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ABSTRACT
Honey Bees Mating Optimization algorithm is a relatively
new nature inspired algorithm. In this paper, this nature
inspired algorithm is used in a hybrid scheme with other
metaheuristic algorithms for successfully solving the Open
Vehicle Routing Problem. More precisely, the proposed al-
gorithm for the solution of the Open Vehicle Routing Prob-
lem, the Honey Bees Mating Optimization (HBMOOVRP),
combines a Honey Bees Mating Optimization (HBMO) al-
gorithm and the Expanding Neighborhood Search (ENS) al-
gorithm. Two set of benchmark instances is used in order to
test the proposed algorithm. The results obtained for both
sets are very satisfactory. More specifically, in the fourteen
instances proposed by Christofides, the average quality is
0.35% when a hierarchical objective function is used, where,
first, the number of vehicles is minimized and, afterwards,
the total travel distance is minimized and the average quality
is 0.42% when only the travel distance is minimized, while
for the eight instances proposed by Li et al. when a hi-
erarchical objective function is used the average quality is
0.21%.

TRACK: Ant Colony Optimization and Swarm Intelli-
gence Track

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; H.4.2 [Information
Systems Applications]: Types of Systems—Logistics; G.2.2
[Discrete Mathematics]: Graph Theory—Graph algorithms,
Network problems, Path and circuit problems
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1. INTRODUCTION
In the last years, several biological and natural processes

have been influencing the methodologies in science and te-
chnology in an increasing manner. Among them, a number
of swarm intelligence algorithms based on the behaviour of
the bees has been presented [16]. These algorithms are di-
vided, mainly, in two categories according to their behaviour
in the nature, the foraging behaviour and the mating be-
haviour. The most known algorithm based on the marriage
behaviour of the bees is the Honey Bees Mating Optimiza-
tion Algorithm (HBMO) that was presented in [1, 2] and
simulates the mating process of the queen of the hive. Since
then, it has been used on a number of different applications
[3, 9, 14, 20, 21, 22, 23, 24, 25, 35].

In this paper, as there are not any competitive nature in-
spired methods based to Honey Bees Mating Optimization
algorithm for the solution of the Open Vehicle Routing Prob-
lem (OVRP), at least to our knowledge, we would like to pro-
pose such an algorithm and to test its efficiency compared to
other nature inspired and classic metaheuristic algorithms.
The proposed algorithm adopts the basic characteristics of
the initially proposed Honey Bees Mating Optimization al-
gorithm [1, 2, 3, 9, 14] and also makes a combined use of a
number of different procedures in each of the subphases of
the main algorithm in order to increase the efficiency of the
proposed algorithm [20, 21, 22, 23, 24, 25]. The combination
of all these procedures reduces, significantly, the computa-
tional time of the algorithm making the algorithm faster and
more efficient and, thus, suitable for solving very large scaled
problems in short computational time. The rest of the paper
is organized as follows: in the next section a description of
the open vehicle routing problem is presented. In section 3
the proposed algorithm, the Honey Bees Mating Optimiza-
tion for the Open Vehicle Routing problem (HBMOOVRP),
is presented and analyzed in detail. Computational results
are presented and analyzed in section 4 while in the last
section conclusions and future research are given.

2. THE OPEN VEHICLE ROUTING PROB-
LEM

The Vehicle Routing Problem (VRP) or the capa-
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citated vehicle routing problem (CVRP) is often de-
scribed as the problem in which vehicles based on a cen-
tral depot are required to visit geographically dispersed cus-
tomers in order to fulfill known customer demands. The
vehicle routing problem was first introduced by Dantzig and
Ramser (1959) [7]. Since then a number of variants of the
classic Vehicle Routing Problem has been proposed in order
to incorporate more constraints like time windows, multi-
depot, stochastic or dynamic demand [13, 36]. The Open
Vehicle Routing Problem (OVRP) is the variant of the
classic vehicle routing problem where the vehicles do not re-
turn in the depot after the service of the customers [30]. The
real life application of the Open Vehicle Routing Problem
concerns the case where either the company does not have
vehicles at all or the vehicles owned by the company are
not enough in order to use them for the distribution of the
products to the customers. In both cases the company has to
hire a number of vehicles in order to realize the distribution
of the products. When the vehicles finish their jobs they do
not return to the company. This problem also belongs in the
category of the third party logistics (3PL) problems. From
the combinatorial optimization point of view, the main dif-
ference between the Vehicle Routing Problem and the Open
Vehicle Routing Problem is that in the first case the route
is a hamiltonian cycle while in the second case the route is
a hamiltonian path [4].

The Open Vehicle Routing Problem can be stated as fol-
lows: Let G = (V, E) be a graph where V = {j0, j1, j2, · · · jn}
is the vertex set (ji = j0 refers to the depot and the cus-
tomers are indexed ji = j1, · · · , jn) and E = {(jl, jl1) :
jl, jl1 ∈ V } is the edge set. Each customer must be assigned
to exactly one of the k vehicles and the total size of deliveries
for customers assigned to each vehicle must not exceed the
vehicle capacity (Qk). If the vehicles are homogeneous, the
capacity for all vehicles is equal and denoted by Q. Each
vehicle has the same traveling cost L. A demand qjl and
a service time stjl are associated with each customer node
jl. The travel cost between customers jl and jl1 is costjljl1

.
The problem is to construct a low cost, feasible set of routes
- one for each vehicle. A route is a sequence of locations that
a vehicle must visit along with the indication of the service
it provides. Each vehicle starts at the depot but it doesn’t
return to the depot. The total traveling cost of each route
can not exceed the restriction L. Usually two different ob-
jectives are used in OVRP, the first one is the minimization
of the required number of vehicles and the second one is the
minimization of the corresponding total traveled distance.

The Open Vehicle Routing Problem is an NP-hard prob-
lem. The instances with a large number of customers cannot
be solved in optimality within reasonable time. For this rea-
son a large number of approximation techniques has been
proposed for its solution. These techniques are classified
into three main categories: the classical heuristics, the sin-
gle solution based metaheuristics and the population based
metaheuristics. The Open Vehicle Routing Problem was
first published in [31] but since then for the following twenty
years it received little study. In the last ten years, a number
of publications using different heuristic and metaheuristic
algorithms for the OVRP have been published. More pre-
cisely, algorithms based on classic heuristics [30], tabu search
[4, 8, 11], record to record travel [17], adaptive memory [32],
backtracking adaptive threshold accepting [33], list based
threshold accepted algorithm [34], adaptive large neighbor-

hood search [27], differential evolution [5], evolution strategy
[28], variable neighborhood search [10], broad local search al-
gorithm [38], ant colony optimization [18, 19] and particle
swarm optimization [37] have been proposed in order to give
efficient alternative algorithms for the solution of the OVRP.

3. HONEY BEES MATING OPTIMIZATION
FOR THE OPEN VEHICLE ROUTING
PROBLEM

The proposed algorithm, the Honey Bees Mating Op-
timization Algorithm for the Open Vehicle Routing
Problem (HBMOOVRP), combines a number of different
procedures. Each of them corresponds to a different phase
of the mating process of the honey bees.

One of the key issues in designing a successful HBMO al-
gorithm for the Open Vehicle Routing Problem is to find a
suitable mapping between Open Vehicle Routing Problem
solutions and bees in HBMO. Each bee is recorded via the
path representation of the tour, that is, via the specific se-
quence of the nodes. For example if we have a bee (solution)
with ten nodes, a possible path representation is the follow-
ing:

1 3 8 5 4 10 1 6 9 7 2
with node number 1 is denoted the depot and nodes 2

through 10 denote the customers. The difference between
the Open Vehicle Routing Problem and the Capacitated Ve-
hicle Routing Problem is that in the first the vehicles do not
return to the depot. Thus, the difference in the calculation
of a cost function for each bee is that we do not add the
cost between the last customer and the depot, i.e. in the
previous example the cost (distances) between customer 10
and depot and customer 2 and the depot are omitted.

Initially, we have to choose the population of the honey
bees that will configure the initial hive. There are two dif-
ferent ways to calculate the initial population, either com-
pletely at random (as in the initially proposed algorithm [1])
or by using an algorithm in order to obtain as good initial
solutions as possible, and, thus, to obtain a more efficient
queen [21]. In the proposed algorithm, the initial popula-
tion is created at random in order to give to the proposed
algorithm the abilities to search in the whole solution space
and not to restrict the solution near to some good initial
solutions. The best member of the initial population of bees
is selected as the queen of the hive. All the other members
of the population are the drones.

Before the process of mating begins, the user has to define
a number that corresponds to the queen’s size of sperma-
theca. This number corresponds to the maximum number
of queen’s mating in a single mating flight. Each time the
queen successfully mates with a drone the genotype of the
drone is stored and a variable is increased by one until the
size of spermatheca is reached [2]. Another two parameters
have to be defined, the number of queens and the number
of broods that will be born by all queens. In this implemen-
tation of Honey Bees Mating Optimization (HBMO) Algo-
rithm, the number of queens is set equal to one as in the
real life only one queen will survive in a hive, and the num-
ber of broods is set equal to the number corresponding to
the size of queen’s spermatheca. Then, the mating flight
of the queen begins. At the start of the flight, the queen
is initialized with some energy content (initially, the speed
and the energy of the queen are generated at random) and
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returns to her nest when the energy is less than a threshold
value (thres) and spermatheca is not full [3]. A drone mates
with a queen probabilistically using the following annealing
function [1, 2]:

Prob(D) = e
[

−Δ(f)
Speed(t) ]

(1)

where Prob(D) is the probability of adding the sperm of
drone D to the spermatheca of the queen (that is, the proba-
bility of a successful mating), Δ(f) is the absolute difference
between the fitness of D and the fitness of the queen (for
complete description of the calculation of the fitness func-
tion see below) and Speed(t) is the speed of the queen at
time t. The probability of mating is high when the queen
is at the beginning of her mating flight, therefore her speed
is high, or when the fitness of the drone is as good as the
queen’s. After each transition in space, the queen’s speed
and energy decays according to the following equations:

Speed(t + 1) = α × Speed(t) (2)

energy(t + 1) = α × energy(t) (3)

where α is a factor ∈ (0, 1) that determines the amount
that the speed and the energy will be reduced after each
transition and each step. It should be noted that equation
(3) is different than the one proposed by [1, 2] and it was
introduced in this form as we would like to straightforwardly
correlate the reduction of the speed with the reduction of
the energy and, also, to use as less as possible parameters.
Initially, the speed and the energy of the queen are generated
at random. A number of mating flights are realized. At the
start of a mating flight drones are generated randomly and
the queen selects a drone using the probabilistic rule in Eq.
(1). If the mating is successful (i.e., the drone passes the
probabilistic decision rule), the drone’s sperm is stored in
the queen’s spermatheca.

By using a crossover operator a new brood (trial solution)
is formed which later can be improved, employing workers
to conduct local search. The crossover operator proposed in
[21] is used in order to simulate the procedure that occurs in
real life where the queen stores a number of different drone’s
sperm in her spermatheca and uses parts of the genotype of
the different drones to create the new brood. Thus, the
quality of the new solution (the brood) is fittest because as
it takes parts of different solutions (queen and drones) it has
more exploration abilities. This is a major difference of the
proposed algorithm compared to other honey bees mating
optimization algorithms [1, 3, 9, 14, 35] and to the classic
evolutionary algorithms.

In real life, the role of the workers is restricted to brood
care and for this reason the workers are not separate mem-
bers of the population but they are used as local search
procedures in order to improve the broods produced by the
mating flight of the queen. Each of the workers have differ-
ent capabilities and the choice of two different workers may
produce different solutions. This is realized with the use of
a number of single local search heuristics (w1) and combi-
nations of them (w2). Thus, the sum of this two numbers
(w = w1 + w2) gives the number of workers. Each of the
brood will choose, randomly, one worker to feed it (local
search phase) having as a result the possibility of replacing

the queen if the solution of the brood is better than the
solution of the current queen. If the brood fails to replace
the queen, then in the next mating flight of the queen this
brood will be one of the drones. A pseudocode of the pro-
posed algorithm is presented in the following while in the
next paragraphs some procedures of the algorithm are ex-
plained in detail.

algorithm Honey Bees Mating Optimization for OVRP

Initialization
Generate the initial population of the bees
Selection of the best bee as the queen
Select maximum number of mating flights (M)
do while i ≤ M

Initialize queen’s spermatheca, energy and speed.
Select α
do while energy > thres and spermatheca is not full

Select a drone
if the drone passes the probabilistic condition

Add sperm of the drone in the spermatheca
endif

Speed(t + 1) = α × Speed(t)
energy(t + 1) = α × energy(t)
enddo
do j = 1, Size of Spermatheca

Select a sperm from the spermatheca
Generate a brood by applying a crossover

operator between the queen, the selected
drones and the adaptive memory

Select, randomly, a worker
Use the selected worker to improve

the brood’s fitness
if the brood’s fitness is better than

the queen’s fitness then
Replace the queen with the brood

else
Add the brood to the population of drones

endif
enddo

enddo
return The Queen (Best Solution Found)

3.1 Calculation of Fitness Function
In OVRP, the fitness of each individual is related to the

route length of each circle. Since the problems that we deal
with are minimization problems, if a feasible solution has
a large objective function value then it is characterized as
an unpromising solution candidate and, therefore, its fit-
ness must be set to a small value. Reversely, a large fitness
value must correspond to a solution with a low objective
function value. A way to accomplish this, is to find ini-
tially the individual in the population with the maximum
objective function value and to subtract from this value the
objective function value of each of the other individuals. By
doing this, the larger fitness value corresponds to the tour
with the shorter length. Since the probability of selecting
an individual for mating is related to its fitness and since
the individual with the worst objective function value has
fitness equal to zero, it will never be selected for mating.
Therefore, in order to avoid its total exclusion, the fitness
of all individuals in this population is incremented by one,
resulting, thus in a worse individual of fitness one.
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3.2 Crossover Operator
We use a multiparent crossover operator which initially

identifies the common characteristics of the parent individ-
uals and, then, copies them to the broods. This crossover op-
erator is a kind of adaptive memory procedure. Initially, the
adaptive memory has been proposed by Rochat and Taillard
[29] as a part of a tabu search metaheuristic for the solution
of the Vehicle Routing Problem. This procedure stores char-
acteristics (partial or complete solutions in the Open Vehicle
Routing Problem ) of good solutions. Each time a new good
solution has been found the adaptive memory is updated.
In our case, in the first generation the adaptive memory is
empty. In order to add a solution or a part of a solution in
the adaptive memory there are three possibilities:

1. The candidate for the adaptive memory solution is a
previous best solution (queen) that has fitness function
value at most 10% worse than the value of the current
best solution.

2. The candidate for the adaptive memory solution is
a member of the population (drone) that has fitness
function value at most 10% worse than the value of
the current best solution.

3. A partial solution (i.e. a path) is common for the queen
and for a number of drones.

More analytically, in this crossover operator, the points
are selected randomly from the adaptive memory, from the
selected drones and from the queen. Thus, initially two
crossover operator numbers are selected (Cr1 and Cr2) that
control the fraction of the parameters that are selected for
the adaptive memory, the selected drones and the queen. If
there are common parts in the solutions (queen, drones and
adaptive memory) then these common parts are inherited to
the brood, else the Cr1 and Cr2 values are compared with
the output of a random number generator, randi(0, 1). If the
random number is less or equal to the Cr1 the corresponding
value is inherited from the queen, if the random number is
between the Cr1 and the Cr2 then the corresponding value
is inherited, randomly, from the one of the elite solutions
that are in the adaptive memory, otherwise it is selected,
randomly, from the solutions of the drones that are stored
in spermatheca. Thus, if the solution of the queen is de-
noted by qi(t) (t is the iteration number), the solution in
the adaptive memory is denoted by adi(t) and the solution
of the drone by di(t), then, the solution of the brood bi(t) is
given by:

bi(t) =

⎧⎨
⎩

qi(t), if randi(0, 1) ≤ Cr1

adi(t), if Cr1 < randi(0, 1) ≤ Cr2

di(t), otherwise.
(4)

In each iteration, the adaptive memory is updated based
on the best solution.

3.3 Workers - Expanding Neighborhood
Search

As it has already been mentioned, the workers are not se-
parate members of the population but they are used as local
search procedures in order to improve the broods produced
by the mating flight of the queen. The local search method
that is used in this paper is the Expanding Neighborhood

Search [26]. Expanding Neighborhood Search (ENS) is a
metaheuristic algorithm [26] that can be used for the so-
lution of a number of combinatorial optimization problems
with remarkable results. The main features of this algorithm
are:

• the use of the Circle Restricted Local Search Moves
Strategy,

• the ability of the algorithm to change between different
local search strategies, and,

• the use of an expanding strategy.

These features are explained in detail in the following.
In the Circle Restricted Local Search Moves (CRLSM)

strategy, the computational time is decreased significantly
compared to other heuristic and metaheuristic algorithms
because all the edges that are not going to improve the so-
lution are excluded from the search procedure. This hap-
pens by restricting the search space into circles around the
candidate for deletion edges. It has been observed [26], for
example, in the 2-opt local search algorithm that there is
only one possibility for a trial move to reduce the cost of a
solution, i.e. when at least one new (candidate for inclusion)
edge has cost less than the cost of one of the two old edges
(candidate for deletion edges) and the other edge has cost
less than the sum of the costs of the two old edges. Thus, in
the Circle Restricted Local Search Moves strategy, for all se-
lected local search strategies, circles are created around the
end nodes of the candidate for deletion edges and only the
nodes that are inside these circles are used in the process of
finding a better solution.

In order to decrease even more the computational time
and because it is more possible to find a better solution
near to the end-nodes of the candidate for deletion edge, we
do not use from the begin the largest possible circle but the
search for a better solution begins with a circle with a small
radius. For example, in the 2-opt algorithm if the length of
the candidate for deletion edge is equal to A, the initial circle
has radius A/2, then, the local search strategies are applied
as they are described in the following and if the solution can
not be improved inside this circle, the circle is expanding by
a percentage θ (θ is determined empirically) and the proce-
dure continues until the circle reaches the maximum possible
radius which is set equal to A + B, where B is the length of
one of the other candidate for deletion edges.

The ENS algorithm has the ability to change between dif-
ferent local search strategies. The idea of using a larger
neighborhood to escape from a local minimum to a better
one, had been proposed initially by Garfinkel and Nemhauser
[12] and recently by Hansen and Mladenovic [15]. Garfinkel
and Nemhauser proposed a very simple way to use a larger
neighborhood. In general, if with the use of one neighbor-
hood a local optimum was found, then a larger neighbor-
hood is used in an attempt to escape from the local op-
timum. Hansen and Mladenovic proposed a more system-
atical method to change between different neighborhoods,
called Variable Neighborhood Search.

In the Expanding Neighborhood Search a number of local
search strategies are applied inside the circle. The procedure
works as follows: initially an edge of the current solution is
selected (for example the edge with the worst length) and
the first local search strategy is applied. If with this local
search strategy a better solution is not achieved, another

104



local search strategy is selected for the same edge. This
procedure is continued until a better solution is found or
all local search strategies have been used. In the first case
the solution is updated, a new edge is selected and the new
iteration of the Expanding Neighborhood Search strategy
begins, while in the second case the circle is expanded and
the local search strategies are applied in the new circle until
a better solution is found or the circle reach the maximum
possible radius. If the maximum possible radius has been
reached, then a new candidate for deletion edge is selected.

4. COMPUTATIONAL RESULTS
The algorithm was implemented in Fortran 90 and was

compiled using the Lahey f95 compiler on a Intel Core 2
DUO CPU T9550 at 2.66 GHz, running Suse Linux 9.1.

The algorithm was tested on two sets of benchmark prob-
lems, the 14 benchmark problems proposed by Christofides
[6] and the 8 large scale open vehicle routing problems pro-
posed by Li et al. [17]. Each instance of the first set contains
between 51 and 200 nodes including the depot. The loca-
tion of the nodes is defined by their Cartesian co-ordinates
and the travel cost from node i to j is assumed to be the
respective Euclidean distance. Each problem includes ca-
pacity constraints while the problems 6-10, 13 and 14 have,
also, maximum route length restrictions (mtl) and non zero
service times (st). For the first ten problems, nodes are ran-
domly located over a square, while for the remaining ones,
nodes are distributed in clusters and the depot is not cen-
tred. The maximum allowed route length has been multi-
plied by 0.9 compared to the one considered for the VRP
[28]. The second set of instances contains between 200 and
480 nodes including the depot. Each problem instance in-
cludes capacity constraints. In Tables 1 and 2 the most im-
portant characteristics of each of the data set are presented.

Table 1: Benchmark instances of [6]
number n Capacity mtl st

C1 51 160 ∞ 0
C2 76 140 ∞ 0
C3 101 200 ∞ 0
C4 151 200 ∞ 0
C5 200 200 ∞ 0
C6 51 160 180 10
C7 76 140 144 10
C8 101 200 207 10
C9 151 200 180 10
C10 200 200 180 10
C11 121 200 ∞ 0
C12 101 200 ∞ 0
C13 121 200 648 50
C14 101 200 936 90

Table 2: Benchmark instances of [17]
number n Capacity

O1 200 900
O2 240 550
O3 280 900
O4 320 700
O5 360 900
O6 400 900
O7 440 900
O8 480 1000

The parameters of the proposed algorithm are selected
after thorough testing. A number of different alternative
values were tested and the ones selected are those that gave
the best computational results concerning both the quality
of the solution and the computational time needed to achieve
this solution. Thus, the selected parameters are:

• number of queens equal to 1,

• number of drones equal to 200,

• number of mating flights (M) equal to 1000,

• size of queen’s spermatheca equal to 50,

• number of broods equal to 50,

• α equal to 0.9,

• θ equal to 10%,

• number of workers (w) equal to 20, (w1 = 7, w2 = 13).

More precisely, the reason that we chose the number of
queens equal to 1 is that in real life only one queen is in a
hive. The mating flights (the iterations of the algorithm) is
set equal to 1000 as we would like to keep the executable
time less than 5 minutes even in the more difficult exam-
ple which is the instance O8 with number of nodes equal to
480 and, thus, keeping the iterations equal to 1000 the al-
gorithm did not exceed the limitation of five minutes in any
instance. The reason that the queen’s spermatheca is set
equal to 50 is that we would like to use a percentage of the
drones in the crossover phase of the algorithm and, thus, we
select to use at most 25% of the drones. We test the algo-
rithm with five different sizes of the spermatheca (5%, 10%,
25%, 50%, 75% of the drones). We observed that in the
first two cases a number of good drones were not selected
and thus the algorithm needed more iterations to converge.
When the size of the spermatheca was set equal to 75% of
the drones the algorithm became slower and the gain in the
convergence and in the quality was not important. The rea-
son that the number of broods was set equal to 50 is that,
as in the end of the iterations the broods will replace the
drones (or a number of drones) in order to keep the number
of population stable in each iteration, a ration between the
drones and the broods equal to 25% gave to the algorithm
the possibility of keeping good drones in a large number of
generations. The reason that the number of drones is set
equal to 200 is that as we would like to increase the ex-
ploration and the exploitation abilities of the algorithm, a
large number of drones helped the algorithm to search in
the most of the search space. A number of nodes equal to
100 it will be enough, but then we have to change the ratio
of the drones with the broods and the size of spermatheca,
and as the use of 200 drones did not increase significantly
the computational time of the algorithm (the time needed
to solve the most difficult example was never more than five
minutes), we selected the drones equal to 200. There are two
reasons that the number of workers was set more than one.
First, one of the characteristics of the Expanding Neighbor-
hood Search is that it uses in the local search phase more
than one local search procedures in order to give the oppor-
tunity to the algorithm to have more exploitation abilities.
Second, in the HBMO algorithm a local search works as a
brood care, meaning a good local search algorithm will help
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to have a fittest brood. As a local search algorithm will per-
form differently for each solution we gave the possibility to
each brood to select randomly a different worker (single or
combination of local search phases). The local search phases
that are used in the algorithm are the 2-opt, 3-opt, 1-0 relo-
cate, 2-0 relocate, 1-1 exchange, 2-2 exchange, the crossing
algorithm and 13 different combinations of them.

The efficiency of the HBMOOVRP algorithm is measured
by the quality of the produced solutions. The quality is given
in terms of the relative deviation from the best known solu-
tion, that is ω = (cHBMOOV RP −cBKS)

cBKS
%, where cHBMOOV RP

denotes the cost of the solution found by HBMOOVRP and
cBKS is the cost of the best known solution.

The results of the proposed algorithm for the first data
set are presented in Table 3. To test the performance of
the proposed algorithm we applied HBMOOVRP 10 times
to each test problem. In Table 3 the best results, the avera-
ge results, the median, the standard deviation (stdev) and
variance (var) are presented. In this Table two different
best solutions are presented. The first best known solution
(BKS1) is obtained using first the minimization of the num-
ber of vehicles and then the minimization of the total dis-
tance traveled. The other best solution (BKS2) is obtained
by minimizing only the total distance traveled. As we ex-
plained in the description of the problem it is very important
to use the smallest number of vehicles as in the real life ap-
plication of the Open Vehicle Routing Problem the finding
of the best routes by hiring as less as possible number of
vehicles is the main concern. Thus, initially we solved the
Open Vehicle Routing Problem with the proposed algorithm
using the hierarchical objective function, where initially the
number of vehicles is minimized and, then, for this number
of vehicles the total travel distance is, also, minimized. The
results, the quality of the solution, the average results, the
median, the standard deviation (stdev) and variance (var)
and the CPU time in minutes, are presented in the first
part of the Table 3 and in columns 4 to 10. Afterwards, we
solved the Open Vehicle Routing Problem with the single
objective function (the total distance traveled). The results,
the quality of the solution, the average results, the median,
the standard deviation (stdev), the variance (var) and the
CPU time in minutes, are presented in the second part of
the Table 3 and in columns 4 to 10. For the second case,
there are a number of instances that have no values in Table
3. The reason is that in these instances the results are the
same as the results obtained for the first case.

It can be seen from Table 3, that the HBMOOVRP al-
gorithm, in five out of fourteen instances in the first case
and in four out of fourteen instances (together with the two
which their solutions are the same as in the first case) has
reached the best known solution. For the rest instances in
the first case (when a hierarchical objective function is used)
the quality of the solutions is between 0.08% and 1.07% and
the average quality for the fourteen instances is 0.35%. For
the second case (when only the travel distance is minimized)
the quality of the solutions is between 0.13% and 1.19% and
the average quality for the fourteen instances is 0.42%. The
standard deviation in the first case is between 0.29 and 0.51
while in the second case is between 0.20 and 0.50. The vari-
ance in the first case is between 0.08 and 0.26 while in the
second case is between 0.04 and 0.25. Also, in this Table
the computational time needed (in minutes) for finding the
best solution by HBMOOVRP is presented. The CPU time

needed is significantly low and only for the instances with
number of nodes equal to 200 is larger than 3 minutes.

The algorithm is also tested for the large scale benchmark
instances proposed by Li et al [17]. The reuslts of the second
data set are presented in Table 4. In this data set, we present
only results for the hierarchical objective function where first
the number of vehicles is minimized and afterwards the total
distance traveled is minimized. The results, the quality of
the solution, the average results, the median, the standard
deviation (stdev) and variance (var) and the CPU time in
minutes are presented in the first part of the Table 4 and
in columns 4 to 10. The quality of the solutions for the
8 instances is between 0.08% and 0.52% and the average
quality is 0.21%. The standard deviation is between 0.30
and 0.53 and the variance is between 0.09 and 0.28. Also,
in this Table the computational time needed (in minutes)
for finding the best solution by HBMOOVRP is presented.
The CPU time needed is significantly low and never is larger
than 5 minutes.

5. CONCLUSIONS AND FUTURE
RESEARCH

In this paper, a nature inspired approach was introduced
for the effective handling of the Open Vehicle Routing Prob-
lem (OVRP). More specifically, a hybrid algorithmic na-
ture inspired methodology was proposed, namely the Honey
Bees Mating Optimization algorithm for the OVRP (HB-
MOOVRP) that gave remarkable results both to quality
and computational efficiency. The algorithm was applied
in a set of benchmark instances and gave very satisfactory
results. More specifically, in the set with the classic bench-
mark instances proposed by Christofides, the average qual-
ity is 0.35% when a hierarchical objective function is used,
where first the number of vehicles is minimized and, then,
for this number of vehicles the total travel distance is mini-
mized and the average quality is 0.42% when only the total
travel distance is minimized. For the large scale instances
proposed by Li et al., when a hierarchical objective func-
tion is used, the average quality is 0.21%. In the future,
we would like to test the performance of the algorithm in
other variants of the Vehicle Routing Problem like the Vehi-
cle Routing Problem with Time Windows and the Multiple
Depot Vehicle Routing Problem.
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