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Abstract

Given a set of hidden variables with an a-priori Markov structure, we
derive an online algorithm which approximately updates the posterior as
pairwise measurements between the hidden variables become available.
The update is performed using Assumed Density Filtering: to incorporate
each pairwise measurement, we compute the optimal Markov structure
which represents the true posterior and use it as a prior for incorporating
the next measurement. We demonstrate the resulting algorithm by cal-
culating globally consistent trajectories of a robot as it navigates along a
2D trajectory. To update a trajectory of lengtht, the update takesO(t).
When all conditional distributions are linear-Gaussian, the algorithm can
be thought of as a Kalman Filter which simplifies the state covariance
matrix after incorporating each measurement.

1 Introduction

Consider a hidden Markov chain. Given a sequence of pairwise measurements between the
elements of the chain (for example, their differences, corrupted by noise) we are asked to
refine our estimate of their values online, as these pairwise measurements become available.
We propose the Differential Update Network as a mechanism for solving this problem. We
use this mechanism to recover the trajectory of a robot given noisy measurements of its
movement between points in its trajecotry. These pairwise displacements are thought of as
noise corrupted measurements between the true but unknown poses to be recovered. The
recovered trajectories are consistent in the sense that when the camera returns to an already
visited position, its estimated pose is consistent with the pose recovered on the earlier visit.

Pose change measurements between two points on the trajectory are obtained by bringing
images of the environment acquired at each pose into registration with each other. The
required transformation to affect the registration is the pose change measurement. There
is a rich literature on computing pose changes from a pair of scans from an optical sensor:
2D [5, 6] and 3D transformations [7, 8, 9] from monocular cameras, or 3D transformations
from range imagery [10, 11, 12] are a few examples. These have been used by [1, 2] in 3D
model acquisition and by [3, 4] in robot navigation. The trajectory of the robot is defined as
the unknown pose from which each frame was acquired, and is maintained in a state vector
which is updated as pose changes are measured.

An alternative method estimates the pose of the robot with respect to fixed features in the
world. These methods represent the world as a set of features, such as corners, lines, and



Figure 1:Independence structure of a differential update network.

other geometric shapes in 3D [13, 14, 15] and match features between a scan at the current
pose and the acquired world representation. However, measurements are still pairwise,
since they depend on a feature and the poses of the camera. Because both the feature list
and the poses are maintained in the state vector, the differential Update Framework can be
applied to both scan-based methods and feature-based methods.

Our algorithm incorporates each pose change measurement by updating the pose associated
with every frame encountered. To insure that each update can happen in time linear to the
length of the trajectory, the correlation structure of the state vector is approximated with
a simpler Markov chain after each measurement. This scheme can be thought of as an
instance of Assumed Density Filtering (ADF) [16, 17].

The Differential Update Network presented here assumes a linear Gaussian system, but
our derivation is general and can accommodate any distribution. For example, we are
currently experimenting with discrete distributions. In addition, we focus on frame-based
trajectory estimation due to the ready availability of pose change estimators, and to avoid
the complexity of maintaining an explicit feature map.

The following section describes the model in a Bayesian framework. Sections 3 and 4
sketch existing batch and online methods for obtaining globally consistent trajectories. Sec-
tion 5 derives the update rules for our algorithm, which is then applied to a 2D trajectory
estimation in section 6.

2 Dynamics and Measurement Models

Figure 1 depicts the network. We assume the hidden variablesxt have a Markov structure
with known transition densities:

p(X) =
T∏

t=1

p(xt|xt−1).

Pairwise measurements appear on the chain one by one. Conditioned on the hidden vari-
ables, these measurements are assumed to be independent:

p(Y |X) =
∏

(s,t)∈M

p(yt
s|xs, xt),

whereM is the set of pairs of hidden variables which have been measured.

To apply this network to robot localization, letX = {xt}t=1..T be the trajectory of the
robot up to timeT , with eachxt denoting its pose at timet. These poses can be repre-
sented using any parametrization of pose, for example as 3D rotations and translation, 2D
translations (which is what we use in section 6, or even non-rigid deformations such as



affine. The conditional distribution between adjacentx’s is assumed to follow:

p(xt+1|xt) = N (xt+1|xt,Λx|x). (1)

As the robot moves, the pose change estimator computes the motionyt
s of the robot from

two scans of the environment. Given the true poses, we assume that these measurements
are independent of each other even when they share a common scan. We model eachyt

s as
being drawn from a Gaussian centered aroundxt − xs:

p(yt
s|xs, xt) = N (yt

s|xt − xs,Λy|xx) (2)

The online global estimation problem requires us to updatep(X|Y ) as eachyt
s in Y be-

comes available. The following section reviews a batch solution for computingp(X|Y )
using this model. Section 4 discusses a recursive approach with a similar running time as
the batch version. Section 5 presents our approach, which performs these updates much
faster by simplifying the output of the recursive solution after incorporating each measure-
ment.

3 Batch Linear Gaussian Solution

Equation (1) dictates a Gaussian priorp(X) with meanmX and covarianceΛX . Because
the pose dynamics are Markovian, the inverse covarianceΛ−1

X is tri-diagonal. According
to equation (2), the observations are drawn fromyt

s = As,tX + ωs,t = xt − xs + ωs,t,
with ωs,t white and Gaussian with covarianceλs,t. Stacking up theAs,t andλs,t into A
andΛY |X respectively we know that the posterior mean ofX|Y is [21]:

mX|Y = mX + ΛXA> (
AΛXA> + ΛY |X

)−1
Y (3)

ΛX|Y = ΛX − ΛXA> (
AΛXA> + ΛY |X

)−1
AΛX , (4)

or alternatively,

Λ−1
X|Y = Λ−1

X + Λ−1
Y |X (5)

mX|Y = ΛX|Y

(
Λ−1

X mX + Λ−1
Y |XY

)
. (6)

If there areM measurements andT hidden variables, this computation will takeO(T 2M)
if performed naively. Note that ifM > T , as is the case in the robot mapping problem, the
alternate equations (5) and (6) can be used to obtain a running time ofO(T 3).

4 Online Linear Gaussian Solution

Lu and Milios [3] proposed a recursive update for updating the trajectoryX|Y old after
obtaining a new measurementyt

s. Because each measurement is independent of past mea-
surements given theX ’s, the update is:

p(X|Y old, yt
s)

Bayes∝ p(yt
s|X)p(X|Y old). (7)

Using equations (3) and (4) to perform this update for oneyt
s takesO(T 2). After integrating

M measurements, this yields the same final cost as the batch update.

One way to lower this cost is to reduce the number of hidden variablesxt by fixing some
of them, thus reducingT [23]. It is also possible to take advantage of the sparseness of the
covariance structure ofX|Y old by using the updates (6) and (5):

Λ−1
X|newmX|new =

(
Λ−1

X|oldmX|old + λyt
s|oldy

t
s

)
(8)

Λ−1
X|new = Λ−1

X|old + A>
s,tλ

−1
X|oldAs,t (9)



Figure 2:The measurement (left) correlates the hidden variables (middle), whose correlation is then
simplified (right), and is ready to accept a new measurement.

BecauseΛ−1
X|new has a sparse structure (see equation (9)),mX|new can be found using a

sparse linear system solver [23]. Unfortunately, as measurements are incorporated,Λ−1
X|new

becomes denser due to the accumulation of the rank 1 terms in equation (9), rendering this
approach less effective.

In the linear Gaussian case, the Differential Update Network addresses this problem by pro-
jectingΛX|new on the closest covariance matrix which has a tri-diagonal inverse. Hence,
in solving (8),ΛX|new is always tri-diagonal, somX|new is easy to compute.

5 Approximate Online Solution

To implement this idea in the general case, we resort to Assumed Density Filtering (ADF)
[16]: we approximatep(X|Y old) with a simpler distributionq(X|Y old). To incorporate a
new measurementyt

s, we apply the update

p(X|Y new)
Bayes∝ p(yt

s|xs, xt)q(X|Y old). (10)

This newp(X|Y new) has a more complicated independence structure thanq(X|Y old), so
incorporating subsequent measurements would require more work and the resulting poste-
rior would be even hairier. So we approximate it again with aq(X|Y new) that has a simpler
independence structure. Subsequent measurements can again be incorporated easily using
this newq. Specifically, we forceq to always obey Markovian independence. Figure 5
summarizes this process.

The following section discusses how to find a Markovianq so as to minimize the KL diver-
gence betweenp andq. Section 5.2 shows how to incorporate a pairwise measurement on
the resulting Markov chain using equation (10).

5.1 Simplifying the independence structure

We would like to approximate an arbitrary distribution which factors according top(X) =∏
t pt(xt|Pa[xt]), using one which factors intoq(X) =

∏
t qt(xt|Qa[xt]). Here,Pa[xt]

are the parents of nodext in the graph prescribed byp(X), andQa[xt][xt] = xt−1 are the
parents of nodext as prescribed byq(X).

The objective is to minimize:

q∗ = arg min
q

KL

(∏
pt

∥∥∥∥∏
qt

)
=

∫
x

p(X) ln
p(X)∏

i qt(xt|Qa[xt])
. (11)

After some manipulation, it can be shown that:

q∗t = p(xt|Qa[xt]). (12)

This says that the best conditionalqt is built up from the correspondingpt by marginalizing
out the conditions that were removed in the graph. This is not an easy operation to perform
in general, but the following section shows how to do it in our case.



5.2 Computing posterior transitions on a graph with a single loop

This result suggests a simplification to the update of equation (10). Because the ultimate
goal is to computeq(X|Y new), not p(X|Y new), we only need to compute the posterior
transitionsp(xt|xt−1, Y

new). Thus, we circumvent having to first findp then project it
ontoq. We propose computing these transitions in three steps, one for the transitions to the
left of xs, another for the loop, and the third for transitions to the right ofxt.

5.2.1 Findingp(xτ |xτ−1, y) for τ = s..t

For everys < τ < t, notice that

p(y, xτ−1, xt)p(xτ |xτ−1, xt) = p(y, xτ−1, xτ , xt), (13)

because according to figure 5,p(xτ |xτ−1, xt) = p(xτ |xτ−1, xt, y). If we could find this
joint distribution for allτ , we could findp(xτ |xτ−1, y) by marginalizing outxt and normal-
izing. We could also findp(xτ |y) by marginalizing out bothxt andxτ−1, then normalizing.
Finally, we could computep(y, xτ , xt) for the nextτ in the iteration.

So there are two missing pieces: The first isp(y, xs, xt) for starting the recursion. Com-
puting this term is easy, becausep(y|xs, xt) is the given measurement model, andp(xs, xt)
can be obtained easily from the prior by successively applying the total probability theorem.

The second missing piece isp(xτ |xτ−1, xt). Note that this quantity does not depend on the
measurements and could be computed offline if we wanted to. The recursion for calculating
it is:

p(xτ |xτ−1, xt)
Bayes∝ p(xt|xτ )p(xτ |xτ−1) (14)

p(xt|xτ ) =
∫

dxi+1 p(xt|xi+1)p(xτ+1|xτ ) (15)

The second equation describes a recursion which starts fromt and goes down tos. It
computes the influence of nodeτ on nodet. Equation (14) is coupled to this equation
and uses its output. It involves applying Bayes rule to compute a function of 3 variables.
Because of the backward nature of (15),p(xτ |xτ−1, xt) has to be computed using a pass
which runs in the opposite direction of the process of (13).

5.2.2 Findingp(xτ |xτ−1, y) for τ = 1..s

Starting fromτ = s− 1, compute

p(y|xτ ) =
∫

dxτ+1 p(y|xτ+1)p(xτ+1|xτ )

p(xτ |y)
Bayes∝ p(y|xτ )p(xτ )

p(xτ |xτ−1, y)
Bayes∝ p(y|xτ )p(xτ |xτ−1)

The recursion first computes the influence ofxτ on the observation, then computes the
marginal and the transition probability.

5.2.3 Findingp(xτ |xτ−1, y) for τ = t..T

Starting fromτ = t, compute

p(xτ |y) =
∫

dxτ−1 p(xτ |xτ−1, y)p(xτ−1|y)

p(xτ |xτ−1, y) = p(xτ |xτ−1)
The second identity follows from the independence structure on the right side of observed
nodes.



6 Results

We manually navigated a camera rig along two trajectories. The camera faced upward and
recorded the ceiling. The robot took about 3 minutes to trace each path, producing about
6000 frames of data for each experiment. The trajectory was pre-marked on the floor so
we could revisit specific locations (see the rightmost diagrams of figures 6(a,b)). This was
done to make the evaluation of the results simpler. The trajectory estimation worked at
frame-rate, although it was processed offline to simplify data acquisition.

In these experiments, the pose parameters were(x, y) locations on the floor. All experi-
ments assume the same Brownian motion dynamics. For each new frame, pose changes
were computed with respect to at most three base frames. The selection of base frames was
based on a measure of appearance between the current frame and all past frames. The pose
change estimator was a Lucas-Kanade optical flow tracker [24]. To compute pose displace-
ments, we computed a robust average of the flow vectors using an iterative outlier rejection
scheme. We used the number of inlier flow vectors as a crude estimate of the precision of
p(yt

s|xs, xt).

Figures 6(a,b) compare the algorithm presented in this paper against two others. The middle
plots compare our algorithm (blue) against the batch algorithm which uses equations (5)
and (6) (black). Although our recovered trajectories don’t coincide exactly with the batch
solutions, like the batch solutions, ours are smooth and consistent.

In contrast, more naive methods of reconstructing trajectories do not exhibit these two
desiderata. Estimating the motion of each frame with respect to only the previous base
frame yields an unsmooth trajectory (green). Furthermore, loops can’t be closed correctly
(for example, the robot is not found to return to the origin).

The simplest method of taking into account multiple base frames also fails to meet our re-
quirements. The red trajectory shows what happens when we assume individual poses are
independent. This corresponds to using a diagonal matrix to represent the correlation be-
tween the poses (instead of the tri-diagonal inverse covariance matrix our algorithm uses).
Notice that the resulting trajectory is not smooth, and loops are not well closed.

By taking into account a minimum amount of correlation between frame poses, loops have
been closed correctly and the trajectory is correctly found to be smooth.

7 Conclusion

We have presented a method for approximately computing the posterior distribution of a
set of variables for which only pairwise measurements are available. We call the resulting
structure a Differential Update Network and showed how to use Assumed Density Filtering
to update the posterior as pairwise measurements become available. The two key insights
were 1) how to approximate the posterior at each step to minimize KL divergence, and 2)
how to compute transition densities on a graph with a single loop in closed form.

We showed how to estimate globally consistent trajectories for a camera using this frame-
work. In this linear-Gaussian context, our algorithm can be thought of as a Kalman Filter
which projects the state information matrix down to a tri-diagonal representation while
minimizing the KL divergence between the truth and obtain estimate. Although the exam-
ple used pose change measurements between scans of the environment, our framework can
be applied to feature-based mapping and localization as well.
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