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Abstract
This paper describes an approach to incorporate semantic
knowledge sources within a discriminative learning frame-
work. We consider a joint scene categorization and region
labelling task and assume that some semantic knowledge is
available. For example we might know what objects are al-
lowed to appear in a given scene. Our goal is to use this
knowledge to minimize the number of fully labelled exam-
ples (i.e. data for which each region in the image is la-
belled) required for learning. For each scene category the
probability of a given labelling of image regions is modelled
by a Conditional Random Field (CRF). Our model extends
the CRF framework by incorporating hidden variables and
combining class conditional CRFs into a joint framework
for scene categorization and region labelling.

We integrate semantic knowledge into the model by con-
straining the configurations that the latent region label vari-
able can take, i.e. by constraining the possible region la-
belling for a given scene category. In a series of synthetic
experiments, designed to illustrate the feasibility of the ap-
proach, adding semantic constraints about object entail-
ment increased the region labelling accuracy given a fixed
amount of fully labelled data.

1. Introduction
In this paper we consider the problem of joint scene cate-
gorization and region labelling, and investigate how seman-
tic knowledge can be used to reduce the number of fully
labelled examples needed for training. That is, we wish to
make use of additional semantic knowledge about the struc-
ture of the domain. Different from generative approaches
where the semantics of the model can be easily understood
in terms of an underlaying process, discriminative models
don’t offer such an interpretation making the incorporation
of certain types of semantic knowledge more challenging.

We define the problem as follows, given an image we
wish to predict a label for the scene (e.g. forest, street ) as
well as labels for each image region (e.g. tree, sun, car).
We assume that we are given a set of partially labelled ex-

amples that consist of pairs of images (images are repre-
sented as sets of image regions) and corresponding scene
labels. We are also given a small set of fully labelled ex-
amples, i.e triples where in addition to the scene labels we
are given a label for some or all image regions. In con-
trast to conventional semi-supervised learning approaches,
we have some semantic knowledge available that specifies
the region labels allowed for each scene category. For ex-
ample, our semantic database could tell us that cars appear
on streets and highways but not in offices. Our goal is to
incorporate this knowledge into our model for joint scene
categorization and region labelling so that we can minimize
the number of fully labelled examples required for training.

The motivation for this approach is that while labelling
images is a costly task semantic knowledge bases are be-
coming increasingly available, examples of such databases
are WordNet, ConceptNet and Cyc (1,2,5). While these
databases provide a variety of lexical relationships, we de-
cided to focus on object entailment relationships of the type
”object A appears in scene Y ” because they seem to be the
most useful for the scene recognition task. Notice that po-
tentially such a database could be built automatically from
a set of captioned images.

To solve the task of joint scene categorization and re-
gion labelling we decided to extend the model developed
in [8] because it allows us to combine region labelling and
scene classification in a single discriminative framework.
Under this framework images are represented as sets of
local features and we model the conditional distribution
p(scene|image) directly. For each scene category the prob-
ability of a given image region labelling is modelled by a
class Conditional Random Field.

A key difference of our approach from previous work
on CRFs is that we make use of a hidden variable that
intuitively models missing image region labels. More
specifically, our model defines conditional probabilities
P (y, r | x), and hence indirectly P (y | x) =∑

r P (y, r | x), using a CRF [8] where y is an image la-
bel variable and r is a hidden variable.

In this paper we address the question of how to incorpo-
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Figure 1: A high level view of our learning paradigm

rate semantic knowledge into our learning framework. We
follow a simple approach in which we constrain the hidden
region labelling variables to be consistent with the object
entailment information provided by the semantic knowl-
edge source. In other words, we incorporate the semantic
information as a hard prior on the possible configurations
of the hidden region labelling variable.

In a series of synthetic experiments, we illustrate with a
concrete example how incorporating these constraints can
increase the region labelling accuracy given a fixed amount
of fully labelled data.

2. Background: joint scene categoriza-
tion and region labelling

We define the joint scene and region labelling task follow-
ing the part-based object recognition method in [8]. We are
given a training set of n partially labelled pairs. Each such
example is of the form (x, y), where y ∈ Y is a scene cat-

egory , and x = [x1..xm] is an image where xj is the j-th
image region. For example, the image regions can be ob-
tained with a bottom up segmentation and represented with
a gradient based feature descriptor such as SIFT.

We also assume we are given l fully labelled triples of
the form (x, y, r) where r = {r1, . . . , rm} and r ∈ R is
a hidden region labelling variable. Intuitively, this variable
assigns a region label to each image region in x.

From this training set we would like to learn models that
map images x to scene categories y in the scene categoriza-
tion task, and that map images x to region labels r in the
region labelling task.

Our approach combines scene categorization with region
labelling. To label an image region we first decide the scene
category of the image (modelled by the scene variable y) by
summing over all possible region labellings. Then we label
each image region with the best region labelling given the
known scene (modelled by the region labelling variable r).

Given the above definitions, we define a conditional
model:

P (y, r| x, θ) =
eΨ(y,r,x;θ)

∑
y′,r eΨ(y′,r,x;θ)

. (1)

where θ are the parameters of the model and eΨ(y′,r,x;θ)

is a potential function which can be thought as an energy
function that measures the compatibility between a scene
category y, a region labelling r, and an image x.

Given a new test image x, and parameter values θ∗

induced from a training set, we will perform scene cat-
egorization, by taking the scene label for the image to
be y∗ = argmaxyP (y| x, θ) where P (y| x, θ) =∑

r P (y, r| x, θ). We then label each image region by find-
ing r∗ = argmaxrP (r|y∗,x; θ).

We use the following objective function in training the
parameters θ of the model:

L(θ) =
∑

t∈ TrainingSet

log P (t|x, θ)− 1
2σ2

‖ θ ‖2 (2)

where P (t|x, θ) = P (y|x, θ) if t is a partially-labelled ex-
ample and P (t|x, θ) = P (y, r|x, θ) if t is a fully-labelled
example. The first term in equation (2) is the log-likelihood
of the data and the second is a regularization term, we will
use gradient ascent to search for the optimal parameters val-
ues θ∗ = argmaxθL(θ) under this criterion.

We encode spatial constraints between region labels with
an undirected graph structure, where the hidden variables
{r1, . . . , rm} correspond to vertices in the graph.E denotes
the set of edges in the graph and (j, k) ∈ E denotes that
there is an edge in the graph between variables rj and rk.
E can be an arbitrary graph; intuitively it should capture any
domain specific knowledge that we have about the structure
of r. For example in our case it could encode spatial con-
sistency between region labels. For this paper the tree E
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is formed by running a minimum spanning tree algorithm
where the cost of an edge in the graph between rj and rk is
taken to be the distance between xj and xi in the image.

Following [8] we define Ψ to take the following form:

Ψ(y, r,x; θ) =
m∑

j=1

∑

l

f1
l (j, y, rj ,x)θ1

l

+
∑

(j,k)∈E

∑

l

f2
l (j, k, y, rj , rk,x)θ2

l

(3)

where f1
l , f2

l are functions defining the features in the
model, and θ1

l , θ2
l are the components of θ. The f1 fea-

tures depend on single hidden variable values in the model,
the f2 features can depend on pairs of values.

More specifically the compatibility between a scene cat-
egory y, an image x and a region labelling r is defined by:

Ψ(y, r,x; θ) =
∑

j

φ(xj) · θ(rj) +
∑

j

θ(y, rj)

+
∑

(j,k)∈E

θ(y, rj , rk)
(4)

In this definition, φ(xj) ∈ <d is a feature–vector rep-
resenting the image region xj ; θ(rj) ∈ <d is a parameter
vector; θ(y, rj) is a value in the reals modelling the com-
patibility between a scene category y and a region label rj ;
θ(y, rj , rk) is a real value modelling the compatibility be-
tween scene category y and pairs of region labels.

The gradient of the objective function with respect to the
parameters θ1

l corresponding to features f1
l (j, y, hj ,x) that

depend on single hidden variables for a single partially la-
belled example in the training set can be written as:

∂L(θ)
∂θ1

l

=
∑

j,a

P (rj = a | y,x, θ)f1
l (j, y, a,x)

−
∑

y′,j,a

P (rj = a, y′ | xi, θ)f1
l (j, y′, a,xi)

(5)

Since P (rj = a | x, θ) and P (y | x, θ), can be cal-
culated using belief propagation, provided that the graph
E forms a tree structure, we can do efficient inference and
parameter estimation in the model. A similar calculation
shows that ∂L(θ)/∂θ2

l can also be expressed in terms of
expressions that can be calculated using belief propagation.

Similarly the gradient of the objective function with re-
spect to the parameters θ1

l for a single fully labelled exam-
ple in the training set can be written as:

∂L(θ)
∂θ1

l

=
∑

j,a

P (ru
j = a | y, rox, θ)f1

l (j, y, a,x)

−
∑

y′,j,a

P (rj = a, y′ | xi, θ)f1
l (j, y′, a,xi)

(6)

where ru is an unobserved region label and ro are the
observed region labels. It follows that these can also be
calculated using belief propagation and the same holds for
∂Li(θ)/∂θ2

l .

3 Incorporating Semantic Knowl-
edge

In order to minimize the number of fully labelled examples
required for learning we would like to incorporate semantic
knowledge. We follow a simple approach where we con-
strain the hidden region labels to be consistent with the in-
formation provided by the knowledge source. That is, we
incorporate the semantic knowledge as a hard prior on the
configurations of the hidden region label variables.

More formally, let’s assume that for every scene
category y ∈ Y we are given information of the
form : S(y) = {r1..rm} , that is we are told
the allowed region labels for every scene category.
For example, if Y = {forest, street} and R =
{tree, sun, water, car, buildings} our semantic knowl-
edge could be of the form Sforest = {tree, sun, water}
and Sstreet = {tree, sun, sky, car, building}.

Notice that our approach assumes that the valid region
labels are known a-priori since the goal of our paper is to
show how such a knowledge can be incorporated in a dis-
criminative latent variable model as a hard prior on the con-
figurations of the latent variables. The question of wether
semantic knowledge of the type that we assume in this work
can be automatically learned from data is another interest-
ing question that we do not intend to address in this paper.

Given the semantic knowledge we define the set Sy

to be the set of all region labellings that are consis-
tent with S(y). For example, let’s assume that Sforest

is as defined above and that we wish to label and
image of a forest scene that contains four image re-
gions. Then given our definition of consistency r =
[tree, tree, tree, tree] and r = [tree, water, water, sun]
are consistent with S(forest) and belong to Sforest, but
r = [tree, computer, water, sun] is not consistent with
S(forest) and therefore is not in Sforest.

Given the above definitions we incorporate the semantic
knowledge by defining the following conditional model:

P (y, sy| x, θ) =

∑
r∈Sy

eΨ(y,r,x;θ)

∑
y′,r eΨ(y′,r,x;θ)

. (7)

where sy represents our semantic knowledge about scene
category y. We include sy in equation 5 to make explicit
that we are jointly optimizing for the scene category and
its corresponding semantic knowledge. The above formu-
lation effectively constrains the hidden region labellings of
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the partially labelled examples for scene y to those that are
consistent with S(y).

The gradient for the constraint model for a single par-
tially labelled example in the training set can be written as:

∂L(θ)
∂θ1

l

=
∑

j,a

P (rj = a | y, sy, r,x, θ)f1
l (j, y, a,xi)

−
∑

y′,j,a

P (rj = a, y′ | x, θ)f1
l (j, y′, a,x)

(8)

whereP (rj = a | y, sy,x, θ) =

P
rj=a∧r∈Sy

P (r | y,x,θ)

P
r∈Sy

P (r | y,x,θ)

which if E is a tree can be calculated using belief prop-
agation, a similar calculation shows that the same is true
for P (rj = a, rk = b | y, cy,x, θ) thus like in the uncon-
strained model we can do efficient inference and training.

4 Experiments
To show the feasibility of our approach we conducted a set
of experiments with a synthetic dataset. The goal of the
experiments is to illustrate with a concrete example how
our idea can be applied to incorporate partially labelled data
and semantic constraints into a joint object recognition and
scene categorization model in a principled manner. These
experiments are not to be taken as a demonstration of our
approach. We are aware that such a demonstration could
only be achieved by running experiments on natural images,
since that is the only way of testing wether our assumptions
about natural image generation are correct. We are currently
working on such experiments, as this is a work in progress.

Each example for the different scene categories was gen-
erated assuming the semantic constraints were satisfied.
Notice that we never created actual imagery, the dataset was
simply derived from our assumptions. That is, we use the
term image region to denote a set of appearance and location
features that we have generated following our assumptions.
For experiments with natural images these regions could be
obtained by running a bottom-up segmentation over the im-
age. Each region could then be represented with some ap-
pearance descriptor such as SIFT.

More specifically, for each region label i in R we assume
there is a multivariate Gaussian distribution Ai over the ap-
pearance features, and we take each component of this dis-
tribution to be independent. In addition we assume that for
each region label there is a corresponding Li multivariate
Gaussian distribution over the x and y coordinates of the
location of the image region.

To generate an example from a given scene, that is to
generate a set of image regions xk we sample from the ap-
pearance and location distributions corresponding to region

Model ML MUL MULSC
Scene-Categorization Error Rate 25 % 3 % 4 %

Figure 2: Comparative scene categorization error rates

labels that are allowed according to the semantic knowledge
for that scene.

For example if as before Sforest = {tree, sun, water}
we will generate a forest scene by creating a set
of image regions that are each sampled from one
of the following distributions: Distributiontrees =
{Atree, Ltree}, Distributionsun = {Asun, Lsun} and
Distributionwater = {Awater, Lwater}.

For these experiments we generated a dataset of 4 scene
categories and 13 region labels, we set the semantic knowl-
edge so that there is a significant amount of shared region
labels across different scenes. More specifically, scenes 1
and 2 shared 5 region labels and scenes 3 and 4 shared 4
region labels, also one region label was shared across all
scenes.

We divided the data into training and testing set contain-
ing 20 and 80 examples of each scene category respectively.

We conducted 3 sets of experiments to evaluate the use-
fulness of incorporating constraints. For all the 3 exper-
iments we used a single fully labelled example for each
scene category.

We obtain the labels for the fully labelled examples in
the following manner: If an image region was generated by
sampling from distributions Ai and Li we set its label to be
ri. For the partially labelled examples we obtain scene la-
bels in the following manner: If an image (i.e. a set of image
regions) was generated by sampling from the image region
distributions Distributioni = {Ai, Li} corresponding to
scene y, we set the scene label for the image to be y.

For the first experiment we trained a model using the
fully labelled data only (model ML), for the second experi-
ment we trained a model with the partially labelled and fully
labelled data (model MUL) and finally for the third exper-
iment we trained using fully and partially labelled data as
well as the semantic constraints (model MULSC).

Figure 2 shows scene categorization error rates ( percent-
age of misclassified scenes) for each of the models and Fig-
ure 3 shows region labelling error rates (percentage of mis-
classified image regions). To make a fair comparison of the
region labelling performance of each model for the results
in Figure 3 we assume that we know the scene category y.
We do this so that we can factor out any region labelling
performance improvement due to improved scene catego-
rization performance.

From Figure 2 we see that as we would expect the model
that was trained with a single training example per class
(ML) does significantly worst in terms of scene categoriza-
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Model ML MUL MULSC
Region Labelling Error Rate 17 % 15 % 9 %

Figure 3: Comparative region labelling error rate

tion than the other two models. We also see that including
semantic constraints doesn’t seem to affect scene catego-
rization performance significantly.

From Figure 3 we observe that incorporating semantic
knowledge seems to improve region labelling performance
significantly. While by just adding unlabelled examples
(MLU ) the error rate is reduced from 17 % to 15 %, by
adding semantic constraints the error rate is further reduced
to 9 %.

5 Conclusions and Further Work

In this paper we have addressed the question of how to use a
semantic knowledge source to minimize the amount of fully
labelled data required for learning a joint scene categoriza-
tion and region labelling task.

More specifically, we have shown how such knowl-
edge can be incorporated in a discriminative latent variable
model as constraints on the allowed region labelling config-
urations for each scene category. The potential of our ap-
proach was illustrated in a set of synthetic experiments that
show that incorporating semantic constraints can increase
region labelling accuracy given a fixed amount of fully la-
belled data.

This work is a preliminary study to investigate these
ideas, and the synthetic experiments showed the feasibil-
ity of the approach. These experiments involved making
some intuitive assumptions about the way in which image
data is generated. Currently we are starting to run experi-
ments with natural images to test the extent to which such
assumptions hold in practice.
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