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ABSTRACT
The CHC algorithm uses an elitist selection method that,
combined with an incest prevention mechanism and a method
to diverge the population whenever it converges, allows the
maintenance of the population diversity. This algorithm was
successfully used in the past for static optimization prob-
lems. The use of memory in Evolutionary Algorithms has
been proved to be advantageous when dealing with dynamic
optimization problems. In this paper we investigate the use
of three different explicit memory strategies included in the
CHC algorithm. These strategies - direct, immigrant and
associative - combined with the CHC algorithm are used
to solve different instances of the dynamic Traveling Sales-
man Problem in cyclic, noisy and random environments.
The experimental results, statistically validated, show that
the memory schemes significantly improve the performance
of the original CHC algorithm for all types of studied en-
vironments. Moreover, when compared with the equiva-
lent memory-based standard EAs with the same memory
schemes, the memory-based CHC algorithms obtain supe-
rior results when the environmental changes are slower.

Categories and Subject Descriptors
I. [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Evolutionary Algorithms, Dynamic Environments, Memory

1. INTRODUCTION
In time-varying optimization problems the fitness func-

tion, the design parameters or the environmental conditions

∗also belongs to CISUC

may change over time. Evolutionary Algorithms (EA) have
been successfully used to solve different dynamic optimiza-
tion problems (DOPs) [3]. The EAs used to cope with DOPs
are usually improved with mechanisms that prevent the pre-
mature convergence of the population. These improvements
include methods to promote the diversity when a change is
detected [5], methods to maintain the diversity through the
entire run [21], the incorporation of memory [20], the use of
multi-populations [3] or the anticipation of the change [12].
The use of memory to enhance EAs for dynamic environ-
ments has been proved to be advantageous for many types
of DOPs. Memory works by storing useful information from
the current environment and reusing it later when a new en-
vironment appears. The store of the useful information can
be done implicitly, by using redundant representations [14],
or explicitly, by storing useful information from the current
environment [20].
The CHC algorithm (Cross-generational elitist selection, Het-
erogeneous recombination, and Cataclysmic mutation) pro-
posed by Eshelman [6] uses an elitism selection method com-
bined with a highly disruptive crossover promoting the di-
versity of the population. The CHC algorithm was tested
against different genetic algorithm approaches, in several
static optimization problems, achieving superior results, es-
pecially on hard problems [16]. The main characteristic of
this algorithm is its capacity of preventing the convergence
of the population, a key issue when dealing with dynamic
environments. Recently, different CHC algorithms were suc-
cessfully used for dynamic environments. Those algorithms
combined the characteristics of the CHC with immigrant-
based techniques and obtained superior results for the stud-
ied DOPs [13]. These results indicate that the inherent prop-
erties of this algorithm are suitable to dynamic optimization
problems and should be further explored. In this paper we
propose three improved CHC algorithms for dealing with
dynamic environments. The improvements consist of the
incorporation of different schemes of explicit memory and a
restart mechanism applied whenever a change is detected.
The memory schemes store either good solutions and/or en-
vironmental information of the current environment using it
later to create new individuals suited for the new environ-
ment. The introduced enhancements to the CHC algorithm
create successful methods for dealing with dynamic environ-
ments. The new memory-based CHC algorithms are tested
in different instances of the Dynamic Traveling Salesman
Problem (DTSP). The traveling salesman problem (TSP)
is a well-known NP-hard combinatorial optimization prob-
lem, used as benchmark. The DTSP is obtained by deleting
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or inserting some cities or by changing the costs between
cities [7], [9]. The experimental results show that the pro-
posed CHC algorithms efficiently solve different instances of
the DTSP and the statistical comparison of the results with
other EAs variants validates the efficiency of the proposed
algorithms.
The rest of the paper is organized as follows: next section
briefly reviews relevant work on the DTSP. Section 3, de-
scribes the memory schemes, the implemented algorithms
and the peer algorithms used in the experimental study. Sec-
tion 4 details the experimental setup used in this work. The
experimental results and analysis are presented in section 5.
Section 6 concludes the paper and some considerations are
made about future work.

2. THEDYNAMICTRAVELING SALESMAN
PROBLEM

In the Traveling Salesman Problem (TSP), given a set of
cities and their pair wise distances, the goal is to find the
shortest possible tour that visits each city exactly once. The
Dynamic Traveling Salesman Problem (DTSP) is a general-
ization of the classic TSP where changes can be introduced
by adding or deleting new cities, swapping the location of
the cities or changing the values of the pair wise distances.
When a change is introduced, the salesman has to re-plan his
route. The objective is to minimize the expected total cost,
i.e. the sum of the distances used to visit the entire tour.
Since the introduction of the DTSP by Psaraftis in [10], sev-
eral evolutionary approaches have been proposed to solve
this problem. Guntsch and Middendorf [7] introduced a
population-based ant colony optimization algorithm to solve
the DTSP and investigated three strategies for pheromone
modification. Younes et al. [23] presented a benchmark
generator for DTSP and several EAs were compared under
different instances of the DTSP. Zhou et al. [24] proposed
three different operators that, using previous information
about the current environment, enhanced the performance
of EAs for DTSPs. Li et al [4] presented an improved inver-
over operator based on a gene pool, which stores a set of
most promising gene segments by applying heuristic rules.
Yan et al. [17] proposed a new algorithm based on the
inver-over operator for TSP and used this method to suc-
cessfully solve different instances of the DTSP. An immune
system-based GA called PISGA was investigated in [9]. The
proposed method combined a permutation-based dualism
scheme in the clone process and a memory-based vaccina-
tion approach to further improve its performance for DTSP.
Recently, Wang et al. [15] presented an agent-based evolu-
tionary search algorithm for solving DTSP. In the proposed
method all the agents of the current population co-evolve to
track the dynamic optima. In [13] different CHC algorithms
empowered with immigrant-based techniques were used in
different instances of the DTSP.

3. IMPLEMENTED ALGORITHMS
In this paper we analyze and test three memory schemes

combined with the CHC algorithm. The original CHC algo-
rithm is described in the next section.

3.1 The CHC algorithm
The original binary-coded CHC was proposed by Eshel-

man [6] and its main idea is the combination of an elitism

selection strategy with a highly disruptive crossover, pro-
moting a high diversity into the population. The algorithm
works with a population of individuals and, at every step,
a new set of solutions is produced by selecting pairs of so-
lutions from the population (the parents) and recombining
them. The mating pool is created by giving to each individ-
ual in the population the chance to reproduce. So, the par-
ent population is formed with all the individuals of the cur-
rent population, but in a random order. The CHC algorithm
uses an incest prevention mechanism: the parent population
is paired for crossover but, before mating, the Hamming dis-
tance between the potential parents is calculated and if half
this distance does not exceed a difference threshold d, they
are not mated and no offspring is created. The CHC doesn’t
use mutation, but only a highly disruptive recombination
mechanism called Half Uniform Crossover (HUX) that com-
bines exactly half of the non-matching alleles, where the bits
to be exchanged are chosen at random. This method guar-
antees that the two offspring are always at the maximum
Hamming distance from their two parents, resulting in the
introduction of a high diversity in the new population avoid-
ing the risk of premature convergence. The next population
is built using an elitist selection mechanism: p members of
the current population (p is the population size) are merged
with the generated offspring and the best p individuals are
selected to compose the new population. When a parent
and an offspring have the same fitness value, the former is
preferred to the latter. The difference threshold d is usu-
ally initialized to L/4 (L is the chromosome length). If no
offspring is obtained in one generation, d is decremented by
one, indicating that the population is converging. When
the difference threshold d drops to zero, a restart process,
substituting the usual mutation operator is executed. This
step consists of the re-initialization of the population: the
best individual is preserved and the remaining individuals
are created by randomly changing a percentage (defined by
the divergence rate dr) of the best individual’s alleles.

Function CHC
L : chromosome l ength
p : popu lat i on s i z e
dr : d i vergence r a t e
d : d i f f e r e n c e thr esho ld

t = 0 ; d = L/4 ; Initialize(P (0))
r epeat

Evaluate(P (t))
Preserve bes t i n d i v i d u a l from P (t− 1)
P ′(t) = Selection CHC(P (t))
C(t) = Crossover CHC(P ′(t))
Evaluate(C(t))
newP (t) = Selectbest(P (t), C(t))
i f newP (t) = P (t)

decrement d
i f d < 0

newP (t) = Reinitialize(newP (t), dr)
d = L/4

P (t) = newP (t)
t = t+ 1

un t i l s t op cond i t i on

Figure 1: Pseudo code for the CHC algorithm
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Eshelman extended the CHC algorithm to permutation
representations: this algorithm, similar to the previously de-
scribed, uses a crossover operator that creates a single child
by preserving the edges that the parents have in common
and then randomly assigns the remaining edges in order to
generate a legal solution. Incest prevention is made by al-
lowing crossover only when the number of common edges of
the two parents is greater than the difference threshold d.
This algorithm is also included in our empirical study and
will be denoted as CHC. Fig. 1 presents the pseudo code for
the CHC algorithm.
This paper improves Eshemaln’s original CHC algorithm
through the incorporation of different memory mechanisms
and an addition step that reinitializes the population when-
ever a change is detected. This reinitialization is the same
process that is performed when the parameter d is equal to
zero. Everything else is used as in the original CHC algo-
rithm. The next section details the implemented memory
schemes: direct, associative and immigrant-based.

3.2 Direct Memory Algorithms
A direct memory scheme is characterized by storing

good solutions of the current environment and reusing them
when an environmental change is detected [20]. This type
of memory scheme has been widely used in EAs for dynamic
environments, e.g., [2] or [22]. The direct memory scheme
is used as follows: the population and the memory are ini-
tialized at random. The memory is updated when a change
happens, storing the best individual from the population
just before the change. To update the memory, the ran-
dom individuals, generated at the beginning are randomly
selected and replaced first. If no random individual is found,
the elite from the previous population replaces the closest
memory point, if it is a better solution (according to the
previous environment). This closest solution is found us-
ing the similar replacing strategy [3] which selects the most
similar individual in terms of Hamming distance. When a
change in the environment occurs, a new set of individuals
is formed by merging the memory and the search popula-
tion. Then, these individuals are evaluated in the context of
the new environment, and the best p (population size) indi-
viduals are selected to become the new search population.
Through this process, the memory remains unchanged. At
every generation, the best individual from the previous pop-
ulation is preserved and transferred to the next population
replacing the worst individual (elitism of size 1). This type
of memory is used in the CHC algorithm described before,
which is referred as Direct Memory CHC algorithm (DM-
CHC) and in a standard Evolutionary Algorithm, which will
be called Direct Memory Evolutionary Algorithm (DMEA)
and is similar to the algorithms proposed by Branke [2] and
Yang [20]. In the DMCHC algorithm, when a change is de-
tected, the population is reinitialized using the divergence
rate dr, as explained in the previous section. After that, the
reinitialized population is merged with the memory and the
best individuals are selected as the new population. More-
over DMEA and DMCHC differ in the evolutionary pro-
cess: the first uses the traditional tournament selection, or-
der crossover and swap mutation and the second uses the
CHC’s evolutionary process described formerly. The pseudo
code of DMEA and DMCHC is presented in Fig. 2.

Function DMCHC and DMEA
L : chromosome l ength
p : popu lat i on s i z e ; m : memory s i z e
n : g l oba l number o f i n d i v i d u a l s
dr : d i vergence r a t e
d : d i f f e r e n c e thr esho ld

t = 0 ; d = L/4 ;
Initialize(P (0))
Initialize(M(0))
r epeat

Evaluate(P (t))
Evaluate(M(t))
Preserve bes t i n d i v i d u a l from P (t− 1)
i f change i s detected then

i f DMCHC then
P (t) = Reinitialize(P (t), dr)

P ′(t) = RetrieveBest(P (t), M(t))
M(t) = UpdateMemory(M(t), P (t− 1))

i f DMCHC then
P ′(t) = Selection CHC(P (t))
C(t) = Crossover CHC(P ′(t))
Evaluate(C(t))
newP (t) = Selectbest(P (t), C(t))
i f newP (t) = P (t) then

decrement d
i f d < 0

newP (t) = Reinitialize(newP (t), dr)
d = L/4

i f DMEA then
P ′(t) = Tournament Selection(P (t))
C(t) = Order Crossover(P ′(t))
newP (t) = Mutation(C(t))

P (t) = newP (t)
t = t+ 1

un t i l s t op cond i t i on

Figure 2: Pseudo code for DMCHC and DMEA

3.3 Immigrant Memory Algorithms
The immigrant memory scheme was proposed by [18]

and explicitly stores the best individual of the current envi-
ronment, using it to create immigrants that are introduced
into the population at every generation. Therefore, when a
change in the environment occurs, no information from the
memory is retrieved, but it is expected that the diversity
created by the immigrants helps the EA readapting to the
new environment. The immigrant memory scheme is used
as follows: the population and the memory are initialized
at random. The memory is updated in the same way as de-
scribed for the direct memory scheme. The memory retrieval
is not dependent on the detection of environmental changes.
The memory is reevaluated every generation and the best
individual from the memory is used to create immigrants
that are introduced into the main population. The number
of immigrants is a percentage (ri) of the total number of
individuals (n). The immigrants are created by mutating
the best memory individual using an established mutation
probability (pi). Those immigrants are introduced into the
population replacing the worst ri × n ones. This immigrant
memory is used in the CHC algorithm, which is referred
as Immigrant Memory CHC algorithm (IMCHC), and in a
standard EA, which will be called Immigrant Memory Evo-
lutionary Algorithm (IMEA) and is almost identical to the
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algorithm proposed by Yang [18]. As before, in the IMCHC
algorithm, when a change is detected, the population is reini-
tialized using the divergence rate dr. The differences in the
evolutionary process, stated for DMEA and DMCHC, are
also true for IMEA and IMCHC. The pseudo code of IMEA
and IMCHC is presented in Fig. 3.

Function IMCHC and IMEA
L : chromosome l ength
p : popu lat i on s i z e ; m : memory s i z e
n : g l oba l number o f i n d i v i d u a l s
ri : r a t i o o f immigrants
pi : p r o b ab i l i t y f o r immigrants c r ea t i on
dr : d i vergence r a t e
d : d i f f e r e n c e thr esho ld

t = 0 ; d = L/4 ;
Initialize(P (0))
Initialize(M(0))
r epeat

Evaluate(P (t))
Evaluate(M(t))
Preserve bes t i n d i v i d u a l from P (t− 1)
i f change i s detected then

i f IMCHC then
P (t) = Reinitialize(P (t), dr)

M(t) = UpdateMemory(M(t), P (t− 1))
Pi(t) = createImmigrants(P (t), M(t), ri × n, pi)
Evaluate(Pi(t))
P (t) = ReplaceWorst(P (t), Pi(t), ri × n)
i f IMCHC then

P ′(t) = Selection CHC(P (t))
C(t) = Crossover CHC(P ′(t))
Evaluate(C(t))
newP (t) = Selectbest(P (t), C(t))
i f newP (t) = P (t) then

decrement d
i f d < 0

newP (t) = Reinitialize(newP (t), dr)
d = L/4

i f IMEA then
P ′(t) = Tournament Selection(P (t))
C(t) = Order Crossover(P ′(t))
newP (t) = Mutation(C(t))

P (t) = newP (t)
t = t+ 1

un t i l s t op cond i t i on

Figure 3: Pseudo code for IMCHC and IMEA

3.4 Associative Memory Algorithms
The associative memory schemewas proposed by Yang

[19] and Karaman [8] and was inspired in the Population-
Based Incremental Learning (PBIL) algorithm proposed by
Baluja [1]. In this type of memory scheme the current
best individual of the population is stored in the memory
as well as the environmental information given by a vec-
tor that describes the allele distribution of the population.
For instance, in binary representation, this vector gives the
frequency of ones over the population at each gene locus.
Each memory point consists of a pair < S, V > where S is
the stored individual and V is the associated allele distri-
bution vector. The memory is evaluated every generation
and if a change is detected, the best individual in the mem-
ory < Bm, Vm > is extracted and used to create a set of

α×n new individuals using the vector Vm. Those new indi-
viduals are inserted into the population replacing the worst
ones. The parameter α ∈ [0, 1] is called associative factor
and determines the number of individuals created from the
memory when a change happens. The memory updating
mechanism is analogous to the one used in direct and immi-
grant memory schemes. Every time the memory is updated,
the pair < Bp, Vp > is created and stored in the memory.
Bp is the current best individual of the population and Vp is
the allele distribution vector of the actual population. This
pair replaces a random point in the memory if one still ex-
ists, or the similar point, otherwise. For a representation
based on permutations, such is the case of DTSP, the allele
distribution vector stores, for each position, the most com-
mon allele in the population for that position. If an allele
is already stored in a position, it cannot be used in another
position. When an environmental change is detected this
vector is used to create new individuals as follows: the per-
mutation stored in the vector is used as a first individual
and the remaining are created through swap mutation of
this individual using a probability pm. The CHC algorithm
using the associative memory will be called as Associative
Memory CHC algorithm (AMCHC). The standard EA us-
ing the same memory scheme will be referred as Associative
Memory Evolutionary Algorithm (AMEA) and is analogous
to the associate memory algorithm used in [20]. As before,
in the AMCHC algorithm, when a change is detected, the
population is reinitialized using the divergence rate dr. The
differences in the evolutionary process, stated for DMEA,
DMCHC, IMEA and IMCHC, are also true for AMEA and
AMCHC. The pseudo code of AMEA and AMCHC is pre-
sented in Fig. 4.

4. EXPERIMENTAL DESIGN

4.1 Dynamic TSP
Experiments were carried out on different DTSPs. In

this study, we adopted the method proposed in [23] to cre-
ate DTSP instances based on the data of kroA100 [11].
Younes’ generator uses three modes for creating DTSPs: in-
sert/delete mode (IDM), city swap mode (CSM) and edge
change mode (ECM). This paper used ECM mode to cre-
ate different DTSPs by changing the values of the pair wise
distances. This type of change reflects a real world prob-
lem called traffic jam, where the distances between cities
are viewed as the time needed to travel between them. In
ECM, an initial instance of the TSP is chosen to start the
run and the changes consist of modifying the costs of a set
of edges, using a user defined factor a. The edges, which
costs are to be increased, must be selected from the best in-
dividual and the edges to decrease cannot belong to the best
individual. The change period (r) is measured by the num-
ber of function evaluations between changes and the severity
of the change (s) is controlled by the number of edges that
are changed. In order to test cyclic change periods, the
increase/decrease of the edge costs is applied alternatively:
during a cycle of length l the costs of the edges are increased
by a certain amount a. After that, the costs of the edges are
decreased during a cycle of the same length. The decrease
phase consists of the removal of the previously introduced
changes in reverse order, i.e., after a cycle of length l, the in-
crements of the costs are removed so the instances return to
the previous states. These cyclic change periods are different
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Function AMCHC and AMEA
L : chromosome l ength
p : popu lat i on s i z e
m : memory s i z e
n : g l oba l number o f i n d i v i d u a l s
α : a s s o c i a t i v e f a c t o r
dr : d i vergence r a t e
d : d i f f e r e n c e thr esho ld

t = 0 ; d = L/4 ;
Initialize(P (0))
Initialize(M(0))
r epeat

Evaluate(P (t))
Evaluate(M(t))
Preserve bes t i n d i v i d u a l from P (t− 1)
i f change i s detected then

i f AMCHC then
P (t) = Reinitialize(P (t), dr)

I(t) = CreateIndividuals(M(t), α× n)
P (t) = ReplaceWorst(P (t), I(t), α× n)
V (t) = CreateDistributionV ector(P (t− 1))
M(t) = UpdateMemory(M(t), V (t), P (t− 1))

i f AMCHC then
P ′(t) = Selection CHC(P (t))
C(t) = Crossover CHC(P ′(t))
Evaluate(C(t))
newP (t) = Selectbest(P (t), C(t))
i f newP (t) = P (t) then

decrement d
i f d < 0

newP (t) = Reinitialize(newP (t), dr)
d = L/4

i f AMEA then
P ′(t) = Tournament Selection(P (t))
C(t) = Order Crossover(P ′(t))
newP (t) = Mutation(C(t))

P (t) = newP (t)
t = t+ 1

un t i l s t op cond i t i on

Figure 4: Pseudo code for AMCHC and AMEA

from Younes’ original generator, where there is only a cycle
where the costs are increased and a second phase where the
changes are removed in reverse order. We also study noisy
and random environments: in noisy environments, the in-
crease/decrease phases are applied as in cyclic environments,
but the matrix of the distances is slightly changed using a
noisy factor. In random environments, at every change step,
the edges to increase or to decrease are decided at random
using a uniform distribution.

4.2 Parameters Setting
The parameters of the algorithms are set using typical val-

ues found in similar studies: for DMEA, IMEA and AMEA,
a generational replacement with elitism of size one is used,
combined with the tournament selection with size two. Cros-
sover is applied with probability pc = 70% and swap mu-
tation (for DMEA, IMEA and AMEA) with a probability
pm = 1%. In order to have the same number of function
evaluations per generation, the global number of individu-
als n is set as follows: for DMCHC, DMEA, AMCHC and
AMEA, n = 100. For IMCHC and IMEA, ri × n immi-
grants are also evaluated every generation, so n is com-

puted using the expression n = 100

1+ri
. The memory size

is m = 20%×n. The ratio of immigrants ri used in IMCHC
and IMEA is ri = 20% and the immigrants are created us-
ing swap mutation with a rate set to pi = 1%. For the
associative memory schemes, the value of α is set to 0.5.
Several instances of DTSP are tested: different change pe-
riods of size r ∈ {1000, 5000, 10000} function evaluations
and, for each case, different severities of the change s ∈
{10%, 20%, 50%, 80%, 100%}. The number of edges that
are changed defines the severity of the change. A con-
stant amount a = 25% is used to increase (or decrease) the
distances between two cities i and j as follows: disti,j =
disti,j + disti,j × a. For cyclic and noisy environments,
the cycle length to increase/decrease the distances is set
to l = 5 × r. The noisy factor is set to 1%. The diver-
gence rate used in DMCHC, IMCHC and AMCHC is set to
dr = 20%. A change in the environment is detected when
a modification in the matrix of distances is observed. For
each experiment of an algorithm, 30 runs are executed for
200 environmental changes. The overall performance used
to compare the algorithms is the offline performance [3] av-
eraged over 30 independent runs. The statistical validation
was made using the nonparametric Friedman test at a 0.01
level of significance. After this test, the multiple pair wised
comparisons were performed using the Nemenyi procedure
with Bonferroni correction.

5. RESULTS
Fig. 5, Fig. 6 and Fig. 7 show the results obtained for dif-

ferent instances of cyclic, noisy and random DTSPs, respec-
tively. The corresponding statistical results of comparing al-
gorithms are given in Table 1 for cyclic DTSP, in Table 2 for
cyclic DTSP and in Table 3 for random DTSP. The notation
used in these tables is +, − or ∼, when the first algorithm is
significantly better than, significantly worse than, or statis-
tically equivalent to the second algorithm, respectively. The
statistical results refer only to the comparison of the pro-
posed methods among them and with the peer algorithms.
No comparisons between CHC, DMEA, IMEA and AMEA
are presented. The obtained results show that all mem-
ory approaches significantly improve the original CHC algo-
rithm, for all types of environments. Fig. 5, Fig. 6, Table
1 and Table 2 show that, for cyclic and noisy environments,
the results are almost equivalent. For those cases, in rapidly
changing environments (r = 1000), the use of the CHC algo-
rithm combined with the different memory schemes presents
worse results when compared with their peer algorithms
DMEA, IMEA and AMEA. For r = 1000 the best results are
achieved by DMEA. For larger change periods, DMCHC and
AMCHC obtain the best results, while the worst results are
attained by DMEA and IMEA. IMCHC outperforms DMEA
and IMEA, but obtains worse results than AMEA. For ran-
dom environments, the results presented on Fig. 7 and Table
3 show that, once again, for r = 1000, the memory-based
CHC algorithms obtain worse results than the remaining
algorithms. The best results, for rapidly changing random
environments are achieved by DMEA. When the changes in
the environment become slower, the investigated CHC al-
gorithms present superior performances: DMCHC and AM-
CHC obtain the best results and IMCHC obtains better per-
formances than DMEA and IMEA. The worst performances
are achieved by DMEA and IMEA. In order to better un-
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Table 1: The statistical results on cyclic DTSP
r = 1000 r = 5000 r = 10000

severity ⇒ 0.1 0.2 0.5 0.8 1.0 0.1 0.2 0.5 0.8 1.0 0.1 0.2 0.5 0.8 1.0
DMCHC - CHC + + + + + + + + + + + + + + +
DMCHC - DMEA − − − − − + + + + + + + + + +
DMCHC - IMEA − − − − − + + + + + + + + + +
DMCHC - AMEA − − − − − + + ∼ ∼ + + + + + +
DMCHC - IMCHC + + + + + + + + + + + + + + +
DMCHC - AMCHC − − − − − ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
IMCHC - CHC + + + + + + + + + + + + + + +
IMCHC - DMEA − − − − − + + + + + + + + + +
IMCHC - IMEA − − − − − + + + + + + + + + +
IMCHC - AMEA − − − − − − − − − − − − − − −
IMCHC - AMCHC − − − − − − − − − − − − − − −
AMCHC - CHC + + + + + + + + + + + + + + +
AMCHC - DMEA − − − − − + + + + + + + + + +
AMCHC - IMEA − − − − − + + + + + + + + + +
AMCHC - AMEA − − − − − + + + + + + + + + +

Table 2: The statistical results on noisy DTSP
r = 1000 r = 5000 r = 10000

severity ⇒ 0.1 0.2 0.5 0.8 1.0 0.1 0.2 0.5 0.8 1.0 0.1 0.2 0.5 0.8 1.0
DMCHC - CHC + + + + + + + + + + + + + + +
DMCHC - DMEA − − − − − + + + + + + + + + +
DMCHC - IMEA − − − − − + + + + + + + + + +
DMCHC - AMEA − − − − − + + ∼ + + + + + + +
DMCHC - IMCHC + + + + + + + + + + + + + + +
DMCHC - AMCHC − − − − − ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼
IMCHC - CHC + + + + + + + + + + + + + + +
IMCHC - DMEA − − − − − + + + + + + + + + +
IMCHC - IMEA − − − − − + + + + + + + + + +
IMCHC - AMEA − − − − − − − − − − − − − − −
IMCHC - AMCHC − − − − − − − − − − − − − − −
AMCHC - CHC + + + + + + + + + + + + + + +
AMCHC - DMEA − − − − − + + + + + + + + + +
AMCHC - IMEA − − − − − + + + + + + + + + +
AMCHC - AMEA − − − − − + + ∼ + + + + + + +

derstand these results, the diversity of the population was
measured. Table 4 presents the diversity for the different
types of environments using severity equal to s = 100% (the
diversity of the population obtained with other severities was
similar). Observing the diversity of the population, there is
not a direct correlation between diversity and performance.
The presented results indicate that the proposed memory-
based CHC algorithms need extra time to evolve and find
good solutions. If the environmental changes are too fast,
the algorithm has not enough time to correctly explore the
search space. The high diversity of the population obtained
by the memory-based CHC algorithms when r = 1000 com-
bined with the inferior results indicate that the evolution-
ary process is being continuously disrupted. When the time
between changes is larger, the diversity promoted by the
memory-based CHC algorithms decreases and the evolution-
ary process is able to find better solutions. Nevertheless, the
promotion of the diversity is not the only factor influencing
the results. The used memory schemes are also controlling
the obtained results. In fact, for r = 5000 and r = 10000,
IMEA promotes higher diversity than AMEA, but its per-
formance is worse. Moreover, for random environments, in
rapidly changing environments, DMEA preserves the lower
diversity, but obtains the best results.

6. CONCLUSIONS AND FUTUREWORK
This paper investigates the use of three different memory

schemes in the CHC algorithm. Direct, immigrant-based
and associative memory approaches are combined with the
CHC algorithm aiming to solve different instances of the
DTSP. The memory-based CHC algorithms were compared
with standard evolutionary algorithms using the same mem-
ory strategies and also with Eshelman’s original CHC algo-
rithm. The empirical study used cyclic, noisy and random
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Figure 5: Offline performance for the cyclic DTSP

instances of the DTSP, and different change periods and
change severities were analyzed. The experimental results
show that the improved CHC algorithms outperformed the
original CHC algorithm for all the studied situations. More-
over, the results demonstrate that the memory-based CHC
algorithms are not suitable for rapidly changing environ-
ments, but outperform the standard EAs for slowing chang-
ing environments. The direct and the associative memory
schemes used in the CHC algorithm obtained better results
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Figure 6: Offline performance for the noisy DTSP

than the immigrant-based scheme. In general, the associa-
tive memory scheme achieved the best results, while the
immigrant memory method attained the worst scores. As
future work we intend to analyze the sensitivity of the di-
vergence rate on the performance of CHC algorithms and to
use these algorithms in other problems using different rep-
resentations.
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Figure 7: Offline performance for the random DTSP
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