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Abstract. Recent techniques for multi-camera tracking have relied on
either overlap between the fields of view of the cameras or on a visible
ground plane. We show that if information about the dynamics of the
target is available, we can estimate the trajectory of the target without
visible ground planes or overlapping cameras.

1 Introduction

We explore the problem of tracking individuals using a network of non-overlapping
cameras. Recent techniques for multi-camera tracking have relied on two kinds of
cues. Some rely on overlap between the fields of view of the cameras to calculate
the real-world coordinate of the target. Others assume that the ground plane
is visible and map image points known to lie on the ground plane to the real
world using homography. In this paper, we show that if information about the
dynamics of the target is available, we can estimate trajectories without visible
ground planes or overlapping cameras.

We are interested in instrumenting as large an environment as possible with
a small number of cameras. To maximize the coverage area of the network, the
camera fields of view (FOVs) rarely overlap. Further, in our indoor setting, we
wish to use cameras that may not have a clear view of the ground plane due to
occlusions or their horizontal orientation.

Without a visible ground plane, each camera can only estimate the bearing
of the ray from the camera optical center to the target. Therefore the target’s
location can only be determined up to a scale factor with a single camera. How-
ever, information about a target’s dynamics can be helpful in localizing it. For
example, if a target is known to be moving at a given constant speed in the
ground plane, its location can be fully recovered by matching its speed in the
image plane to its ground-plane speed. See Figure 1(a).

If the target’s speed is unknown but constant, it’s trajectory can be estimated
with two non-overlapping cameras. See Figure 1(b). The time interval in which
the target leaves the first field of view and enters the second one is inversely
proportional to the velocity of the target. Using the second camera helps us
recover the speed, which in turns allows us to localize the target.
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Fig. 1. (a) A horizontally mounted camera recovers the location of a target up to a scale
factor. If the target’s speed is known, the ambiguity disappears. For example, given its
true speed, if the target is seen to be moving slowly, it must be far away. If it appears
to be moving fast, it must be near. (b) A second camera provides enough information
to estimate the (constant) speed of the target, making it possible to localize it.

The cases where speed is constant and known, or constant and unknown,
are straightforward to handle. In this paper, we generalize to the case where the
target moves with varying but smooth velocity. These dynamics can be modeled
with a Gauss-Markov process. Given the dynamics of the target, we search for
a trajectory that is most compatible with these dynamics and the observations
made by the cameras. The resulting trajectories capture the gross features of
the motion of the target and use the dynamics to interpolate sections of the
trajectory not observed by the cameras.

We incorporate the smoothness of the trajectory as a prior in the Bayesian
framework (§3). The camera measurements will provide observations that define
a likelihood on trajectories (§4). The Maximum a Posteriori (MAP) trajectory
can be recovered by iteratively solving a quadratic program (§5). We validate
our system on both synthetic and real data (§6 and §7).

2 Related Work

Recently, there has been a significant amount of work in tracking people across
multiple views. Some of the proposed approaches seek to hand off image-based
tracking from camera to camera without recovering real-world coordinates [1].
We focus on those that recover the real-world coordinate of the person. Multi-
camera person trackers can be categorized as overlapping systems and non-
overlapping systems.

Tracking with overlapping cameras has relied on either narrow baseline stereo
[4, 3] or wide baseline matching [5]. These methods use the correspondence across
views to determine the location of the target in the real world.

Most research with non-overlapping cameras has focused on maintaining con-
sistent identity between multiple targets as they exit one field of view and enter
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another [8, 6]. This is known as the data association problem. These techniques
cannot help determine the real-world position of a target if individual cameras
cannot make this determination individually. They provide machinery for estab-
lishing correspondences across disjoint views, but not for localization.

Caspi and Irani [2] provided another example where correspondence could
be avoided. They showed how to align a pair of image sequences acquired from
non-overlapping cameras, when the object being imaged spans the field of views
of two non-overlapping cameras. The coherent motion of a planar object as seen
by two nearby cameras can compensate for the lack of correspondence. In our
case, coherent target dynamics provide this kind of coherence.

3 Trajectory Model

We assume that each camera can identify each person in its field of view from
frame to frame. This allows us to track individuals independently of each other.
For the rest of this paper, we assume that the tracking problem is decoupled in
this way and we only discuss tracking each individual separately. This system
could be augmented by more sophisticated person identification schemes than
the one described in §7, such as the ones discussed in section §2.

We use a linear Gaussian state-space model to describe the smoothness of the
trajectory on the ground plane. This will define a prior p(X) on the trajectory
to be estimated.

Define the state xt of the target at time t as:

xt =
[
ut u̇t vt v̇t

]>
.

Where ut and vt are the x and y locations of the target on the ground plane,
and u̇t and v̇t describe the target’s instantaneous velocity. We assume that the
state evolves according to linear Gaussian Markov dynamics:

xt+1 = Axt + νt, (1)

where νt is a zero-mean Gaussian random variable with covariance Σν . For ex-
ample, in the synthetic example of §6 we set

A =


1 0.5 0 0
0 1 0 0
0 0 1 0.5
0 0 0 1

 , Σv = 10−6diag
([

10−4 1 10−4 1
])

,

so that each xt+1 adds the velocities in xt to the positions in xt, and nudges the
old velocities by Gaussian noise. The resulting poses are also nudged by a small
amount of Gaussian noise.

The states form a Markov chain over time. X, the collection of states from
time 1 to time T is itself a Gaussian random variable of dimension 1× 4T :

p(xt|xt−1) = N
(
xt

∣∣Axt−1, Σν

)
p(X) =

T∏
t=1

p(xt|xt−1) = N
(
X

∣∣0, ΛX

)
, (2)
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where Λ−1
X is tri-diagonal. We will use the Cholesky decomposition of Λ−1

X in §5:

ΛX = G>G

Gt =
[
0 · · · ,

√
ΣνA, −

√
Σν , 0 · · ·

]
, (3)

where Gt is row t of G and
√

Σν is the Cholesky factor of Σν . Equation (3) is
easily derived from the quadratic form inside p(X) defined in equation (2).

4 Observation Model

In general, we wish to consider an object tracked by a set of oblique non-
overlapping cameras with no visible ground plane. To simplify our task, we
consider the case where cameras are mounted horizontally, so that only the hor-
izontal direction in the image plane is relevant in locating a person. In indoor
settings, horizontal cameras are a way to cover a large area.

Let pi be the location of camera i on the ground plane with respect to some
reference, and let θi its rotation (yaw). Denote the focal length of the camera
by f i.

Ideally, the width of each person could be used to gauge the distance to
the target. But our system uses background subtraction, which yields crude
segmentation, partly because both the moving region and the uncovered region
are identified as foreground pixels. Therefore we ignore the width of the clusters
as a depth cue.

Let yi
t be the horizontal location of the target as seen in the image plane of

camera i at time t. This measurement is the bearing of the target with respect
to the camera, and is computed by projecting the target’s location onto the
camera’s focal plane:

yi
t = πi(xt) + ωt = f i

Ri
y(Cxt − pi)

Ri
x(Cxt − pi)

+ ωt (4)

C =
[

1 0 0 0
0 0 1 0

]
. (5)

Here, Ri is the rotation matrix corresponding to θi, and ωt is a zero mean
Gaussian random variable with variance σ2

ω. C is a 2 × 4 matrix that extracts
the location of the target from its state.

When the target is within the field of view of a camera, (4) describes a
likelihood model for each measurement. When the target is out of the field of
view of a camera, that camera reports ∅:

p(yi
t|xt) =

{
N

(
yi

t

∣∣πi(xt), σω

)
, if Ii(xt)

δ(yi
t − ∅), otherwise.

where Ii(x) is an indicator function that determines whether a given point falls
within the field of view of camera i.
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Conditioned on the true location of the target, the measurements are inde-
pendent of each other. Then letting Y be the collection of all measurements from
all sensors from time t = 1 to t = T ,

p(Y |X) =
T∏

t=1

N∏
i=1

p(yi
t|xt).

It will be useful to decompose the likelihood into constraints and observations:

p(Y |X) =
∏

(t,i)∈O

N
(
yi

t

∣∣πi(xt), σω

) ∏
(t,i)/∈O

(1− Ii(xt))

where (t, i) ∈ O ⇐⇒ yi
t 6= ∅. The second product of factors is a set of constraints

that insure the estimated trajectory only goes through fields of view that have
actually seen the target. In §5, we will need to use these constraints in a quadratic
program. However, quadratic programming requires a convex constraint set, and
these constraints are not convex. So we relax them the constraints Ii by defining
the function J i so that J i(xt) = 0 if xt is behind camera i, and 1 if it is in front
of it. The new likelihood becomes:

p(Y |X) =
∏

(t,i)∈O

p(yi
t|xt)

∏
(t,i)∈O

J i(xt)

As is shown in the following section, this new constraint set is convex. It
says that every measurement must have emanated from a sensor that had the
target in front of it, but it does not penalize the situation where a trajectory
crosses a field of view without generating an observation. We use this new, more
permissive likelihood function to find the MAP trajectory.

5 MAP Trajectory Estimation

The most probable trajectory given all the camera observations is

X∗ = arg max
X

p(X|Y ) = arg max
X

p(X)p(Y |X) (6)

A local maximum can be found by iteratively approximating this optimization
problem with a quadratic program of the form:

X∗ = arg max
X

X>QX + C>X (7)

s.t. AX > b

We show how to transform the optimization of equation (6) into a sequence of
quadratic programs of the form of equation (7).

Taking the log of p(X)p(Y |X) and dropping terms that don’t depend on X
yields a new quantity to minimize:

E(X) = X>G>GX +
1
σ2

ω

∑
(t,i)∈O

(πi(xt)− yt)2 +
∑

(t,i)∈O

logJ i(xt)
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The last term serves as a constraint, so the maximization of E over X can take
the form of a non-linear least-squares program:

X∗ = arg min
X

ε(X) = arg min
X

1
2
r(X)>r(X)

s.t. ∀(t,i)∈OJ i(xt) = 1

where

r(X) =


GX

...
πi(xt)−yt

σω

...

 , (i, t) ∈ O.

Each constraint J i(xt) = 1 can be recast as a linear constraint for each observed
point. Figure 2 shows that a point is in front of the sensor if its projection onto
the camera optical axis is positive. Each field of view constraint becomes an
inequality constraint:

J i(xt) = 1 ⇐⇒ n(θi)>(xt − pi) > 0,

where n(θi) is a vector pointing along the optical axis of camera i. Let the rows
of matrix A and the elements of vector b be:

Aτ =
[
0 · · · cos(θi) 0 sin(θi) 0 · · ·

]
,

bτ = n(θi)>pi,

with one row per observed trajectory point. The non-linear program becomes a
non-linear program on a convex domain:

X∗ = arg min
X

ε(X) (8)

s.t. AX > b. (9)

To convert equations (8,9) into a quadratic program, we linearize r(X) about
a guess X0

ε(X) ≈ ‖r(X0) + J(X −X0)‖2, (10)

where J is the Jacobian of r(X):

J =
∂r

∂X
=

 G
...

0 · · · , 1
σω

∂
∂xπi, · · · 0

 ,

where non-zero terms below G align with the element of X involved in each error
term.
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θi

n(θi)

pi

xτ−pi

xt−pi

Fig. 2. The arrow is the camera optical axis n(θ). The gray region is the field of view
of the camera. The dot product of n(θ) and a target location x is positive if the target
is in front of the camera.

Substituting (10) into (8), we get a constrained least-squares problem:

X1 = arg min
X

‖r(X0) + J(X −X0)‖2,

s.t. AX > b.

This is a quadratic program in X. Notice that J is very sparse, with exactly
2 non-zero elements in each row. This expedites finding the optimum with QP
solvers such as LOQO [9].

Iteratively linearizing r and solving this QP is similar to optimizing ε using
Newton-Raphson with inequality constraints.

6 Synthetic Results

We simulated our approach with synthetic trajectories and sensor measurements.
Figure 3 depicts the synthetic setup. Sensors are placed around a square envi-
ronment, and the target’s motion is generated randomly. Whenever the target
hits the wall, it is reflected back. This trajectory is smoothed and passed to
synthetic cameras which generate measurements. The state-space model of (1)
cannot capture these operations, but we show here that state-space dynamics
are sufficient to generate paths that capture the qualitative motion of the target.

The optimization must begin with an initial guess that satisfies the con-
straints of equation (9). This is because cutting plane QP solvers such as LOQO
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Fig. 3. Optimization begins with all points seen by a camera placed at the same loca-
tion. Shown are iterations 0, 1, 3,9,11, and 17.

require an initial point within the convex constraint set. We set the initial iterate
to have all unobserved trajectory points at the origin, and all observed trajectory
points at one meter along the optical axis of the camera that observed it.

Figure 3 shows the estimated trajectory as it is refined. In early iterations,
the likelihood term lines up the trajectory points along the ray from the camera
optical center to the true target location. But initially, their distances from the
optical centers are mis-estimated. The prior pulls the trajectory towards the right
distance in subsequent iterations. Despite the mismatch between the dynamic
models used in synthesis and estimation, the estimated trajectory is close to
the true trajectory. Figure 4 shows the final answer of several more synthesized
problems.

The field of view constraints are critical in recovering the trajectories. With-
out them, the dynamics pull the trajectory infeasible solutions. Figure 5 shows
a sample trajectory estimated without the constraints.

7 Results: Real Data

We have implemented this system on a sensor network of wireless cameras with
person trackers on board. Each node nodes in our network is a personal digital
assistant computer equipped with low resolution camera. These devices have
wireless network adaptors that allow them to communicate with a MATLAB
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Fig. 4. More synthetic results. Notice that the ends of the trajectories do not match
up with the ground truth. For these points, velocity information can only come from
past points. Points in the middle of the trajectories, on the other hand, benefit from
information from the past as well as the future.

Fig. 5. Without the field of view constraints, the dynamics can pull the trajectories
behind the cameras.
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process running on a base station. The real-time person tracker runs on each
PDA and reports the time-stamped horizontal location of a person to the base
station every 250 millisecond.

Fig. 6. IPAQ handheld computers equipped with a camera and a wireless adaptor serve
as our sensor nodes. They are mounted on the walls in our office building.

We use background subtraction to locate a target within each image plane.
Foreground pixels are clustered according to their image coordinates using EM
on a mixture of Gaussians. Each cluster corresponds to one person in the field
of view of the camera. The clusters have a prior covariance that matches the
aspect of a human. This coalesces nearby small blobs into human-sized blobs
and filters out isolated small blobs [7] . For each cluster, an appearance feature
vector is computed and used to identify the person it represents. The identity
of the person along with the horizontal component of the center of cluster is
transmitted to a central processing station.

Before experimenting with non-overlapping cameras, we built a model of hu-
man motion using a pair of overlapping cameras. Stereopsis between the two
cameras allowed us to recover real-world trajectories without knowledge of dy-
namics. A system identification procedure was applied to these trajectories to
recover parameters A and Σν of the dynamic model. We estimated Σω by aver-
aging the measurement error at various known locations in the room, at various
target speeds.

A network of 4 PDAs observed a section of our floor. The cameras were
mounted perpendicular to walls, so their orientations θi was easy to determine.
We used the floor plan of our building to determine the location pi of each
camera. None of the fields of views overlapped. One test subject walked in the
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Fig. 7. Estimated real path.

environment for about one minute, beginning and ending at the same place.
Figure 7 sketches the actual trajectory and plots the recovered trajectory. The
small dots on the trajectory correspond to each discrete time step in the system
(1/4th of a second apart).

Notice that the loop seen by camera 1 was successfully recovered. The for-
ward and backward legs in this loops are correctly found to be at different depths.
Without dynamics, it would have been impossible to determine that one path
is at a different distance from the other. The long legs towards and away from
camera 3 are not correctly recovered. It was impossible for the system to deter-
mine the motion of the target in this region because the subject moved along
the same bearing on those legs. Notice also that the estimated trajectory goes
through a wall between camera 3 and 4. Had we encoded these walls in the form
of additional constraints, the legs through camera 3 might have been correctly
estimated.

8 Conclusion

We have shown that some side information about the dynamics of a moving
object can compensate for the lack of simultaneous correspondence between
two cameras. Our method finds the trajectory that is most compatible with
both the observations from the cameras and the expected dynamics. By using a
convex visibility constraint, finding this trajectory can be expressed as a series
of quadratic programs.
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The method presented in this paper also obviates the need for a visible ground
plane. This paper has focused on horizontally mounted cameras, but we plan to
allow input from obliquely mounted cameras in the future.

As section 7 showed, known obstacles in the environment can provide helpful
information in constraining the solution. We are working towards adding such
constraints. Finally, the method we propose is batch. Batch processing is useful
for this problem because the uncertaintly in the trajectory between observations
can be very large. One could run this procedure in small time windows to obtain
a time-lagged version.

References

1. Q. Cai and J.K. Aggarwal. Tracking human motion in structured environments
using a distributed-camera system. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(12):1241–1247, November 1999.

2. Y. Caspi and M. Irani. Alignment of Non-Overlapping sequences. In ICCV, pages
76–83, July 2001.

3. T. Darrell, D. Demirdjian, N. Checka, and P. Felzenszwalb. Plan-View trajectory
estimation with dense stereo background models. In ICCV, pages 628–635, 2001.

4. M. Harville. Stereo person tracking with adaptive plan-view statistical templates.
In ECCV Workshop on Statistical Methods in Video Processing, June 2002.

5. A. Mittal and L. S. Davis. M2Tracker: A multi-view approach to segmenting and
tracking people in a cluttered scene using region-based stereo. In ECCV (1), pages
18–36, 2002.

6. H. Pasula, S. J. Russell, M. Ostland, and Y. Ritov. Tracking many objects with
many sensors. In IJCAI, pages 1160–1171, 1999.

7. A. Rahimi. Variational bayes for tracking moving mixtures of gaussians, 2000.
8. R. Zabih V. Kettnaker. Counting people from multiple cameras. In ICMCS, vol-

ume 2, pages 267–271, 1999.
9. R. J. Vanderbei. LOQO: An interior point code for quadratic programming. Opti-

mization Methods and Software, 11:451–484, 1999.


