Welcome to Lecture #2, Weds, May 8

Our goals today

- 1. We want to expand our understanding of evolutionary process
 - Special attention to biology
 - More scientific detail
 - Will complement the understanding we gained from
 - » Evolution in Action examples (Monday)
 - » Prisoner's Dilemma game and NIPD game (Mon, Tues)
- 2. We want to start to investigate a specific evolutionary process in more detail
 - We have some examples: Evolutionary "Gems"
 - We will use an active learning method
 - » Think, Pair, Share

NOTE

- Unintended Python exercise
 - The code EVO_NIPD.py has a inverted payoff matrix
 - Please correct the values in order to get the intended performance

Wednesday Agenda

- Evolutionary biology
 - Evolution Definition
 - Brief history
 - Variation
 - Inheritance
- Evolutionary Gems Discussion
 - Dr. Una-May will outline briefly some specific evolutionary processes
 - You will choose one "Gem" to study in more detail
 - "Think": You will read information on your "Gem"
 - "Pair": You will pair up and discuss your "Gems" today
 - » May have to happen outside class
 - You can ask more questions during Office Hours
 - Wednesday 1400 1700, 1930 2130
 - Thursday 1800 1900
 - "Share": Friday, you will orally present your "Gem" to class

Poll

- How many have studied biology?
- How many know who Charles Darwin is?
- How many have studied evolutionary biology?

Evolution in the Oxford English Dictionary

- The process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth.
- The gradual development of something, especially from a simple to a more complex form: the forms of written languages undergo constant evolution
- *Chemistry* the giving off of a gaseous product, or of heat.
- Pattern of movements or maneuvers: *silk ribbons waving in fanciful evolutions*
- *Mathematics*, *dated* the extraction of a root from a given quantity.
- Origin: early 17th century: from Latin *evolutio(n-)* 'unrolling', from the verb *evolvere*. Early senses related to physical movement, first recorded in describing a tactical "wheeling" maneuver in the realignment of troops or ships. Current senses stem from a notion of "opening out" and "unfolding," giving rise to a general sense of 'development'

Darwin's Theory Of Evolution

- A series of causal element working together produce transformations:
 - Species vary ever so slightly in respect to their many traits
 - Species tend to exponentially increase in size over generations
 - The exponential increase in combination with limited resources, disease, predation creates a constant struggle for survival among the members of the species
 - Some individuals have variations that will give them a slight advantage in the struggle
 - These individuals tend to survive better and leave more offspring
 - Offspring tend to inherit the variations of their parents
 - Therefore favorable variations will be passed on more frequently, "Natural Selection"
 - Overtime the character of the species will change
 - After long enough time the the descendants are so different they will be classified as a new species

Example of Evolution

- Variation of
 individuals
- Variation leads to different reproduction rates
- The traits are passed from parent to offspring

Evolution Breakdown

- The theory of evolution makes statements about three different, though related, issues:
 - (1) the fact of evolution—that is, that organisms are related by common descent;
 - (2) evolutionary history—the details of when lineages split from one another and of the changes that occurred in each lineage; and
 - (3) the mechanisms or processes by which evolutionary change occurs.
- <u>Theodosius Dobzhansky</u>, "Nothing in biology makes sense except in the light of evolution."

Elements Required for Evolution

- The Units of Selection Author(s): R. C. Lewontin Source: Annual Review of Ecology and Systematics, Vol. 1 (1970), pp. 1-18
- The individual struggle for existence has three principles:
 - Variation between "individuals"
 - Differential fitness, i.e. different rates of survival and reproduction for different "individuals"
 - Heritability of fitness. No particular mechanism of inheritance needs to be specified, only a correlation in fitness between parent and offspring

Inheritance of Traits

- Some organisms have two chromosomes
- Genes are dominant or recessive
 - Genetic variation is measured through proportion of hetrozygotes in a population
 - » In a heterozygous individual the two genes for a trait, one received from the mother and the other from the father, are different.
 - » The proportion of heterozygotes in the population is, therefore, the same as the probability that two genes taken at random from the gene pool are different.

Gems Agenda

- 1. Dr. Una-May will outline briefly some specific evolutionary processes
- 2. You will choose one "Gem" to study in more detail
- **3. Start Active Learning**
 - Think, Pair, Share

1. GEMS Introduction

Using Fossil Record (3)

- **1.** Land-living ancestors of whales
- **2. From Water to Land**
- **3.** The Origin of Feathers

Habitat Study (6)

- 6. Natural selection in speciation
- 7. Natural selection in lizards
- 8. A case of co-evolution
- **10.** Selective survival in wild guppies
- **11.Evolutionary history matters**
- **12.**Darwin's Galapagos finches

1. Land-living ancestors of whales

- Whales are mammals not fish
- How did they evolve to leave land and go into water?
 - Why?

2. From Water to Land

- Tetrapods
 - Vertabrates living on land
 - Evolved from fish
 - Adapted for life out of water
- Did tetrapods have legs then move to land?

or

• Did tetrapods move to land then evolve legs?

http://askabiologist.asu.edu/plosable/fish-out-water

3. The Origin of Feathers

- How does a major group of animals evolve to another?
- For example: Birds
 - Did they come from dinosaurs?
- What conclusion does fossil record support?

 http://scienceblogs.com/tetrapodzoology/ 2008/10/23/epidexipteryx-at-last/

6. Natural selection in speciation

- A (new) species:
 - variations of same species can not reproduce with each other any more
- What forces in nature drive evolution of new species?
 - Is it environment?
 - Answer for the stickleback fish

http://fish.dnr.cornell.edu/nyfish/Gasterosteidae/threespine_stickleback.jpg

7. Natural selection in lizards

- Can a prey shift behavior to avoid predator?
- Will this help it avoid natural selection?
- **Prey: small lizard:** Anolis sagrei
- **Predator: big lizard:** *Leiocephalus carinatus*

http://upload.wikimedia.org/wikipedia/commons/f/f0/Anolis_sagrei_reproduction.jpg

http://upload.wikimedia.org/wikipedia/commons/f/ff/Leiocephalus_carinatus_armouri_FL.jpg

8. A Case of co-evolution

- Water fleas and microscopic parasites
- Evolutionary arms race
- As water fleas get better at evading parastism, the parasites get better at infecting the fleas

http://www.mblaquaculture.com/assets/images/content/photo_Daphnia_magna.jpg

10. Selective survival in wild guppies

- Evolution can narrow diversity
 - We saw fewer strategies in NIPD game
- But...there is still lots of variation in population!
- How?
 - Frequency dependent survival
 - Example of guppies and their color patterns

http://www.aquahobby.com/gallery/e_Fancy_Guppy_Poecilia_reticulata.php

11. Evolutionary history matters

• How did an eel evolve its fish mouth while it also evolved a long, narrow body?

http://t2.gstatic.com/images?q=tbn:ANd9GcRj-ACMRVVZtBZKE_H59ehoMouMKpY_kNBQJQZ_TZvIUfSbxnv

http://1.bp.blogspot.com/-AIVpUu6hFj8/TdDPpUgiFrI/AAAAAAAAAUY/ aFcDskUmqBg/s1600/moray_eel_img_2426.jpg

12. Darwin's Galapagos finches

- Just look at first paragraph of gem
- How can evolution of small differences in a finch's beak lead to new species?

http://www.science.ca/scientists/scientistprofile.php?pID=444&pg=1

2. Choose a GEMS

- Get the full document
 - Email or on lab's computers
 - Also at http://www.nature.com/nature/newspdf/evolutiongems.pdf
- Email Meijuan your choice by noon, Weds
 - Send her # and title, your name

3. Gems Active Learning

- "Think": You will read information on your "Gem"
 - This will be challenging
 - » Vocabulary: circle and look up words
 - » What is point of article? What is it trying to say?
 - » What should you say to others about this example?
 - Make it relevant to our class
 - Why is it interesting?
- "Pair": You will pair up and discuss your "Gems" today or tomorrow
 - Must happen outside class
- "Share": Friday, you will orally present your "Gem" to class
- You can ask more questions during Office Hours
 - » Wednesday 1400 1700, 1930 2130
 - » Thursday 1800 1900

Expectations on "Gem" Active Learning

- "Pair": minimum 5 minutes of good discussion each (10 total)
 - Help each other!
 - Don't pick partner with same gem!
- "Share"
 - ORAL Presentation
 - » Speak loudly and clearly to *EVERYONE*
 - » introduce yourself first
 - Make one PPTX slide
 - » maximum 20 words on 1 slide
 - » Convert to PDF and send to Meijuan before 7am on Friday!
 - USE Diagram, figures or Pictures!
 - » Images from internet
 - » Draw and take photo with cell phone, put on PPTX
 - REHEARSE
 - » have a friend listen
 - » More than once!
 - 1-1.5 minutes maximum
 - Optional: be relaxed, funny, yourself!

Wednesday's Learning Outcomes

From today's lecture:

- More knowledge of biological evolution
- Brief introduction to different specific evolutionary
 processes
- Ready to work on a evolutionary "gem"

Wednesday Journal Entry

Use these questions to guide today's journal entry

- Be brief
- Sketch or bullets
- A journal is a diary
- Make an entry for each day (Monday, Tuesday, Weds, Thursday)
- How does more information on biological evolution extend your understanding of evolution?
- Do you have more examples of evolutionary process now?

