and to choose
randomly the corresponding master among the individuals
in the initial population.

In Table 2 we report the values of ENPM and MPR
at the end of evolution, averaged over the 50 runs, and
their standard deviations, together with GE and GM . The
population size, the number of generations and the number
of evaluations used for each simulation are also reported.
The values given in brackets refer to the best results
obtained by (M-)S-CMA as reported in [18, 19].

The first function we have faced is the M function,
which consists of 16 non-uniform peaks with identical
fitness. The distance among peaks exponentially decreases
along the horizontal axis, with the minimum and the
maximum distance among peaks equal to 0.01 and 32.0
respectively. Therefore, this is a challenging test case,
since it is expected that when the perfect discrimination
hypothesis is not verified, our method outperforms all the
sharing-based methods which use a single fixed niche radius.
Figure 2 shows the distribution of the species masters
detected (diamonds). It is evident that the proposed method
discovers all the peaks, although this is not trivial because
of their particular location on fitness landscape.

Similarly to M function, in the V function there are many
peaks that are neither equidistant nor distinguishable. The
number of global optima, moreover, grows exponentially
with the dimensionality of the function. Table 2 shows the
results obtained using different values for n, while Figure
3 shows the distribution of the species masters detected in
the 1-D case. It is very interesting to note that for the V
function, our method is able to discover and maintain all
the peaks in a relatively small number of generations. In
addition, the values of 〈MPR〉 and σMPR confirm that the
masters species match with the top of the peaks.

The G function has one global optima at the origin
�0 and several thousands local optima. In our tests
we have considered only the discovery of 5 peaks: the
global maximum and four suboptimal located at 	x ≈
(±π,±π

√
2, 0, ..., 0). Table 2 shows the results obtained on G

function using two different values for n. In both cases ASD
discovers all the desired peaks using the same population

size, without any significant loss of performance as n varies
between 3 and 10.

The S function is characterized by the presence of many
local and global optima unevenly distributed in the search
space. There is one especially hard peak to deal with: the
third one from the left in Figure 4. It is a very small
irregularity within the slope of a larger peak: this makes this
function very interesting in order to describe the behavior
of our method. From the results shown in Table 2, it
can be argued that for n = 1 and n = 2 ASD does not
take into account such a spurious peak. To explain the
underlying dynamics, we have reported in Figure 5 the
average number of species discovered during the evolution
after the separation and fusion phases.

The Figures 4 and 5 show that the spurious peak is indeed
discovered, but because of the distribution of the individuals
associated to it, that very likely will have a higher fitness,
it disappears during the merging. In our opinion, this is a
desirable effect, in that it performs a sort of noise removal
automatically, without any other some of information than
the fitness landscape. Methods, as for example (M-)S-
CMA, that attempt to discover and maintain such kind
of peaks, on the other hand, discover also non-desirable
peaks in the landscape with a useless waste of resources.
Moreover, such a behavior of ASD is close to the biological
speciation process, because the spurious peak (species) could
be considered a sub-species of the larger peak.

Finally, we report the results concerning the W function.
It is a non-separable function, which contains 10 insidious
and asymmetric peaks, some located in the center and others
at the bounds of the search space. Figure 6 shows the
species masters discovered after 200 generations by using
a population size of 100 individuals. The circles are the
actual peaks, while the diamonds are the species masters
discovered. It is evident that, while all the niching methods
using a unique niche radius fails, ASD is effective and very
efficient, in that it is able to discover all the relevant peaks
with a minimum amount of resources.

As regards the performance of ASD with reference to other
methods, let us note that we have considered only (M-)S-
CMA, because it is one of the most performing among those
with less assumptions on the search landscape. Except for
M and W and V:n=3, which are not faced by (M-)S-CMA,
ASD outperforms (M-)S-CMA on all the function considered
in terms of 〈MPR〉. The reference values for (M-)S-CMA
are reported in Table 2 in brackets. Note that for the S
function, when 〈MPR〉 is computed we do not consider the
spurious peak.

5. CONCLUSIONS
We have proposed the Adaptive Species Discovery, a

novel niching method that does not require the basic
assumption of perfect discrimination underlying the FS and,
consequently, allows to overcome the drawbacks of the most
performing sharing-based niching methods. ASD achieves
niching through an explicit mechanism for discovering the
species in the population during the evolution that does
not require any a priori knowledge about the problem and
that makes no assumptions about the location and shape
of the peaks in the landscape. The discovery mechanism
uses information about the ruggedness of the landscape,
dynamically acquired at each generation, through the Hill-
Valley function. To this aim, a simple and efficient
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Table 1: The Test functions adopted.
Name Function Range Peaks

M M(�x) = sin6(log1.2(x)) x ∈ [0.01, 100]n 16n

V[Vincent] V(�x) = 1
n

∑n
i=1 sin(10 · log(xi)) x ∈ [0.25, 10]n 6n

G[Griewank] G(�x) = 1 +
∑n

i=1

x2
i

4000 −
∏n

i=1 cos(
xi√
i
) x ∈ [−10, 10]n 5

S[Shekel] S(�x) = −∑10
i=1

1
(ki(x−ai))

2+ci
x ∈ [0, 10]n 8

W[Waves]
W(x, y) = (0.3x)3 − (y2 − 4.5y2)xy+ x ∈ [−0.9, 1.2], 10
−4.7cos(3x− y2(2 + x))sin(2.5πx) y ∈ [−1.2, 1.2]

Table 2: Experimental findings: ENPM (Effective Number of Peaks Maintained), MPR (Maximum Peak
Ratio), GE and GM (Generations after which the 99% of ENPM and MPR saturation values are achieved).

Function N Gen. # of evaluations 〈ENPM〉 σENPM GE 〈MPR〉 σMPR GM

M : n = 1 250 200 5 · 104(−) 16.000 (−) 0.000 81 1.000 (−) 0.000 99
V : n = 1 200 50 104(7 · 106) 6.000 (5.050) 0.000 41 1.0 (0.839) 0.000 48
V : n = 2 200 150 3 · 104(3.6 · 107) 36.000 (17.860) 0.000 36 0.998 (0.806) 0.002 67
V : n = 3 200 300 6 · 104(−) 216.000 (−) 0.000 21 0.994 (−) 0.001 100
G : n = 3 150 500 7.5 · 104(1.5 · 105) 5.000 (−) 0.000 1 1.000 (0.494) 0.000 20
G : n = 10 150 500 7.5 · 104(6 · 106) 5.000 (2.200) 0.000 1 0.988 (0.398) 0.005 218
S : n = 1 50 200 104(9 · 106) 7.000 (7.833) 0.000 8 1.000 (0.968) 0.046 9
S : n = 2 200 500 105(9 · 106) 6.320 (6.330) 0.587 52 0.903 (0.806) 0.049 110
W : n = 2 100 200 2 · 104(−) 10.000 (−) 0.000 18 0.999 (−) 0.001 29
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Figure 2: M function: species masters.
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Figure 3: 1-D V function: species masters.

mechanism to dynamically adapt the number of inner points
to check with the Hill-Valley function during the fusion
phase is proposed. From a speciation point of view, the
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Figure 4: 1-D S function: species masters.
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Figure 5: 1-D S function: ENPM.

use of such a function during the separation phase is aimed
at discovering whether genetic divergence inside a species is
occurring, while, during the fusion phase, Hill-Valley verifies
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Figure 6: W function: species masters.

whether there is a reproductive compatibility between two
different species and, therefore, they should be merged.

ASD has been tested on a set of problems with increasing
degree of complexity, largely adopted in the literature
to assess the performance of niching methods. The
experimental results show that our method has a better
ability to find all peaks with respect to other techniques
proposed so far. The performance exhibited by ASD is
very interesting when solving problems in which the perfect
discrimination hypothesis is not verified and conventional
sharing-based methods fail, due to the limitation of adopting
a unique niche radius for all the niches. Eventually, the
advantages of adopting ASD with respect to other niching
methods become more evident when dealing with problems
where the fitness landscape is highly irregular.
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