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Abstract

Statistical shape-and-texture appearance models employ
image metamorphosis to form a rich, compact represen-
tation of object appearance. They achieve their efficiency
by decomposing appearance into simpler shape-and-texture
representations. In general, the shape and texture of an ob-
ject can vary nonlinearly and in this case the conventional
shape-and-texture mappings using Principle Component
Analysis (PCA) may poorly approximate the true space. In
this paper we propose two nonlinear techniques for mod-
elling shape-and-texture appearance manifolds. Our first
method uses a mixture of Gaussians in image space to sep-
arate the different parts of the shape and texture spaces.
A linear shape-and-texture model is defined at each com-
ponent to form the overall model. Our second approach
employs a nearest-neighbor method to find a local set of
shapes and images that can be morphed to explain a new
input. We test each approach using a speaking-mouth video
sequence and compare both approaches to a conventional
Active Appearance Model (AAM).

1. Introduction

Statistical shape-and-texture appearance models [9, 2]
use image metamorphosis to define rich, compact models
of appearance. They are useful in a variety of applica-
tions including object recognition, tracking and segmen-
tation [5, 13, 14]. Traditionally these methods use linear
models (i.e., PCA) to represent the shape and texture of an
object. There are many objects, however, that can exhibit
nonlinear shape and texture variation, for which the con-
ventional shape and texture mappings using PCA poorly
approximate the true space. This is especially true of bi-
ological objects that can deform quite drastically, such as a
hand or mouth, or whose texture can drastically vary across
different examples (e.g., cats, dogs).

In this paper we investigate nonlinear techniques for

modelling shape-and-texture appearance manifolds that ex-
hibit a varying topology (i.e., a manifold that can have mul-
tiple parts or holes) or dimensionality. We test our methods
using a speaking-mouth video sequence obtained from the
AVTIMIT database [8]. In our experiments, the different
parts of the space arise from varying mouth configurations
(e.g., closed vs. open mouth). Different regions can take a
different dimensionality in shape and texture. For example,
an open mouth can have features associated with the teeth
that are absent in a closed mouth.

We have implemented and compared two nonlinear tech-
niques. The first technique uses a Gaussian mixture model
to learn the nonlinear mouth appearance manifold. As
demonstrated in the experiments, this method outperforms
a simple linear model since it more tightly models the local
variation of the nonlinear mouth appearance manifold. In
general, it is difficult to know a priori the correct number of
components to use in the mixture model. Also, a complex
appearance manifold may require arbitrarily many mixture
components, making such a model inefficient.

To overcome these limitations of a mixture-model ap-
proach we have implemented an example based shape and
texture appearance model that computes a small neighbor-
hood of example images and shapes that can be combined
to explain a new input. In particular, we compute a morph
between a neighborhood of examples on the manifold found
using nearest neighbor, using a convex (or bounded) com-
bination of the neighborhood’s shape and texture to match
the input image. Unlike the mixture model method, this ap-
proach makes no assumptions about the global structure of
the manifold. It also lends itself more naturally to shape
features having multiple dimensionality across examples in
the database.

In our experiments we evaluate the performance of each
of the above algorithms using a mouth sequence from a
single speaker. We build each model using a small set of
frames taken from the sequence and then fit each model to
frames outside of the training set. For comparison, we also
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build an AAM and show examples for which the conven-
tional AAM fails and our methods succeed.

2. Related Work

Linear models of shape and texture have been widely ap-
plied to the modelling, tracking and recognition of objects
[5, 9, 13]. Provided a set of example images, linear shape
and texture appearance models decompose each image into
a shape and texture representation and then model the vari-
ation of the data in these spaces using Principle Component
Analysis (PCA). The shape of an object describes the ob-
ject’s geometry and is typically defined by a set of feature
points that outline the object contours. The texture is the
“shape free” representation of the object and is obtained by
warping each image to a reference coordinate frame that
is usually defined by the average shape computed from the
training images.

The Active Appearance Model (AAM) [2] and Multidi-
mensional Morphable Model (MMM) [9] are probably the
most well known linear shape and texture appearance mod-
els. By decomposing appearance into separate shape and
texture spaces they achieve a compact, expressive model of
appearance, more powerful than pure intensity models de-
fined with PCA (e.g. Eigenfaces [17]). As we show in this
paper, these models are unable to faithfully represent the
appearance of complex objects with nonlinear appearance
manifolds, such as mouths, whose manifolds have parts and
holes.

Many nonlinear models have been defined separately for
shape and appearance [12, 3, 10]. Romdhani et. al. [12]
use Kernel PCA to define a nonlinear shape model for rep-
resenting shape across object pose. Cootes et. al. [3] show
how a Gaussian mixture model can be used to construct a
nonlinear active shape model that restricts its search to valid
shapes on the object shape manifold, thus avoiding erro-
neous matches. A nearest neighbor algorithm is explored
by Grauman et. al. [7]. In her work she defines an active
shape model across body poses. Several authors have devel-
oped example based models of object appearance, including
the metric mixtures approach of Toyama and Blake [16],
however, these methods do not exploit shape and texture
decomposition. Similarly, Murase and Nayar [10] present a
manifold learning algorithm that maps out the space of im-
ages of an object imaged across different poses. To the au-
thor’s knowledge this is the first work that explores nonlin-
ear techniques for modelling shape and texture appearance
manifolds. The only exception is the view-based AAM [4].

The view-based AAM defines a piecewise linear repre-
sentation of the shape and texture appearance manifold in
a very similar fashion to the Gaussian mixture model de-
scribed in Section 3.1. The key differences between the
Gaussian mixture model and the method described in [4]
is that our method automatically learns the different regions
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Figure 1. Linear models compute a texture space by warping each
example to a single reference frame. Note the stretched region
present in the closed mouth textures and that the inside of the
mouth is lost in the texture of the open mouth.

of the manifold from the data and is not restricted to learn-
ing mixture components that vary across pose alone.

3. Nonlinear Appearance Manifolds

The images of a complex object such as a mouth gener-
ally belong to a nonlinear appearance manifold with parts
or holes as illustrated by Figure 1. This figure illustrates the
shape and texture of example mouth images taken from the
AVTIMIT database [8]. The average image and shape are
displayed along with example textures and shapes of select
prototype images.

Consider modelling the mouth appearance using a linear
model such as an AAM. Figure 1 demonstrates the difficulty
with modelling the mouth using a linear method. In partic-
ular, notice the stretched region in the texture of a closed
mouth and that the inside of the mouth is lost in the tex-
ture of an open mouth. These artifacts cripple the computed
model; in general, linear methods have difficulty modelling
the full range of mouth appearance. Such artifacts are a re-
sult of the varying topology of the appearance manifold of
this object—some features (or surfaces) are visible in cer-
tain images but not in others (e.g., teeth). Intuitively, this is
seen by the fact that there exist sets of mouth configurations
for which the same parts of the mouth are visible in each
set.

In addition to varying topology, the shape-and-texture
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Input First Five Nearest Neighbors

Figure 2. First five nearest neighbors computed with our algorithm
on a database of 100 mouth images.

spaces of nonrigid object classes have varying dimension-
ality across examples. Once again, consider the mouth im-
ages of Figure 1. The presence of teeth in the open mouth
introduces new shape features that are absent from the im-
age of the closed mouth. Allowing for varying shape dimen-
sionality results in a more expressive and accurate model of
appearance.

Below we present two nonlinear models for modelling
shape-and-texture appearance manifolds. The first method
takes into account the varying topology in image space by
fitting a mixture model to the PCA coefficients of the image
data. As the number of components necessary is difficult
to know a priori (or estimate via cross-validation) and the
number of components may increase substantially with the
complexity of the appearance manifold, we also develop an
alternative nearest-neighbor model. Unlike the first method,
the nearest-neighbor model makes no assumptions of the
global structure of the appearance manifold. Instead, it
looks at local neighborhoods on the manifold that are as-
sumed to belong to the same region of the topology. While
in principle it is possible to extend both of the nonlinear
approaches below to include varying shape dimensionality,
the nearest-neighbor model lends itself more naturally to
this task.

3.1. Mixture Manifold

In this section we develop a Gaussian mixture model for
representing a shape-and-texture appearance manifold. To
begin, let xi and si, i = 1, ...n, be a set of prototype images
and their corresponding shapes. As in [2], we define shape
to be

s = 〈x1, x2, .., xk, y1, y2, ..., yk〉T , (1)

where 〈xi, yi〉 is a two dimensional image feature point.

Initial 3 Iterations 8 Iterations Converged

Figure 3. A convincing reconstruction of the shape and texture of
an input mouth image is computed in a few iterations using the
gradient descent algorithm of the nearest neighbor model.

Assuming that the different regions of the object appear-
ance manifold are well approximated as linear, the underly-
ing structure of the manifold can be explained using a Gaus-
sian mixture model. More specifically, we wish to learn the
underlying probability distribution p(x) of the object ap-
pearance manifold. Using a Gaussian mixture, this distribu-
tion is found as

p(x) =
∑

j

p(x|j)p(j), (2)

where j = 1, ...,m represents the jth mixture component.
Given the prototype images, xi, the Gaussian mixture is
learned using Expectation Maximization (EM). See [1] for
details. To make the computation of (2) computationally
tractable, we use PCA to reduce the dimensionality of the
images and then approximate p(x) by computing a mixture
model over the PCA coefficients. Namely, we approximate
p(x) as

p(x) ≈
∑

j

p(b|j)p(j), (3)

where b are the PCA coefficients of the input image found
as

b = P+(x − µ), (4)

the columns of P are the d < n principle axis computed
with PCA and µ is the mean image. More generally, we
could use PPCA [15], which would allow for different di-
mensional sub-spaces.

Each component of the mixture model defines a region of
image space for which the same parts of the mouth are vis-
ible. Consequently, each component is associated with its
own shape-and-texture space. Assuming that the shape and
texture varies linearly in each component, we can model the
local shape-and-texture variation using a linear deformable
model. In particular, at each component, we compute an
AAM [2] using the examples that lie under the support of
the component’s Gaussian. Since each Gaussian has infinite
support, we segment the manifold according to the mixture
model by truncating each Gaussian using a threshold. We
consider an example to be under the support of a Gaussian if
it is less than three standard deviations away from the mean.
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Figure 4. Multidimensional shape representation used by the
nearest-neighbor model. Each example image is labelled with
varying feature sets according to what parts of the mouth are visi-
ble. Three examples are shown: (left) with only lip features, (mid-
dle) with lip and top teeth features, (right) with lip, top and bottom
teeth features.

The Gaussian mixture model defines a piecewise linear
model of shape and texture, each region of the topology
modelled using a separate AAM. To analyze a new example
image, we independently fit each local AAM to the exam-
ple and retain the fit with the lowest error. Note the model
provides a nonlinear mapping of shape and texture that ob-
serves the varying topology of the manifold. In particular,
the components of the Gaussian mixture model map out
the different regions and holes of the nonlinear appearance
manifold. Using this model, an input image is mapped to
a set of local shape-and-texture coefficients associated with
the region in image space that best explains the new input.
Given p(x), we are less likely to map an image to a point off
of the manifold (e.g. a non-mouth), since p(x) equips the
model with detailed knowledge of the manifold structure.

The above model provides a concise representation of
the shape and texture of a nonrigid object class whose ap-
pearance manifold has a varying topology. This model re-
quires knowledge of m, however, which may be difficult
to estimate, and may be arbitrarily large for complex mani-
folds. Part of the reason for this, is that it assumes that each
region of the topology is locally linear. In general, each
part of the manifold can have arbitrary shape and thus we
expect this model to perform poorly when this occurs. In
the next section, we present an alternative nearest-neighbor
algorithm that relaxes the above assumptions.

3.2. Nearest-Neighbor Model

In this section, we present our nearest-neighbor shape-
and-texture appearance model. Instead of modelling each
region explicitly, the nearest-neighbor model provides an
implicit representation of the object appearance manifold.
Specifically, this model focuses on local neighborhoods of
the manifold defined by k examples. In this region it is
assumed that the same parts of the nonrigid object are vis-
ible. Given the local neighborhood, the shape and texture
of a new input is found by taking bounded combinations
of the shape and texture of the k nearest-neighbor exam-
ples. Therefore, given a new image, we wish to find a local
neighborhood observing the above properties, whose shape

input synth image synth shape

Five Nearest Neighbors

Figure 5. Shape intersection algorithm used by the nearest-
neighbor model. To compute the shape of the input, the shape
of the nearest neighbors is intersected and the shape features com-
mon to all examples is used.

and texture best explain the input.
We use nearest-neighbor search to find a set of examples

on the manifold whose appearance most closely approxi-
mate that of the input. Given a novel input, xs, we compare
it to each image, xi, of the prototype set to compute its k
nearest neighbors. Although we use an exhaustive search
there exist fast methods for computing approximate nearest
neighbors [6] that we leave for future work. In our algo-
rithm, we compute proximity using Euclidean distance in
pixel space. We compute the distance,

d(xs,x) = ‖xs − x‖2, (5)

between xs and each prototype image and retain the k ex-
amples having smallest distance. Figure 2 displays the re-
sults of this nearest-neighbor algorithm on a database of 100
images of a single subject’s mouth taken from the AVTIMIT
database. The nearest neighbors of a novel input appear to
form a local neighborhood in image space.

The shape and texture of an input image are computed
by taking a convex combination of the shape and texture of
its k nearest neighbors. Let xj and sj , j = 1, ..., k be the k
nearest neighbors of the input and their associated shapes.
The texture of each example is computed as

tj = xj ◦ W (sj , sref ), j = 1, ..., k, (6)

where ◦ denotes the warping function, W () is a function
that computes the piecewise affine correspondence between
two images given their shape [2], and sref is the reference
shape of the local neighborhood defined to be the mean of
the example shapes,

sref =
1
k

∑

j

sj . (7)

Given the k nearest neighbors of the input, we search over
bounded combinations of their shape and texture that best
match the input by minimizing the following error objective
function,

E(xs,b, c) = ‖xs ◦ W (sm(c), sref) − tm(b)‖2, (8)
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Figure 6. Video sequence taken from the AVTIMIT database [8]
used to train and test our models. Select frames from this sequence
are shown.

where
tm(b) =

∑
j bjtj ,

sm(c) =
∑

j cjsj ,

and bj , cj take values on the closed interval [α, β]. Note that
α and β restrict the search to a bounded region of the man-
ifold containing the k nearest-neighbor examples. If α = 0
and β = 1 then the search is restricted to the convex hull
of the example shape-and-texture vectors. This restriction
results in a compact representation of the manifold and as-
sures that we match an input to a point on the manifold. In
our experiments, we bound the mixture weights to lie on the
closed interval [-1.5,1.5].

We minimize the objective function (8) using gradient
descent. Figure 3 displays an example match using the
above algorithm. The algorithm is able to generate a con-
vincing reconstruction of the mouth from the shape and tex-
ture of the nearest-neighbor examples.

It is straightforward to extend the nearest-neighbor
model to handle multiple shape dimensionality. With this
representation a shape vector, sM , is defined as

sM = 〈x1, x2, ..., xM , y1, y2, ..., yM 〉 . (9)

In the above representation, each shape has dimensionality
2M . This multidimensional shape representation is illus-
trated by Figure 4. In the nearest-neighbor model we as-
sociate each prototype image with a shape vector that has
dimensionality according to what is visible in the image.
When computing nearest neighbors, we intersect the shapes
of the neighborhood examples and use the shape features
common to all examples to match the novel input. This
process is illustrated by Figure 5. The use of multiple shape
dimensionality results in a more expressive and accurate ap-
pearance model.

4. Experiments

To evaluate each algorithm, we used a mouth sequence of
a single person taken from the AVTIMIT database [8]. This
sequence contained a total of 2300, 720×480 grayscale im-
ages; select frames from this sequence are displayed in Fig-
ure 6. We randomly selected 100 frames and manually la-
belled each frame with mouth features (see Figure 1). Using

Variables Perturbations
x, y ±5% and ±10% of the height and width

of the reference shape
θ ±5, ±15 degrees

scale ±5%, ±15%
c1−k ±0.25, ±0.5 standard deviations

Table 1. Perturbation scheme used to train the local linear models
of the Gaussian mixture model and used by the AAM. [14]

the labelled features, we cropped each image about the cen-
ter of the mouth using a 111×139 window to form our train-
ing set. Using this training set we constructed the Gaussian
mixture deformable model discussed in Section 3.1 and an
Active Appearance Model [2]. The same 100 frames, along
with the multidimensional shape feature vectors displayed
in Figure 4, were used by the nearest-neighbor model dis-
cussed in Section 3.2.

We built the Gaussian mixture model using a three di-
mensional subspace of the image data computed with PCA,
retaining 56 % of the total model variance, and with m = 5
mixture components. We found these parameters to work
well in our experiments. Using a three dimensional sub-
space also allowed us to visualize our models. To compute
the Gaussian mixture, we used the NetLab library [11]. The
local AAMs constructed in the Gaussian mixture model and
the single AAM models were constructed using the parame-
ters listed in Table 1. In each local AAM, as well as the sin-
gle AAM, 95 % of the model variance was retained by the
combined shape-and-texture space. In our experiments we
evaluated the nearest-neighbor algorithm for varying values
of k. The value used is made explicit in each experiment.
We also allowed each interpolation weight to take values
between -1.5 and 1.5, allowing it more freedom to extrap-
olate from the data. These values were found empirically
from the training data.

In our experiments, we assume that the location of the
mouth is coarsely initialized by an external mouth detector.
Both the Gaussian mixture model and the AAM optimize
for location during model search and therefore require only
approximate initialization of the mouth location. We refine
the mouth location estimate in the nearest-neighbor model
by finding the nearest neighbor using the input location and
then computing a normalized cross correlation between the
nearest neighbor and same-sized patches in the input im-
age centered about locations in an 11 × 11 search window
about the initial center. We reset the center of the mouth to
the location having the highest correlation score and repeat
this process until convergence or the maximum number of
iterations is reached. In our experiments, we found this al-
gorithm typically converged in a few iterations.

In the following section, we perform both a quali-
tative and quantitative comparison of each of the non-
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linear algorithms and compare them against the base-
line AAM approach, each model constructed as specified
above. We perform this comparison over 540 mouth im-
ages outside of the training set taken from the mouth se-
quence of Figure 6. The nearest-neighbor model’s de-
pendency on k is also evaluated using this test set. Fi-
nally, we show an example for which the multidimensional
shape representation improves model accuracy. A descrip-
tion of additional results and experiments can be found at
<http://groups.csail.mit.edu/vision/vip/nlam.htm>.

5. Results

Three images taken from the 540-image test set along
with the synthesized texture and shape generated by each
model are displayed in Figure 7. The RMS fit error is also
provided above each fit. In this experiment, the nearest-
neighbor model has k = 10. The first test image is mod-
elled well using all three models. Comparing the RMS
error of each fit, however, both the Gaussian mixture and
nearest-neighbor models outperform the AAM. The synthe-
sized texture of the AAM is also quite blurred. The next two
examples reveal scenarios for which the single AAM model
fails and the nonlinear methods succeed. In particular, the
AAM has difficulty modelling any images whose geometry
is very different from the model reference image. This is
seen in the case of the open mouth image, where the inside
of the mouth is poorly represented in the texture space of
the linear model (see Figure 1).

A quantitative comparison of each model is provided by
Figure 8. In the figure, a Root-Mean-Square error box plot
is shown for each approach computed over the 540-image
test set. Both the Gaussian mixture model and the nearest-
neighbor model do the same or significantly better than the
single AAM throughout the test sequence. The error box
plot shows that with k = 10 the nearest-neighbor algorithm
outperforms each approach on a whole (different values of
k are considered next). The noteworthy performance of
the nearest-neighbor model is expected since it makes the
fewest assumptions about the underlying structure of the ap-
pearance manifold.

The poor performance of the single AAM on the mouth
sequence is a direct result of the simplicity of the model.
This model assumes a single texture space over the mouth
appearance manifold. Since the appearance manifold has
varying topology, a global texture space is ill-defined; the
appearance variation of the mouth is not well represented
using a single reference coordinate frame. This point was
demonstrated by Figure 1 in Section 3. Also, the single
AAM has no knowledge of the local structure of the mani-
fold and can therefore converge to non-mouth images. Each
of these properties contribute to the AAM’s poor perfor-
mance in modelling the appearance of the mouth. The non-
linear techniques of Section 3 provide shape-and-texture
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Figure 7. Qualitative comparison between each method and a base-
line linear model. The input, synthesized shape and texture, com-
puted with each model, is shown for each example. The AAM has
difficulty modelling the full range of mouth appearance. The last
two examples illustrate scenarios where the AAM fails and our
methods succeed. These examples contain regions of the mouth
that are absent from either the reference image or input mouth im-
age and thus the AAM cannot faithfully represent their appear-
ance.
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Figure 8. Quantitative comparison between each method and a
baseline linear model. A box plot of the RMS error of each model
evaluated over 540 test mouth images is shown. In the plot, the
horizontal lines of each box represent the top quartile, median and
bottom quartile values, the whiskers give the extent of the rest of
the data and the red crosses label data outliers. Of the three meth-
ods, the AAM displays the worst performance and the nearest-
neighbor model performs the best.

mappings that take into account the varying topology of the
mouth appearance manifold and therefore are able to faith-
fully represent the full range of mouth appearance variation.

Next, we evaluate the performance of the nearest-
neighbor algorithm for different k values. Figure 9 displays
an RMS error box plot for the nearest-neighbor model eval-
uated over the 540 test frames with k = 1, 2, 5, 10. The fig-
ure illustrates that the model performs better for increasing
values of k. This verifies our intuition that morphing be-
tween examples does better than simply taking the nearest
neighbor. As the number of examples increases the model
is provided with more degrees of freedom and can therefore
match the input image more closely. Of course taking too
large a value of k complicates the search and can lead to
poor performance.

Finally, we consider how the use of a multidimensional
shape representation can improve model-fitting accuracy.
For this experiment, we use a simplified version of the mul-
tidimensional shape representation displayed in Figure 4
that contains only mouth contours and features of the top
middle teeth. This multidimensional shape representation
divides the mouth data set into two equivalence classes,
each containing images with and without teeth. We com-
pare performing nearest-neighbor over the entire mouth
training set verses within each class separately. The re-
sults of this experiment for an example mouth image are
displayed in Figure 10 with k = 5. The figure shows the
synthesized mouth image using the single-class and dual-
class nearest-neighbor methods. The results for the single-
class and each class of the dual-class are shown along with
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Figure 9. Quantitative comparison of the nearest-neighbor method
for different k. The model performs better for increasing values
of k. As the number of examples increases the model is provided
with more degrees of freedom and can therefore match the input
more closely.

the computed nearest neighbors. Taking the shape and tex-
ture with the smallest fit error as the result of the dual-class
model, Figure 10 shows that the dual-class model outper-
forms the single class nearest-neighbor method.

The difference in performance can be explained by ob-
serving the nearest neighbors computed with each model.
The nearest neighbors of the single-class model are less like
the input than those found with the dual-class model for the
class containing mouth images with teeth. This is especially
true of the last two nearest neighbors computed with the
single class model. This simple experiment demonstrates
how a multidimensional shape representation can be used
to guide the model matching process to increase fitting ac-
curacy.

6. Conclusions and Future Work

We have presented two nonlinear techniques for mod-
elling the shape-and-texture appearance manifolds of com-
plex objects whose appearance manifold has a varying
topology consisting of parts and holes. We showed how
a piecewise linear model of a shape-and-texture appearance
manifold can be defined using a Gaussian mixture model.
We also provided a nearest-neighbor model that generalizes
well to complex manifolds, offers a compact representation
of the manifold and allows for varying feature sets. In par-
ticular, with this technique a new input is analyzed by mor-
phing a local set of examples that belong to a convex or
bounded region of the manifold.

We evaluated the performance of each algorithm using
the AVTIMIT database, where we built a shape-and-texture
appearance model of the mouth. We compared each ap-
proach to a baseline linear model and showed examples
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Figure 10. Qualitative comparison between a single and multi-dimensional shape representation. The first appearance model (top row)
contains only lip features while the second contains both lip and teeth features for the top middle teeth. The images of the second model
are separated into two equivalence classes with and without teeth. Taking the shape and texture with the smallest fit error as the result of the
dual-class model, the dual-class model outperforms the single class nearest-neighbor method. The difference in performance is explained
by the more accurate nearest neighbors found by the dual-class model.

where the conventional method fails and our methods suc-
ceed. We demonstrated that linear models poorly repre-
sent the appearance of complex objects such as mouths and
that our methods are able to define a convincing shape-and-
texture mouth appearance model by taking into account the
varying topology of the mouth appearance manifold. Inter-
esting avenues of future work include the construction of
a person-independent mouth deformable model, the use of
Locality Sensitive Hashing [6] as an alternative, more effi-
cient method for computing nearest neighbors and the con-
sideration of different distance metrics that are less sensitive
to lighting, location, orientation and scale.
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