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ABSTRACT
This paper discusses a new approach to using GAs to solve
deceptive fitness landscapes by incorporating mechanisms to
control the convergence direction instead of simply increas-
ing the population diversity. In order to overcome some of
the difficulties that GAs face when searching deceptive land-
scapes, we introduce two new multi-chromosome genetic al-
gorithms. These multi-chromosome genetic algorithms have
been designed to accelerate the GA’s search speed in more
complicated deceptive problems by looking for a balance be-
tween diversity and convergence. Five different problems are
used in testing to illustrate the usefulness of our proposed
approaches. The results show that the lack of diversity is
not the only reason that normal GAs have difficulty in solv-
ing deceptive problems but that convergence direction is also
important.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search-Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization-Global optimization

General Terms
Algorithms

Keywords
Genetic Algorithms, empirical analysis, multi-chromosome
representations, deceptive problems, diversity

1. INTRODUCTION
Despite the success of genetic algorithms [7] in many do-

mains across a wide variety of classes of problems, genetic
algorithms have difficulty with both deceptive problems [12]
and in changing environments. These kinds of problems have
been called GA-Hard problems [4]. These are often charac-
terised by the presence of many deceptive attractors (local

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

optima that lead the GA away from the global optimum).
[12].

Much research has shown that population diversity plays a
significant role in preventing GAs from becoming trapped in
local optima in deceptive problems [5] and in helping GAs
track changes in dynamic environments [1]. Previous re-
search on how to solve deceptive or dynamic environment
problems has focused on maintaining diversity [6] [4] [8] [2]
[10] [11] [3]. One possible approach is to maintain a many-
to-one relationship between genotype and phenotype using
multi-layered genotype-phenotype models [6] [4] [8]. There
are also several other explicit diversity maintenance meth-
ods such as using multi-chromosomes with dominance [2]
[10], using multiple populations [11], and utilising reserve
selection in the algorithm [3].

In his paper [7], Holland first introduced the “building
block”(or schema) concept to explain how GAs work. As the
genetic algorithm converges to certain“building blocks”dur-
ing evolution, particular schemata become more and more
represented. Therefore, the average fitness of schema will
converge, but the population diversity will decrease, which
may reduce the GA’s probability of reaching the global op-
timum. The ideal GA is a GA that has a fast convergence
speed but does not become trapped in deceptive attractors.
Moreover, in some domains, it is advantageous to maintain
sufficient diversity to deal with any potential environmental
change. Maintaining a suitable balance between sufficient
diversity and suitably efficient convergence is an ongoing
important problem in GA research.

This paper introduces a new approach to solve decep-
tive and dynamic environment problems based on multi-
chromosome representations. The dominant chromosome is
used to converge to optima in the space while the recessive
chromosome is used to maintain and promote diversity. In
our second proposed approach, a third chromosome is added;
this is used to search for local minima near the current op-
tima. This is to check whether the current fittest individual
is a local optimum in order to reduce the time spent search-
ing near this local optimum.

The paper’s structure is as follows: some operators that
used in the later section are introduced in Section 2. Section
3 discusses the role of diversity and convergence and presents
an analysis on how GAs can be improved in these kinds
of problems. Section 4 discusses our two new GAs, one
with two chromosomes (diploid) and the other with three
chromosomes (triploid). Experimental results are presented
and analysed in Section 5. Section 6 presents conclusions
and outlines possible further work.
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2. BACKGROUND CONCEPTS

2.1 Diversity
Much research has focused on solving deceptive problems

by maintaining population diversity [6] [4] [8] [2] [10] [11]
[3]. There is no doubt that increasing diversity is one of the
key approaches to solving deceptive problems or problems in
changing environments. However, there are several factors
that have a direct impact on GAs’ performance in deceptive
problems. In addition to the population diversity, conver-
gence is another important property of genetic algorithms.
We use the term convergence direction to describe the path
to the building block to which the GA is currently being
attracted. If the convergence direction repeatedly changes,
the GAs will patrol between several solutions and will not
fully converge to any of them. In general, increasing diver-
sity will slow down the GA’s convergence speed, and if the
GA converges to one direction too fast, the GA will lose its
diversity very quickly.

One approach to maintaining diversity is to build a many-
to-one mapping between genotype and phenotype. The abil-
ity to solve deceptive problems with this approach has been
shown [6] [4] [8]. The inefficiency of this approach due to
the lack of convergence has also been shown. In order to
find a GA which can solve deceptive problems more accu-
rately and efficiently, the balance between convergence and
diversity must be found.

2.2 Diversity Rate
In order to help explain our approach and results, some

concepts are first introduced. In order to measure the level
of diversity present in a population, a diversity measurement
has been devised.

Wineberg and Oppacher [13] defined gene count ck(a) as
the number of the genes with the value ‘a’ in position k. The
diversity rate can be defined as follows:

(diversityrate) =

∑L
i=1 δi

dP
2
ebP

2
cL

δi = ci(0)ci(1)

(L = ChromosomeLength, P = PopulationSize)

A diversity rate value of zero indicates that the population
has completely converged. The greater the diversity rate,
the greater the diversity in the population. The diversity
rate is a universal measurement and can be used to compare
different GAs in different problems regardless of the popula-
tion size and the chromosome length. We use this measure
of diversity in our preliminary analysis outlined in the next
section.

2.3 GA-HARD PROBLEMS
There are many kinds of problem that GAs find difficult to

solve. Deceptive problems [12] are probably the best known
GA-Hard Problem. There are deceptive problems defined in
both discrete spaces (e.g. Order 3 [6] and Order 4 [4]) and
continuous spaces (e.g. Rastrigin and Schwefel’s function
[4]). They have a common trait that their solution space is
not monotonic. Moreover, a deceptive problem may include
many potential deceptive attractors. Examples include the
one dimensional Rastrigin’s function (illustrated in Fig 1).

In this plot, A (x = 0) is the global minimum, while there are
several local minima such as B and C, to which the genetic
algorithm may converge and become trapped.

Figure 1: 1 dimensional Rastrigin’s function

Another GA-Hard problem is that of dynamic environ-
ments [1] [6]. Normally, once a GA has found an optimum,
the population will quickly converge to the optimum. Con-
sequently, the population loses its diversity. Therefore, if
the environment changes after the GA has converged, the
global optimum may move far from the current global opti-
mum [6], and then the GA will find it difficult to find the
new optimum.

A problem can be represented as a pattern; this may be
repeated several times to create a new problem. These kinds
of problems are called multi dimensional problems. Increas-
ing the dimensionality can increase the difficulty of a de-
ceptive problem. However, a high dimensional problem, in
which each pattern is not deceptive, may more difficult than
a single dimensional deceptive problem.

3. DIVERSITY AND CONVERGENCE ANAL-
YSIS

In this section we detail and discuss a number of decep-
tive problems that we use in our later experiments. We also
provide some preliminary analysis regarding the relation-
ship between convergence and diversity. Some preliminary
results that motivate our algorithms are also included.

3.1 Single dimensional discrete problems
The order-3 and order-4 problems are common discrete

deceptive problems. Both of the solution spaces are based
on a small deceptive pattern which is repeated several times.
For the individual patterns, there are no easy hills to climb
to the pattern optimum. All points in the space, other than
the global optimum, point to the deceptive attractor. For
each pattern, the probability of randomly finding the pat-
tern optimum is 1/8 (order-3) and 1/16 (order-4). Increasing
diversity allows the GAs to have more attempts to “guess”
the global optimum. For a one dimensional order-N prob-
lem, the chance of reaching the global optimum is (1/2N ).
Merely increasing diversity does not help GAs to solve the
problem.
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3.2 Single dimensional continuous problems
Rastrigin’s function is a continuous GA-hard problem.

The phenotype of a one dimensional Rastrgin’s function is
plotted in Fig 1. Once the convergence begins, all of the
initial individuals will converge to the nearest optima1. In
most deceptive problems, the deceptive attractor’s fitness
value is very close to the global optimum (otherwise it will
be easily passed by the selection function because it is not
fit enough to be selected). Hence, those deceptive attrac-
tors and the global optimum have a similar chance of being
selected by the selection function. This may introduce in-
stability into the GA process, i.e., the GA may fluctuate
between different optima. In other words, the GA may con-
verge to different building blocks in different generations. As
a result, the GA will patrol between the global optimum and
several deceptive attractors but does not know to which it
should converge. Even if it discovers the global optimum in
some generation, the GA, without elitism, may not remain
at the optimum.

3.3 Completely deceptive problems
Completely deceptive problem landscapes are defined as

problem spaces where all the low order hyperplanes lead to
some hyperplane of order n which is not the global optimum.
For example, in discrete problem spaces, an order-N problem
is a completely deceptive problem.

Continuous deceptive problems differ from discrete decep-
tive problems in that there usually exists a small area which
leads to the global optimum rather that just the one point
(the optimum itself) typical in most discrete deceptive prob-
lems. Still, there are completely deceptive problem in con-
tinuous solution spaces too, such as:

f(x) =

{
x2 if x 6= 0
102 if x = 0

x ∈ [−10, 10]

3.4 Multi-dimensional problems and patterns
Multi-dimensional problems can be created as a combina-

tion of many single problems. It may be the same problem
combined to create a new problem or a set of different prob-
lems. GAs have difficulty solving these kind of problems
as they may be too many deceptive attractors causing the
GA to lose its ability to converge. In other words, the GA
does not have a definite convergence direction. There may
be many solutions in the space that have different build-
ing blocks but similar fitness scores, this will make the GA
converge to different building blocks over time. The GA’s
convergence direction changes over time. In that case, the
GA may not lose its diversity quickly, but it still cannot find
the global optimum.

3.5 Elitism in non-completely deceptive prob-
lems

Through the analysis above the following points can be
made. If the GA does not have a fixed convergence direc-
tion, it will patrol between the optima; hence it will not lose
its diversity quickly. This is well-known fact in genetic al-
gorithms research [9]. If the GA still has enough diversity,
especially around the global optimum, following a certain

1Disclaimer: this statement and several of our other intu-
itions regarding convergence are stated as working hypothe-
ses and have not been formally proven

number of generations, it will have a high chance of reach-
ing the global optimum, but it may lose said optima after
several generations due to the instability in the convergence.
As long as the fittest individual is always recorded, the global
optimum can be found.

The following experiment (over 5000 generations) was un-
dertaken to confirm the above points. We use the CGA
(canonical genetic algorithm) with, and without, elitism on
a 10-dimensional order-3 deceptive problem (detailed later).
We record the chromosomes throughout the evolution. We
represent all the patterns that reached the pattern optima
(111) with ‘+’s, all the patterns that are trapped in pattern
deceptive attractor (000) with ‘-’s, and the others with ‘.’s
So, the more ‘+’s in an individual, the closer it is to the
global optimum, the more ‘-’s in an individual, the closer it
is to the deceptive attractor, and the more ‘.’s in an indi-
vidual, the more diversity the chromosome has. Single point
crossover has been used in this experiment, which means ‘+’
and ‘-’ can only become ‘.’ during crossover.

The results show that without elitism, the CGA converges
very quickly to the local optima (in roughly 100 genera-
tions) and remains there for the remaining 4,900 genera-
tions. There tend to be many different chromosomes with
similar fitnesses involving a few ‘+’ and many ‘-’. At times
the CGA may, via crossover, converge to contain more ‘+’s
but is unable to maintain them. The addition of elitism
enables the CGA to maintain ‘+’s at more locations.

When we reset the problem to be a non-deceptive 10 di-
mensional order-3 problem, the results are similar. This is
due to the large number of small patterns present. The sim-
plest order-N problem is the order-1 problems, when there
is only one bit in each pattern. This problem can be viewed
as a Hamming distance problem and can be stated as follows:

For each bit in the chromosome
If this bit is 1

Fitness of this chromosome++;
End if

End for

If the chromosome length is L, the problem corresponds to
looking for the greatest Hamming distance from the string
of zeros. If we chose random solutions in the solution space,
the probability distribution of its fitness score will follow a
normal distribution as L tends to infinity. That means 99%
of the set is distributed less than 3 standard deviations from
the expected value (which is L/2). The probability of reach-
ing the global optimum is very low when the chromosome
length is long. Even if the global optimum has been found,
because it do not have a huge advantage in terms of fitness
score, without elitism, the GA may lose it very quickly. It
has been shown in many bodies of work that elitism can be
helpful. Furthermore, as we have shown, increasing diversity
alone if insufficient for many problems. There is still poten-
tial to improve performance by finding the global optimum
more frequently and more quickly while avoiding becoming
trapped in local optima.

4. DIPLOID, TRIPLOID AND PEAK MAIN-
TAINING

Based on the analysis in Section 3, two genetic algorithms
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have been designed to improve the efficiency of solving hard
deceptive problems.

The first GA uses a diploid chromosome representation.
It has been shown that the canonical GAs without elitism
cannot find the global optimum in fully deceptive order-3
problem [6]. In these runs, the average diversity rate of the
population is approximately 0.6. When the elitism has been
included in the GAs, the problem can be solved, but after
several generations, the diversity rate decreases to 0.3˜0.4.
We explored the effect of adding an immigrant in each gen-
eration, but this addition had little impact on diversity. In
this paper, diploid chromosome representation has been de-
signed maintain diversity.

4.1 Diploid genetic algorithm
The dominance of this diploid representation is decided

by the phenotype. Elitism and immigration have also been
used in this representation.

The main idea of the diploid GA (DGA) is to use the re-
cessive chromosome to help the dominant chromosome con-
verge in the early stages. Once the dominant chromosomes
have converged, the recessive chromosomes help maintain
diversity. The algorithm’s pseudo code is:

Initialize DGA;
Calculate both dominant and recessive chromosome’s fit-

ness;

If the recessive chromosome has a better
fitness score than the dominant chromosome

Swap the dominant and recessive chromosome;
End if
While not reached the max generation

Select the most fit individual in current generation
put it into next generation
Add an immigrant in next generation;
While next single generation does not reach the-
population size

Select 2 individuals from current generation;
Crossover the individuals to create new-
individual by external crossover rate;
Mutate the new individual by mutate rate;
Crossover the dominant and recessive-
chromosome by internal crossover rate;
Put the new individual into next generation;

End while
End while
End DGA

The selection function used here is the normal roulette
wheel selection based on the dominant chromosome’s fit-
ness, and both dominant chromosome and recessive chromo-
some are subjected to crossover separately using one-point
crossover. When putting the individual selected via elitism
into the next generation, the recessive chromosome is set to
be the same value as the dominant chromosome.

When the DGA starts to converge, only the dominant
chromosomes are converging, because the selection is based
only on the dominant chromosome’s fitness. For the reces-
sive chromosome, it was selected passively according to the
fitness of the dominant chromosome. An individual hav-
ing a better dominant chromosome does not mean it has
a better recessive chromosome. The individual selected by
elitism is set to have the same chromosome for the domi-

nant and recessive chromosome. So the recessive chromo-
some will give the fittest chromosome a chance to crossover
with other chromosomes which do not have a outstanding
fitness score. Also, when a recessive chromosome have a bet-
ter fitness score than the dominant chromosome in the same
individual, the dominant chromosome will be swapped with
the recessive chromosome, the new dominant chromosome
may have more chance of being selected, that means the re-
cessive chromosome of the same individual, which used to
be the dominant chromosome of this individual (it usually
has a good fitness score) will be selected too. This will cause
some convergence in the recessive chromosomes.

When the whole population’s dominant chromosomes are
highly converged, fitness scores will not be widely scattered.
The probability of each individual being selected will be sim-
ilar. For recessive chromosomes, the selection function will
be more like a random selection. Because only the selection
has significant impact on the diversity, both the crossover
and mutation do not have a huge effect on the diversity
score, so the recessive chromosomes do not converge due to
the random-like selection.

There is internal crossover between each individual’s dom-
inant and recessive chromosomes; the internal crossover rate
is the key to balancing the convergence of the recessive chro-
mosome and the diversity of the dominant chromosome.
When this rate has been set higher, the dominant chromo-
some’s convergence speed will decrease, and the recessive
chromosomes may lose its diversity.

4.2 Triploid Representation (three chromosomes)
The new triploid genetic algorithm (TGA) is designed to

make search more efficient. It has the same diversity main-
taining mechanism (recessive chromosome) as the DGA. An
extra chromosome (termed a reverse chromosome) has been
added in TGA, which is used to search the nearest local
minimum. To maintain the minima, the reverse chromo-
some should converge to the local minima. Following every
N generations (reverse generation), the reverse chromosome
should crossover with the dominant chromosome in the same
individual by a certain rate (reverse rate). With the reverse
chromosomes, the TGA can solve completely deceptive prob-
lems efficiently.

For example, the reverse generation is set to 100 genera-
tions, and the reverse rate is 75 percent. Following 100 gen-
erations, for each individual, the reverse chromosome will
crossover with the dominant chromosome with 75 percent
probability. This will bring the entire generation’s reverse
chromosome toward to the solution space that the dominant
chromosomes are currently searching, which could make the
reverse chromosome search for the local minima, instead of
the global minimum. There is an extra swapping mechanism
between the reverse and dominant chromosomes in the same
individual with a specified rate. The solution near the lo-
cal optima may have a better chance to converge to another
optimum, which may be the global optimum.

A difficulty in creating the TGA is that the dominant
chromosomes converge to the global optimum while the re-
verse chromosomes converge to the local minimum in the
same individual; two different selection functions cannot
be used in one population within normal crossover. The
problem is circumvented using multi-parent crossover. Two
individuals (b1, b2) are selected from the current genera-
tion, the better the dominant chromosome’s fitness score,
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the more opportunity it has of being selected. Another two
individuals (w1, w2) are selected using an alternative met-
rics: the worse the reverse chromosome’s fitness score, the
more opportunity it has of being selected. During crossover,
the children’s dominant chromosome is produced by b1 and
b2’s dominant chromosome, and the children’s reverse chro-
mosome is produced by w1 and w2’s chromosomes. The
children’s recessive chromosome is produced by any two of
the four recessive chromosomes.

5. EXPERIMENTS AND RESULTS
Five experiments have been undertaken on each of above

three algorithms (CGA, DGA, and TGA) for 200 indepen-
dent runs. For all of the three GAs, the (external) crossover
rate has been set to 75%, and the mutation rate to 0.5%.
The internal crossover rate of DGA and TGA has been set
to 2.5%. The reverse rate and reverse generation of TGA are
75% and 500 respectively. All GAs have only one individual
selected by elitism and one chosen using immigration. To
allow fair comparison, the population size of CGA, DGA,
and TGA were set to 300, 150, and 100, so that each of
them will have 300 chromosomes in every generation. The
stopping condition for all runs is either when the global opti-
mum has been found or the predefined maximum number of
generations has elapsed (25000). The values in all individu-
als in the initial population are randomly set. Tables 1, 2,
3, 4, and 5 show the number of times that the GAs reaches
the global optimum and the average generation when the
optimum is reached over 200 independent runs. The plots
show the average best fitness score over all generations of
200 independent runs.

The fitness scores are usually in a large range, but the
deceptive attractors always have quite similar fitness scores
to the global optimum. To make the plot more readable,
different plots have different size scales, that means, the“im-
portant” area of the plot (which are usually near the global
optimum) are “zoomed in” in the output plot. A Wilcoxon
rank sum test is undertaken for statistical significance be-
tween the TGA and the CGA. The differences are shown
to be statistically significant using this test on the following
problems (60-bit order-3 problem, the mixed order problem,
Rastrigin’s function and the multi-level deceptive problem).
On the completely deceptive problem the CGA fails all the
time and the TGA succeeds all the time so the differences
are also significant.

5.1 Order-3 60-bit problem
The order-3 problem is a classic multi-dimensional decep-

tive problem; each pattern of the order-3 problem is de-
scribed as:

f(111) = 30
f(110) = 0 f(101) = 0 f(011) = 0
f(100) = 14 f(010) = 22 f(001) = 26
f(000) = 28

To convert the problem into a changing environment, the
single pattern’s landscape changed midway (at generation
12,500) during the experiment to the following:

f(000) = 30
f(001) = 0 f(010) = 0 f(100) = 0
f(011) = 14 f(101) = 22 f(110) = 26
f(111) = 28

The pattern has been repeated 20 times to create a tightly-
ordered, 20-dimensional, 60 bit-chromosomes order-3 prob-
lem. The max generation has been set to 25000, and the
environment change occurs at generation 12500.

The results are illustrated in Table 1 and Fig 2 where
“B.C”indicates before environmental change and“A.C”refers
to after the environmental change.

Table 1: Table (Order-3 60bits)

Functions Global Opt. Reached Avg. reach generation

CGA
B.C. 99.5% (199) 3741
A.C. 98.5% (197) 17981

DGA
B.C. 99.5% (199) 4468
A.C. 98.5% (197) 18650

TGA
B.C. 100% (200) 1873
A.C. 100% (200) 14849

Figure 2: Average best Fitness of Order-3 60bits
Problem

The TGA has a much better performance than both CGA
and DGA. All of the three GAs spent more generations
searching for the global optimum after the environmental
change. Unexpectedly, CGA has slightly better performance
than DGA.

5.2 Mixed order-3/4/5 60bit problem
A mixed order problem is a transmutation of normal order-

N problem, it is defined as a random combination of five
order-3, five order-4, and five order-5 patterns placed in ran-
dom order. For each pattern, the pattern optimum, which
has the fitness score 30, is randomly generated. The decep-
tive attractor which has the fitness score 28, is set to be the
opposite of the global optimum, i.e. the smaller the Ham-
ming distance to the global optimum, the smaller the fitness
score is. In other words, the fitness score of the individuals
except the global optimum are inversely proportional to the
Hamming distance between the global optimum and itself.

At the midway point in the evolution, the order of the
15 patterns will be randomly arranged again, and for each
pattern, the global optimum will also be randomly set. The
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maximum generation has been set to 25000 generations, the
environmental change happens on generation 12500. The
experimental results are described as Table 2 and Fig 3.

Functions Global Opt. Reached Avg. reach generation

CGA
B.C. 27.5% (55) 8332
A.C. 29% (58) 20948

DGA
B.C. 37.5% (75) 9134
A.C. 36.5% (73) 21036

TGA
B.C. 100% (200) 4077
A.C. 100% (200) 16563

Table 2: Table (Mix-Order)

Figure 3: Average best Fitness of Mix-Order Prob-
lem

The results shows that the DGA is more accurate than the
CGA in the mixed order problem; this is probably because
the DGA has better diversity than the CGA. However, the
performance of both the CGA and the DGA are still far
behind that of the TGA.

5.3 Rastrigin’s function
Rastrigin’s function [4] is defined as:

R(~x) =

N∑
i=1

[xi
2 − 10cos(2πxi) + 10], xi∈[−5.12, 5.12]

The one dimensional Rastrigin’s function is plotted in Fig
1. In this paper, the experiments involve a 20-dimensional
Rastrigin’s function. The maximum generation has been
set to 25000 generations and no environmental change is
included in these experiments. The chromosomes are rep-
resented with binary gray codes. Each number is encoded
with 10 bits and transformed to real values in the appro-
priate range. To limit the size of the chromosomes, the
precision used is 0.01. This is sufficient to include all the
deceptive attractors in the continuous functions we tested.
Increasing the precision does not introduce any new decep-
tive attractors.

The results are illustrated in Table 3 and Fig 4:
Using the Rastrigin’s function involves looking for the

minimal value of the function, so the global optimum is at
the bottom of the figure (f(x) = 0). TGA still performs
much better than other GAs. Again, CGA performs better
than the DGA.

Global Opt. Reached Avg. reach generation
CGA 65.5% (131) 16382
DGA 60.5% (121) 17747
TGA 90% (180) 13817

Table 3: Table (Rastrigin’s function)

Figure 4: Average best Fitness of Rastrigin’s func-
tion

5.4 Multi-level deceptive function
Fig 1 shows the Rastrigin’s function’s plot, the deceptive

attractors in Rastrigin’s function converge to the global opti-
mum. We use a new function that has “deceptive deceptive
attractor”, which we call a multi-level deceptive function.
The chromosomes are also coded using binary gray code
with 0.01 precision. The experiments are using 8 dimen-
sional multi-level deceptive functions.

f(~x) =

N∑
i=1

[15 + 5cos(1.5x+ 2) + 10sin(2πx)], x∈[0, 10.24)

Figure 5: Multi-level deceptive function’s plot

In this deceptive function, the global optimum is f(x) ≈
0.00072, at point x ≈ 0.75. There are 10 local optima includ-
ing the global optimum in this deceptive function, and the
deceptive attractors’ space is also deceptive. The most at-
tractive deceptive attractor is at x ≈ 4.76, the local optimum
at x = 4.76 is f(x) ≈ 2.1274. There are 3 less attractive de-
ceptive attractors between the global optimum and the most
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attractive deceptive attractor. Fig 5 demonstrates the plot
of a one-dimensional multi-level deceptive function.

The experiments of the 8-dimensional multi-level decep-
tive function’s results are show in Table 4.

Global Opt. Reached Avg. reach generation
CGA 37.5% (75) 12702
DGA 66.5% (133) 12067
TGA 88% (176) 10682

Table 4: Table (Multi-level deceptive function)

Figure 6: Average best fitness of Multi-level decep-
tive function

This function was originally designed to check if the TGA
will have a high probability of becoming trapped at the “de-
ceptive deceptive attractor”. The results shown in Table 4
and Fig 6 are far from what we had anticipated. TGA does
not have a higher tendency to be trapped in any attractor in
comparison to CGA and DGA. Also, DGA performs much
better than CGA, it reaches the global optimum twice as
frequently as CGA.

5.5 Completely deceptive problem
The CGA and DGA approaches have difficulty in solv-

ing completely deceptive problems. However, by maintain-
ing the ability the converge to the local minima, the TGA
should be able to solve them quickly. To demonstrate this,
we created a 60-bit discrete completely deceptive problem.

The results of the completely deceptive problem are de-
scribed by Table 5.

Global Opt. Reached Avg. reach generation
CGA 0% NA
DGA 0% NA
TGA 100% (200) 102

Table 5: Table (Completely Deceptive Problem)

The results, as expected, show that the TGA can solve
completely deceptive problems quickly while both CGA and
DGA fail in our experiments. The data and plot of the
results are illustrated in Table 5 and Fig 7 respectively.

Figure 7: Average best Fitness of Completely De-
ceptive Problem

5.6 Exploring variants of the TGA
For completeness, we created another two-chromosome ge-

netic algorithm by removing the recessive chromosome from
the TGA and relying solely on the dominant chromosome
and the reverse chromosome. It has no recessive chromo-
some to maintain diversity. For the mixed-order problems,
this new representation does well (outperforms the CGA and
the DGA). It performs very badly, as expected, on the multi-
level problem as it converges and remains at local minima.

5.7 Summary
The experiments and results described in this section show

that canonical GAs with elitism can solve deceptive prob-
lems, if given sufficient generations. The DGA can be con-
sidered similar to a CGA with diversity maintaining mecha-
nisms; it does not have any new mechanism to improve the
convergence. In most situations, DGA has similar perfor-
mance to CGA (in the plot, the dashed line and star line
are almost superposed). In some problems CGA performs
even better than DGA, such as the order-3 problem and
Rastrigin’s function. These results confirm our previous as-
sumption that diversity is not the only factor that can affect
GAs’ performance in deceptive problems.

Through all the experiments, TGA has been shown to be
better on both accuracy and efficiency, especially in complex
problems. In the mixed order problems, CGA and DGA
perform very poorly, probably because the order-5 problem,
which has 32 solution space requires too many “guesses” in
the CGA and DGA, while TGA more easily solves these
kinds of problems due to its maintainence of the local min-
ima. The multi-level deceptive function is designed to be
hard for the TGA to solve, because the “peak points” also
have many “trough”/“crest” (deceptive attractors). Interest-
ingly, TGA still has much better performance than the other
two GAs.

6. CONCLUSIONS AND FURTHER WORK
The analysis of deceptive problems shows that the diver-

sity is not the only parameter that may affect the GAs’
performance in solving these kinds of problems. In fact, in
completely non-deceptive problems, the GA does not have
correct convergence to find the global optimum because it
cannot maintain a definite convergence direction. Increase
diversity could help to solve the problems but it is not the
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only way to do it. Given enough generations, the canonical
GA with elitism could solve deceptive problems. Therefore,
a new approach to solving deceptive problems in changing
environments is by controlling the convergence direction has
been proposed. Two multi-chromosome GAs have been de-
signed to solve five different problems in both discrete and
continuous spaces. The results show that increasing the di-
versity can increase the probability that GAs solve deceptive
problems, and that the ability to maintain convergence di-
rections affects the efficiency. Maintaining diversity while
controlling the convergence direction is much more efficient
than only maintaining the diversity.

Our results used fixed settings for mutation, reverse rate
etc. However, we have explored a range of values and ob-
tained similar results. However, a more complete explo-
ration of the parameter space is left to future work. Other
planned work will include the detailed comparison of this
approach against other genetic algorithms other than the
canonical genetic algorithm.
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