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ABSTRACT
Epistasis correlation is a measure that estimates the strength
of interactions between problem variables. This paper
presents an empirical study of epistasis correlation on a large
number of random problem instances of NK landscapes with
nearest neighbor interactions. The results are analyzed with
respect to the performance of hybrid variants of two evolu-
tionary algorithms: (1) the genetic algorithm with uniform
crossover and (2) the hierarchical Bayesian optimization al-
gorithm.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

Keywords
Epistasis, epistasis correlation, problem difficulty, NK land-
scapes, genetic algorithms, estimation of distribution algo-
rithms, linkage learning

1. INTRODUCTION
It has long been recognized that optimization problems

with strong interactions between problem variables are of-
ten more difficult for genetic and evolutionary algorithms
(GEAs) than problems where variables are nearly indepen-
dent [8, 3, 5, 39, 24]. The strength of interactions between
problem variables is often referred to as epistasis, a term
used in biology to denote the amount of interaction between
different genes. A number of approaches have been devel-
oped to adapt operators of GEAs to tackle problems with
strong epistasis; these include for example linkage learning
genetic algorithms [31, 13] and estimation of distribution
algorithms (EDAs) [17, 27, 18, 28].
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Two direct approaches were developed to measure the
amount of epistasis in an optimization problem or the ab-
sence of it: (1) epistasis variance [3] and (2) epistasis cor-
relation [34]. Epistasis correlation is often considered more
useful, because its range is [0, 1] and it is invariant with re-
spect to linear transformations of fitness; the results may
thus often be easier to interpret and compare. Because
epistasis is strongly related to problem difficulty, measur-
ing epistasis should provide insight into the difficulty of a
problem. Nonetheless, it has been also recognized that a
problem with strong epistasis is not necessarily more diffi-
cult than a problem with weaker epistasis [34, 21]. Although
there are numerous papers discussing epistasis and measures
of epistasis in the context of genetic and evolutionary algo-
rithms [3, 4, 32, 34, 21], in most of these studies only a
handful of problems are considered.

This paper presents a detailed empirical study of the re-
lationship between problem parameters, the epistasis cor-
relation, and the performance of two qualitatively differ-
ent hybrid evolutionary algorithms, the genetic algorithm
with uniform crossover (GA) [14, 8, 38], and the hierarchi-
cal Bayesian optimization algorithm (hBOA) [23]. In GA
with uniform crossover, variation operators do not take into
account correlations between variables and treat all variables
as independent. On the other hand, hBOA can learn linkage;
it is able to identify and exploit interactions between prob-
lem variables. Both GA and hBOA use hill climbing based
on the single-bit neighborhood to speed up convergence and
reduce computational requirements. As the target class of
problems, the paper considers NK landscapes with nearest-
neighbor interactions [24]. This problem class was chosen
mainly because it provides a straightforward mechanism for
tuning problem difficulty and level of epistasis, and it allows
generation of a large number of random problem instances
with known optima.

The paper is organized as follows. Section 2 describes
epistasis variance and epistasis correlation, which are the
two primary direct measures of epistasis in optimization.
Section 3 describes the algorithms GA and hBOA, and the
class of NK landscapes with nearest-neighbor interactions.
Section 4 presents and discusses the experiments. Finally,
section 5 summarizes and concludes the paper.

2. EPISTASIS
For success in both applied and theoretical research in evo-

lutionary computation it is important to understand what
makes one problem more difficult than another. Several ap-
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proaches have been proposed to measure problem difficulty
for evolutionary algorithms and other metaheuristics. The
most popular measures include the fitness distance correla-
tion [15], the autocorrelation function [41], the epistasis cor-
relation [34], the signal-to-noise ratio [10], and scaling [40].
While many of these measures are related to epistasis, this
paper focuses on approaches that measure epistasis directly.

In the remainder of this paper, candidate solutions are
represented by binary strings of fixed length n > 0, al-
though many of the discussed concepts and methods can be
extended to other alphabets in a straightforward manner.

2.1 Epistasis Variance
This section describes epistasis variance, which is a mea-

sure of epistasis proposed by Davidor [3] and is defined as
the Euclidean distance between the linear approximation of
the fitness function and the actual fitness function over the
population of all admissible solutions. To make the compu-
tation of epistasis variance tractable for moderate to large
string length, we reduce the computation of the epistasis
variance to an arbitrary population of candidate solutions.

Assume a population P of N candidate solutions repre-
sented by n-bit binary strings. The average fitness of solu-
tions in P is defined as

f(P ) =
1

N

X
x∈P

f(x).

Let us define the set of solutions in P with the value vi in
ith position as Pi(vi) and their number by Ni(vi). Then,
for each position i in a solution string, we may define the
fitness contribution of a bit vi as

fi(vi) =
1

Ni(vi)

X
x∈Pi(vi)

f(x) − f(P ) (1)

The linear approximation of f [3, 32, 22, 33] is defined as

flin(X1, X2, . . . , Xn) =

nX
i=1

fi(Xi) + f(P ). (2)

It is of note that the above linear fitness approximation
has also been used in the first approach to modeling the
fitness function in estimation of distribution algorithms [36].
The epistasis variance of f for population P is then defined
as [3, 4]

ξP (f) =

s
1

N

X
x∈P

(f(x) − flin(x))2 (3)

One of the problems with epistasis variance is that its
value changes even when the fitness function is just multi-
plied by a constant. That is why several researchers have
proposed to normalize the epistasis variance, for example by
dividing it by the variance of the fitness function [19], or by
using a normalized fitness function [22].

2.2 Epistasis Correlation
Epistasis correlation was proposed by Rochet et al. [34]

as a measure of epistasis that is invariant with respect to
linear transformation of the fitness function (not only mul-
tiplication by a constant). Let us define the sum of square
differences between f and f(P ) over all members of P as

sP (f) =
X
x∈P

`
f(x) − f(P )

´2
.

Analogously, we may define the sum of square differences
between flin and its average over P as

sP (flin) =
X
x∈P

`
flin(x) − flin(P )

´2

where
flin(P ) =

1

N

X
x∈P

flin(x).

The epistasis correlation for the population P is then defined
as

epicP (f) =

P
x∈P

`
f(x) − f(P )

´ `
flin(x) − flin(P )

´
sP (f)sP (flin)

(4)

The main advantage of epistasis correlation is that it is
invariant with respect to linear transformations of fitness
and its range is [0, 1]. Consequently, epistasis correlation is
much easier to interpret than epistasis variance. These are
the reasons why we use epistasis correlation in the remainder
of this paper as the measure of epistasis.

2.3 Epistasis Measures and Difficulty
One of the problems with the epistasis correlation and the

epistasis variance is that while the goal of these measures is
to evaluate problem difficulty, the gap between problem dif-
ficulty and the epistasis measures is quite substantial. For
example, if the epistasis correlation is 1, then we know that
the problem is linear and it should thus be relatively easy to
solve with practically any optimization method. Nonethe-
less, as the epistasis correlation decreases, this measure alone
cannot be used as a single input to estimate problem diffi-
culty because problem difficulty does not depend only on the
presence of epistasis but also on its character. This observa-
tion was pointed out in many studies on epistasis variance
or epistasis correlation, for example in references [34, 21].

The weakness of the connection between problem diffi-
culty and the measures of epistasis has led to other mod-
els of problem difficulty originating in interactions between
problem variables, such as deception [8, 9] and fluctuating
crosstalk [37, 9]. One of the difficulties with these models is
that it is not straightforward to quantify them in practice.

Nonetheless, it is of note that the weakness of the connec-
tion between the epistasis measures and problem difficulty
is most often discussed on artificial problems that have little
to do with the real world and that were created for the sole
purpose of pointing out drawbacks of epistasis measures. In
this paper, we aim to analyze the epistasis measures and
their relationship to problem difficulty on a broad class of
structured random problems, including both the easy and
the difficult instances, that have much in common with im-
portant classes of real-world problems and that are often
used as models of complex fitness landscapes.

2.4 Approximating Epistasis Correlation
Calculating the exact value of the epistasis correlation us-

ing a population of all possible strings is intractable for mod-
erate to large values of n. Furthermore, approximating the
value of epistasis correlation turns out to be slightly more
challenging than approximating the values of some other
measures of problem difficulty, such as the fitness distance
correlation and the correlation length [24]. Since in this pa-
per we considered 250,000 problem instances for which we
computed the value of epistasis correlation, it was crucial to
ensure that the computation of epistasis correlation is com-
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putationally efficient. Of course, for the results to be useful,
accuracy was just as important as efficiency.

To estimate the value of the epistasis analysis, we started
with nexp = 10 independent experiments. In each of these
experiments, we generated a population of 106 solutions,
and we computed the exact value of the epistasis correlation
for the generated population. The resulting epistasis corre-
lation values were averaged to compute the final estimate
of the epistasis correlation. If the results of the individual
experiments indicated that the error in the average epista-
sis correlation value is away from its target value by more
than 0.1% (assuming the normal distribution of the results),
another 10 experiments were executed. Regardless of the er-
ror, the maximum number of experiments was 1,000. That
means that the resulting estimate was computed from 107

to 109 independently generated samples.

3. PROBLEMS AND METHODS
This section outlines the algorithms and fitness functions

used in the experiments.

3.1 Algorithms
3.1.1 Genetic algorithm

The genetic algorithm (GA) [14, 8] evolves a population of
candidate solutions typically represented by binary strings of
fixed length. The initial population is generated at random
according to the uniform distribution over all binary strings.
Each iteration starts by selecting promising solutions from
the current population; we use binary tournament selection
without replacement. New solutions are created by apply-
ing variation operators to the population of selected solu-
tions. Specifically, crossover is used to exchange bits and
pieces between pairs of candidate solutions and mutation is
used to perturb the resulting solutions. Here we use uni-
form crossover [38], and bit-flip mutation [8]. To maintain
useful diversity in the population, the new candidate so-
lutions are incorporated into the original population using
restricted tournament selection (RTS) [11]. The run is ter-
minated when termination criteria are met. In this paper,
each run is terminated either when the global optimum has
been found or when a maximum number of iterations has
been reached.

3.1.2 Hierarchical BOA
The hierarchical Bayesian optimization algorithm

(hBOA) [25, 26, 23] is an estimation of distribution al-
gorithm (EDA) [1, 20, 17, 27, 18, 28]. EDAs differ from
GAs by replacing standard variation operators of GAs
such as crossover and mutation by building a probabilistic
model of promising solutions and sampling the built model
to generate new candidate solutions. The only difference
between GA and hBOA variants used in this study is that
instead of using crossover and mutation to create new
candidate solutions, hBOA learns a Bayesian network with
local structures [2, 6] as a model of the selected solutions
and generates new candidate solutions from the distribution
encoded by this model. For more details on hBOA, see
refs. [25, 23].

It is important to note that by building and sampling
Bayesian networks, hBOA is able to scalably solve even
problems with high levels of epistasis, assuming that the or-
der of subproblems in an adequate problem decomposition

is upper bounded by a constant [29]. Since the variation
operators of the GA variant studied here assume that the
string positions are independent whereas hBOA has a mech-
anism to deal with epistasis, it should be interesting to look
at the effects of epistasis on these two algorithms. This is in
fact the main reason for the choice of these two algorithms.
In this context, an EDA based on univariate models may
have been an even better choice than the GA with uniform
crossover, but in that case most NK landscapes of larger size
became intractable.

3.1.3 Bit-flip hill climber
The deterministic hill climber (DHC) is incorporated into

both GA and hBOA to improve their performance similarly
as in previous studies on using GA and hBOA for solving
NK landscapes and related problems [30, 24]. DHC takes
a candidate solution represented by an n-bit binary string
on input. Then, it performs one-bit changes on the solution
that lead to the maximum improvement of solution quality.
DHC is terminated when no single-bit flip improves solution
quality and the solution is thus locally optimal. Here, DHC
is used to improve every solution in the population before
the evaluation is performed.

3.2 Nearest-neighbor NK landscapes
NK fitness landscapes [16] were introduced by Kauffman

as tunable models of rugged fitness landscape. An NK fitness
landscape is fully defined by the following components: (1)
The number of bits, n, (2) the number of neighbors per bit,
k, (3) a set of k neighbors Π(Xi) for the i-th bit for every
i ∈ {1, . . . , n}, and (4) a subfunction fi defining a real value
for each combination of values of Xi and Π(Xi) for every
i ∈ {1, . . . , n}. Typically, each subfunction is defined as a
lookup table. The objective function fnk to maximize is
defined as

fnk(X1, X2, . . . , Xn) =

nX
i=1

fi(Xi, Π(Xi)).

In this paper, we consider nearest-neighbor NK land-
scapes, in which neighbors of each bit are restricted to the
k bits that immediately follow this bit. The neighborhoods
wrap around; thus, for bits that do not have k bits to the
right, the neighborhood is completed with the first few bits
of solution strings. The reason for restricting neighborhoods
to nearest neighbors was to ensure that the problem in-
stances can be solved in polynomial time even for k > 1
using dynamic programming [24]. The subfunctions are
represented by look-up tables (a unique value is used for
each instance of a bit and its neighbors), and each entry
in the look-up table is generated with the uniform distri-
bution from [0, 1). To make the problem more difficult for
conventional variation operators based on tight linkage be-
tween bits located close to each other, the string positions
are randomly shuffled prior to optimization. The used class
of NK landscapes with nearest neighbors is thus the same
as that in ref. [24].

In this paper, we consider k ∈ {2, 3, 4, 5, 6} and n = 20
to 100 with step 10 (for scalability experiments) or 20 (for
epistasis correlation). For each combination of n and k, we
generated and tested 10,000 unique problem instances. The
reason for using such a large number of instances was to get
a sufficient number of samples for the various tests presented
here. For GA, the results for instances with n = 100 and
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k = 6 were too computationally expensive and they were
thus omitted. In summary, for epistasis correlation, 250,000
independently generated problem instances were used and
450,000 independently generated instances were used for ex-
periments on scalability of hBOA and GA.

The difficulty of optimizing NK landscapes depends on
all components defining an NK problem instance [42]. Al-
though NK landscapes with nearest neighbor interactions
are polynomially solvable in terms of n [24], the difficulty
of problem instances from this class generally increases as n
and k grow. On nearest-neighbor NK landscapes, the time
complexity of most evolutionary algorithms is expected to
grow at least polynomially fast with n, and no better than
exponentially fast with k [30, 24].

4. EXPERIMENTS
4.1 hBOA and GA Parameter Settings

In hBOA Bayesian networks with decision trees [7, 2]
are used as probabilistic models. To evaluate models, the
Bayesian-Dirichlet metric with likelihood equivalence [2] and
the penalty for model complexity [23] is used. In GA, uni-
form crossover and bit-flip mutation are used as variation
operators. The probability of crossover is pc = 0.6 and the
probability of flipping a bit with mutation is 1/n where n
is the number of bits. To select promising solutions, bi-
nary tournament selection without replacement is used in
both GA and hBOA. New solutions are incorporated into
the original population using RTS [11] with window size
w = min{n, N/20} as suggested by ref. [23]. The popu-
lation sizes are identified using bisection [35, 23] to ensure
convergence in 10 out of 10 independent runs. Each run is
terminated either when the global optimum is found (suc-
cess) or when the maximum number of iterations equal to
the number of bits n has been reached (failure). The max-
imum number of iterations was n based on preliminary ex-
periments which indicated that if a run did not find the opti-
mum after n iterations, it was unlikely to find the optimum
or finding it would take extremely long time.

4.2 Performance of hBOA and GA
Before presenting the results for the epistasis correlation,

let us examine performance of hBOA and GA hybrids with
respect to the values of n and k. Figure 1 shows the growth
of the number of evaluations and the number of local search
steps (DHC flips) with n and k for both hybrids. Note
that each step of local search may require several full or
partial evaluations, depending on the problem. For nearest-
neighbor NK landscapes, the complexity of each step of local
search can be upper bounded by O(log n), whereas each eval-
uation takes O(n) time. That is why we distinguish between
the number of evaluations and the number of flips.

The results confirm that the number of evaluations and
the number of flips grow polynomially fast with the number
n of bits. The results also confirm that both these statistics
grow at least exponentially fast with k.

4.3 Effects of Problem Size and Neighbor-
hood Size on Epistasis Correlation

Figure 2 shows scatter plots of epistasis correlation with
respect to the number of evaluations and the number of steps
of local search (DHC flips) for n = 100 and k ∈ {2, 3, 4, 5, 6}.
The figure indicates that, as expected, as k grows, epista-
sis increases in magnitude and, in agreement with this, the

epistasis correlation decreases with k. This is confirmed with
the results shown in figure 3b, which also considers n = 100
and k ∈ {2, 3, 4, 5, 6}. It is of note that although figures 2
and 3b consider only one problem size n = 100, the results
for other problem sizes are nearly identical.

Scatter plots in figure 2 also indicate that the number of
evaluations and the number of steps of the local searcher
vary more for GA than for hBOA; this is expected because
uniform crossover cannot deal with epistasis and assumes
that the variables are independent.

Figure 3a shows that the epistasis correlation does not
seem to be affected by the overall number of bits in the
problem, because it stays nearly constant regardless of the
problem size. This observation is not a surprise; problem
difficulty originating in problem size is related mainly to
collateral noise [9, 12], whereas epistasis is concerned only
with the amount of interaction between problem variables.

4.4 Epistasis Correlation and Problem Diffi-
culty with Fixed Problem Size and Neigh-
borhood Size

While the relationship between epistasis correlation, n and
k was in agreement with our understanding of epistasis and
the difficulty of NK landscapes, it is not as clear what the
relationship between epistasis and problem difficulty is for
fixed n and k. In this section, we examine the relation-
ship between epistasis correlation and the actual difficulty
of problem instances assuming fixed n and k.

Specifically, for various combinations of n and k, several
subsets of easy and difficult problem instances are selected,
and for each of these subsets, the average number of steps
of local search and the average epistasis correlation are pre-
sented. As subsets, we select the 10%, 25% and 50% easiest
instances, the 10%, 25% and 50% hardest instances, and all
instances for the specific combination of n and k regardless
of their difficulty. Since for each combination of n and k,
10,000 instances were used, even the smallest subset of 10%
instances contains 1,000 instances. The difficulty of an in-
stance is measured by the actual number of steps of local
search using the optimization method under consideration
(either GA with uniform crossover and DHC, or hBOA with
DHC). In most cases, n = 100 and k ∈ {2, 3, 4, 5, 6}. The
results for other problem sizes are similar. However, for GA
with uniform crossover, resource constraints did not allow
us to complete experiments k = 6 and n = 90 or n = 100, so
we used n = 80 for k = 6. The results are shown in tables 1
and 2.

As shown in table 1, for hBOA with DHC and most values
of k, the values of epistasis correlation are in agreement with
the actual difficulty of the subsets of instances. This is in
agreement with our intuition that as the problem difficulty
increases, the epistasis correlation decreases, indicating an
increased level of epistasis. Nonetheless, as k grows, the
differences between the values of epistasis correlation for the
different subsets of instances decrease. In fact, for k = 5 and
k = 6, the values of epistasis correlation sometimes increase
with problem difficulty. While these results are somewhat
surprising, they can be explained by the fact that hBOA is
able to deal with problems with epistasis of bounded order
efficiently. That is why hBOA should not be as sensitive to
epistasis as many other evolutionary algorithms.

As shown in table 2, for GA with uniform crossover and
DHC, the values of epistasis correlation are also in agreement
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(a) hBOA with local search.
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(b) GA with uniform crossover and local search.

Figure 1: Performance of hBOA and GA with uniform crossover on nearest-neighbor NK landscapes of k = 2
to k = 6 and n = 20 to n = 100.
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Figure 2: Scatter plots of the epistasis correlation with respect to the number of evaluations and the number
of steps of the local search (DHC flips) for GA and hBOA.
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Figure 3: Epistasis correlation with respect to the number n of bits and the number k of neighbors of
nearest-neighbor NK landscapes.

with our understanding of how epistasis affects problem dif-
ficulty. As the problem instances become more difficult, the
epistasis correlation decreases, indicating an increased level
of epistasis. In fact, for GA, the results are in agreement
with our understanding of epistasis and problem difficulty
even for larger values of k, although the differences between
the epistasis values in different subsets decrease with k.

The differences between the results for hBOA and GA con-
firm that the effect of epistasis should be weaker for hBOA
than for GA because hBOA can deal with epistasis better
than conventional GAs by detecting and using interactions
between problem variables. The differences are certainly
small, but so are the differences between the epistasis corre-
lation values between the subsets of problems that are even
orders of magnitude different in terms of the computational
time. The differences between a conventional GA with no
linkage learning and one of the most advanced EDAs are
among the most interesting results in this paper.

5. SUMMARY AND CONCLUSIONS
This paper discussed epistasis and its relationship with

problem difficulty. To measure epistasis, epistasis correla-
tion was used. The empirical analysis considered hybrids
of two qualitatively different evolutionary algorithms and
a large number of instances of nearest-neighbor NK land-
scapes.

The use of epistasis correlation in assessing problem diffi-
culty has received a lot of criticism [22, 34]. The main reason
for this is that although the absence of epistasis does imply
that a problem is easy, the presence of epistasis does not
necessarily imply that the problem is difficult. Nonetheless,
given our current understanding of problem difficulty, there
is no doubt that introducing epistasis increases the potential
of a problem to be difficult.

This paper indicated that for randomly generated NK
landscapes with nearest-neighbor interactions, epistasis cor-
relation correctly captures the fact that the problem in-
stances become more difficult as the order of interactions
(number of neighbors) increases. Additionally, the results
confirmed that for a fixed problem size and order of inter-
actions, sets of more difficult problem instances have lower
values of epistasis correlation (and, thus, stronger epistasis).
The results indicated also that evolutionary algorithms ca-
pable of linkage learning are less sensitive to epistasis than
conventional evolutionary algorithms.

The bad news is that the results confirmed that epistasis
correlation does not provide a single input for the practi-

tioner to assess problem difficulty, even if we assume that
the problem size and the order of interactions are fixed, and
all instances are generated from the same distribution. In
many cases, simple problems included strong epistasis and
hard problems included weak epistasis. A similar observa-
tion has been made in ref. [24] for the correlation length
and the fitness distance correlation. However, compared to
these other popular measures of problem difficulty, epista-
sis correlation belongs to one of the more accurate ones, at
least for the class of randomly generated NK landscapes with
nearest-neighbor interactions.

One important topic for future work is to compile some of
the past results in analysis of various measures of problem
difficulty with the results presented here, and explore the
ways in which different measures of problem difficulty can be
combined to provide a problem-difficulty measure that out-
performs any of the individual measures. The experimental
study presented in this paper should also be extended to
other classes of problems, especially those that allow one to
generate a large set of random problem instances. Classes
of spin glass optimization problems and graph problems are
good candidates for these efforts. Finally, one may con-
sider the variants of the presented algorithms without local
search, although in that case, performance of all algorithms
deteriorates significantly and the analysis may have to be
performed only for problem instances of much smaller size.
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(a) hBOA, n = 100, k = 2

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 3330.9 (163.9) 0.6645 (0.030)
25% easiest 3550.2 (217.0) 0.6608 (0.030)
50% easiest 3758.6 (265.2) 0.6580 (0.030)
all instances 4436.2 (1019.5) 0.6534 (0.031)
50% hardest 5113.8 (1044.2) 0.6487 (0.031)
25% hardest 5805.5 (1089.4) 0.6466 (0.031)
10% hardest 6767.6 (1152.3) 0.6447 (0.032)

(b) hBOA, n = 100, k = 3

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 4643.5 (264.0) 0.5221 (0.029)
25% easiest 5071.2 (420.4) 0.5193 (0.029)
50% easiest 5618.8 (651.1) 0.5175 (0.029)
all instances 6919.3 (1795.8) 0.5150 (0.029)
50% hardest 8219.7 (1626.0) 0.5124 (0.029)
25% hardest 9298.2 (1690.0) 0.5109 (0.029)
10% hardest 10688.3 (1925.0) 0.5106 (0.028)

(c) hBOA, n = 100, k = 4

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 7380.6 (689.2) 0.4049 (0.024)
25% easiest 8361.4 (958.0) 0.4031 (0.025)
50% easiest 9528.3 (1414.2) 0.4025 (0.025)
all instances 12782.4 (4897.7) 0.4009 (0.025)
50% hardest 16036.5 (4979.6) 0.3994 (0.025)
25% hardest 19203.1 (5384.0) 0.3990 (0.025)
10% hardest 23674.1 (6088.7) 0.3986 (0.025)

(d) hBOA, n = 100, k = 5

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 12526.4 (1408.4) 0.3090 (0.020)
25% easiest 14662.1 (2078.3) 0.3085 (0.020)
50% easiest 17399.8 (3334.6) 0.3085 (0.020)
all instances 26684.2 (14255.6) 0.3079 (0.020)
50% hardest 35968.5 (14931.0) 0.3072 (0.020)
25% hardest 44928.0 (16730.7) 0.3068 (0.020)
10% hardest 58353.5 (19617.4) 0.3071 (0.020)

(e) hBOA, n = 100, k = 6

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 21364.1 (2929.9) 0.2349 (0.016)
25% easiest 26787.7 (5261.6) 0.2351 (0.016)
50% easiest 34276.6 (8833.1) 0.2348 (0.016)
all instances 60774.8 (42442.8) 0.2344 (0.016)
50% hardest 87272.9 (46049.2) 0.2339 (0.016)
25% hardest 114418.9 (52085.3) 0.2340 (0.016)
10% hardest 154912.8 (62794.1) 0.2341 (0.016)

Table 1: Epistasis correlation for easy and hard in-
stances for hBOA. The difficulty of instances is mea-
sured by the overall number of steps of the local
searcher.

(a) GA (uniform), n = 100, k = 2

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 1493.1 (259.4) 0.6660 (0.028)
25% easiest 1881.9 (373.9) 0.6625 (0.030)
50% easiest 2332.3 (543.2) 0.6588 (0.030)
all instances 3516.7 (1741.5) 0.6534 (0.031)
50% hardest 4701.0 (1722.0) 0.6479 (0.031)
25% hardest 5840.9 (1800.5) 0.6443 (0.031)
10% hardest 7358.3 (2002.9) 0.6395 (0.030)

(b) GA (uniform), n = 100, k = 3

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 3240.8 (461.9) 0.5249 (0.029)
25% easiest 4035.6 (790.6) 0.5215 (0.029)
50% easiest 5178.5 (1340.6) 0.5189 (0.029)
all instances 9082.9 (6558.2) 0.5150 (0.029)
50% hardest 12987.4 (7330.5) 0.5110 (0.029)
25% hardest 17116.9 (8517.9) 0.5095 (0.029)
10% hardest 23829.5 (10164.2) 0.5082 (0.030)

(c) GA (uniform), n = 100, k = 4

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 6594.6 (1183.6) 0.4045 (0.024)
25% easiest 8590.6 (1928.4) 0.4037 (0.025)
50% easiest 11445.0 (3427.8) 0.4026 (0.025)
all instances 25903.7 (26303.0) 0.4009 (0.025)
50% hardest 40362.3 (30885.2) 0.3993 (0.025)
25% hardest 57288.4 (36351.8) 0.3989 (0.025)
10% hardest 85279.2 (44200.4) 0.3970 (0.025)

(d) GA (uniform), n = 100, k = 5

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 13898.4 (2852.6) 0.3099 (0.020)
25% easiest 19872.9 (5765.2) 0.3098 (0.020)
50% easiest 29259.2 (11063.4) 0.3087 (0.020)
all instances 84375.6 (119204.9) 0.3079 (0.020)
50% hardest 139492.0 (149074.5) 0.3070 (0.020)
25% hardest 209536.2 (185682.5) 0.3068 (0.020)
10% hardest 335718.7 (242644.0) 0.3058 (0.019)

(e) GA (uniform), n = 80, k = 6

desc. of DHC steps until epistasis
instances optimum correlation
10% easiest 15208.7 (3718.2) 0.2358 (0.018)
25% easiest 22427.3 (6968.4) 0.2358 (0.018)
50% easiest 34855.5 (14722.9) 0.2353 (0.018)
all instances 117021.4 (204462.0) 0.2344 (0.018)
50% hardest 199187.4 (264378.2) 0.2335 (0.018)
25% hardest 310451.2 (338773.5) 0.2330 (0.018)
10% hardest 519430.9 (461122.7) 0.2324 (0.018)

Table 2: Epistasis correlation for easy and hard in-
stances for GA with uniform crossover. The diffi-
culty of instances is measured by the overall number
of steps of the local searcher.
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