
Clustering with Normalized Cuts is Clustering
with a Hyperplane

Ali Rahimi1 and Ben Recht2

1 MIT Computer Science and Artificial Intelligence Laboratory,
2 MIT Media Laboratory,

Cambridge MA, 02139 USA
{ali,brecht}@mit.edu

Abstract. We present a set of clustering algorithms that identify cluster
boundaries by searching for a hyperplanar gap in unlabeled data sets.
It turns out that the Normalized Cuts algorithm of Shi and Malik [1],
originally presented as a graph-theoretic algorithm, can be interpreted
as such an algorithm. Viewing Normalized Cuts under this light reveals
that it pays more attention to points away from the center of the data set
than those near the center of the data set. As a result, it can sometimes
split long clusters and display sensitivity to outliers. We derive a variant
of Normalized Cuts that assigns uniform weight to all points, eliminating
the sensitivity to outliers.

1 Introduction

The Normalized Cuts clustering algorithm of Shi and Malik [1] views the data set
as a graph, where nodes represent data points and edges are weighted according
to the similarity, or “affinity”, between data points. This is the starting point
of many other spectral clustering algorithms [2]. The affinity matrix used in
these algorithms is reminiscent of the Gram matrix that appears in kernel-based
algorithms, such as the Support Vector Machine [3]. In this paper we show that
Normalized Cuts lifts the data set to an infinite-dimensional feature space and
cuts through the data by passing a hyperplane through a “gap” in the lifted data.
It then labels points that fall on the same side of the hyperplane as belonging
to the same cluster.

A measure of gap can be any intuitive measure of distance between a plane
and a set of points. The measure of gap implicitly used in Normalized Cuts
focuses on the behavior of data points away from the mean of the data set, rather
than heeding the behavior of points near the hyperplane itself. This weighting
explains our observation that Normalized Cuts can sometimes break elongated
clusters and why it is so sensitive to outliers.

By defining the gap as the average distance between the hyperplane and the
data, we derive a clustering algorithm that does not exhibit these problems.
Finding labels under this new gap reduces to thresholding the top eigenvector
of a matrix.

2

Separating data with a hyperplane is a common technique in classification.
Two examples are Support Vector Machines [3] and Fischer Linear Discriminants
[4]. But classification differs from clustering in that the data are already labeled
in classification, whereas in clustering, the data are unlabeled and the goal is to
recover the labels. In section 7, we show how the SVM margin, typically used
for classification, can be adapted to clustering.

Other clustering algorithms have been explicitly designed to operate in a
lifted feature space. For example, [5, 6] perform approximate K-Means clustering
in feature space. By fitting a hypersphere around the data set [7] or a plane
between the data set and the origin [8], it is possible to learn a support function
for the data set. This function is positive for test points that are similar to points
in the training set and negative for test points that are not. These methods are
not clustering algorithms per se because they do not recover the labels of the
original data set. But Ben-Hur et. al [9] observed that the resulting support
functions form closed contours around clusters of the data. They devised an
algorithm for labeling the data based on these contours. By contrast, according
to our interpretation, Normalized Cuts directly searches for a hyperplanar gap
in the data set.

This paper only presents 2-way clustering algorithms. As with Normalized
Cuts, if more clusters are sought, each 2-way cut can be further subdivided by
running the clustering procedure recursively.

2 Normalized Cuts

Given a set of data points x = {xi|xi ∈ Rd, i ∈ 1..N}, and a distance measure
k(x, y), build the adjacency matrix Kij = k(xi, xj). This adjacency matrix is the
starting point for many other affinity-based (aka spectral) clustering algorithms.
A common choice for k is k(x, y) = exp

(
−‖xi−yi‖2

σ2

)
. It is perhaps by accident

that the distance measures used in spectral clustering are often postive definite
function. But this choice allows us to invoke the kernel trick in section 3 and to
interpret the operations of Normalized Cuts in a lifted space.

The affinity matrix K defines the weights on a fully connected graph where
each node corresponds to a data point xi and Kij is the weight of the edge
between node i and node j. Assigning each xi a label yi ∈ {−1,+1} cuts the
graph into a set A of the vertices with label -1 and a set B of vertices with labels
+1. The cost cut(A,B) is the sum of the weight of the edges between vertices
in A and vertices in B. The aim is to find the cut that minimizes the following
cost function:

cut(A,B)
(

1
Vol(A)

+
1

Vol(B)

)
, (1)

where Vol is the sum of the weights in a set. This cost function is designed to
penalize cuts that are not well balanced. Finding the optimal cut is NP hard, so

3

Normalized Cuts resorts to a relaxation of the above:

v∗ = arg maxv
v>D− 1

2 KD− 1
2 v

v>v

s.t. v>D1 = 0

D is a diagonal matrix whose iith entry is the sum of the ith row of K, and
1 is the column vector of all ones. The optimum v is the second eigenvector1

of D− 1
2 KD− 1

2 . The components of v∗ are then thresholded to yield a vector in
{−1, 1}N :

ŷ = sgn(v∗). (2)

This is the labeling as reported by Normalized Cuts. Throughout this paper, we
refer to this relaxation as the Normalized Cuts algorithm and interpret it as a
separating hyperplane method. Other relaxations are possible [10], but we do
not provide a separating hyperblane interpretation for these relaxations.

3 Lifting the Data Set

The kernel trick is a standard way of lifting the points of a data set to a high di-
mensional space [3]. Although there may be no way to separate N d-dimensional
data points with a hyperplane in Rd, it is often possible to do so in the lifted
space.

Consider a positive definite function k(x, y) of two vectors in Rd. This is a
Mercer kernel with expansion

k(x, y) =
∞∑

j=1

λjφj(x)φj(y), (3)

This expansion defines a lifting of a data point x in “input space” to a possibly
infinite dimensional vector X in “feature space” via Xj =

√
λjφj(x). The inner

product in feature space is defined so that < Xi, Xj >k= k(xi, xj).

A common choice for the kernel k is the Gaussian k(x, y) = exp
(
−‖x−y‖2

σ2

)
.

In many cases, including the Gausssian case, ‖X‖2 = k(x, x) = 1, so the kernel
maps points x onto a sphere. Also, because k(x, y) is always positive, the points
in feature space must all lie in the same orthant. For analysis on the structure
of feature space see [3].

Recall that the affinity matrix K of spectral clustering has k(xi, xj) as its
ijth element. Since Kij = X>

i Xj , we can write K = X>X, with X = {Xi}.

1 We casually refer to the nth eigenvector of a matrix in this paper. This is meant
as a shorthand for the eigenvector of the matrix corresponding to the nth largest
eigenvalue.

4

The D matrix of Normalized Cuts is diagonal with

Dii =
N∑

j=1

k(xi, xj) = X>
i

N∑
j=1

Xj .

Defining X̄ =
∑N

j=1 Xj , these entries are Dii = X>
i X̄ = ‖X̄‖ cos θi, where θi

is the angle in feature space between the vector Xi and the mean data vector
X̄/N . Because points lie in a sphere in feature space, we think of Dii as a distance
between Xi and the average point.

We’ve shown that the K and D matrices of Normalized Cuts have geometric
meaning in feature space. We now show how these quantities can be used cleave
the data with a hyperplane in feature space.

4 Clustering with a Hyperplane

A simple clustering idea is to find a hyperplane that passes through the lifted
data set with as great a distance to the data points as possible. We denote this
distance as the “gap” because, ideally, a hyperplane lying in a large gap in the
data set would have the largest distance to the points. Once a hyperplane is
fitted, points that fall on the same side of the hyperplane will be labeled as
being in the same cluster. See Figure 1.

The signed distance between a point X in feature space and a plane {X|β>X =
0} that passes through the origin of feature space with normal β is β>X. The
label of this point is the sign of this distance: y = sgn(β>X).

Let’s find a hyperplane that maximizes the following measure of gap:

MNCUT (β) =
1
N

N∑
i=1

1
cos θi

(
β>Xi

)2
= ‖β>XD− 1

2 ‖2. (4)

This is a weighted average of the distance between each point and the plane.
The particular choice of the weight factor 1/ cos θi is an implicit design choice
in Normalized Cuts. Other weightings are possible. For example, in section 6
we examine the case when distances are weighed uniformly. For the time being,
notice that this choice of weights gives greater weight to points away from the
mean (remember that the lifted data set X lies on a unit sphere, so that angles
between vectors are a good measure of distance). In section 5, we show that this
particular weighting is actually detrimental to the performance of Normalized
Cuts.

We would like to find a hyperplane in feature space, parametrized by its
(possibly infinite dimensional) normal vector, to maximize MNCUT (β). To insure
that the plane passes through the data set, and that the clusters have roughly the
same number of points, we additionally require that the average signed distance
to the hyperplane be zero:

∑N
i=1 β>Xi = 0, or equivalently, β>X̄ = 0. The

5

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

1.5

βT x=0 β

βT x
i
>0

βT x
i
<0

Fig. 1. A separating hyperplane cleaves the data set. The hyperplane is represented
by its normal β. The hyperplane is chosen to maximize a gap, which, in the case of
Normalized Cuts is defined as the weighted sum of the squared distances between the
hyperplane and the data points.

optimal β is

β∗ = arg maxβ MNCUT (β) (5)
s.t. ‖β‖ = 1,

β>X̄ = 0

This is the same as maximizing a Rayleigh quotient subject to a constraint:

β∗ = arg maxβ
β>XD−1X>β

β>β
(6)

s.t. β>X̄ = 0. (7)

The unconstrained Rayleigh quotient is maximized by the largest eigenvector of
XD−1X>. It is easy to verify that this eigenvector is X̄. But the constraint (7)
requires us to choose a β perpendicular to this eigenvector. Since XD−1X> is
positive semi-definite, the optimal β that satisfies the constraint is the eigenvec-
tor of XD−1X> corresponding to its second largest eigenvalue.

Because XD−1X> is a potentially infinite-dimensional matrix, we can’t com-
pute its eigenvectors directly. But we can represent them in terms of the eigen-
vectors of the related matrix D− 1

2 X>XD− 1
2 = D− 1

2 KD− 1
2 : If v2 is the second

eigenvector of D− 1
2 KD− 1

2 , then β∗ = XD− 1
2 v2 is the second eigenvector of

XD−1X>.

6

From v2, we can directly compute the signed distance between each point xi

and the hyperplane, without computing β∗:

ŷ = sgn
(
β∗>X

)
= sgn

(
β∗>XD− 1

2

)
= sgn

(
v>2 D− 1

2 X>XD− 1
2

)
= sgn

(
v>2 λ2

)
= sgn

(
v>2

)
,

where λ2 is the second largest eigenvalue of D− 1
2 KD− 1

2 and v2 is its correspond-
ing eigenvector. This is identical to the Normalized Cuts labeling obtained from
(2).

5 Discussion of Normalized Cuts

We have shown that Normalized Cuts and the hyperplane clustering method
of the previous section perform identical operations. This means that any geo-
metric intuition we might glean from the hyperplane algorithm carries over to
Normalized Cuts.

A hyperplane in feature space corresponds to a function in input space. As
a function of an input point x0, the signed distance between the corresponding
feature point X0 and the hyperplane defined by β is y(x0) = β∗X0. Since β∗ =
XD− 1

2 v2, we can write

y(x0) = α>X>X0 =
N∑

i=1

αik(xi, x0), (8)

with α = v>2 D− 1
2 .

So not only can we recover the labels of the given data set, we can also find
the splitting function y(x) which returns the distance to the hyperplane. We
show these separating functions in figures throughout this paper.

One might suspect that clustering with a hyperplane might not always work.
What if the data isn’t even separable by a hyperplane? We’ve also stipulated that
the hyperplane must go through the origin. Could this force certain clusters that
straddle the origin to be split? Because we’re operating in a high dimensional
feature space, point clouds are easier to separate with a hyperplane. Even clouds
that straddle the origin can be split by hyperplane. One way to see this is to
observe that the splitting function in input space y(x0) is not a line.

Figure 2 shows that even clusters that straddle the origin in input space and
require closed contours to be separated from other clusters can be isolated.

The presence of a weighting factor of 1/ cos θi in equation (4) was surprising
to us. This weighting appears to make Normalized Cuts sensitive to outliers,
which is undesirable. The only benefit we see in this weighting is that finding a
solution to equation (5) is simplified, because the second eigenvector of XD−1X>

automatically satisfies the balancing constraint of equation (7). Figure 3 demon-
strates Normalized Cuts’ sensitivity to an outlier. By sliding one outlier along
the x-axis, the clustering boundary can be arbitrarily shifted to the left or to

7

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Fig. 2. A hyperplane containing the origin in feature space can separate data sets that
are not separable by a hyperplane containing the origin in the input space. Normalized
Cuts identifies the inner circle and the ring as two separate clusters despite them not
being linearly separable in input space. The black line is the hyperplane back-projected
into input space.

the right. Figure 4 shows that Normalized Cuts will split elongated structures,
because according to its weighting, it is favorable to have points on opposite
ends of an elongated structure land on opposite sides of the separating plane.

In the next sections, we provide two alternative definitions for M(β). The
one in the following section gives equal weights to all points while retaining the
balancing constraint of equation (7). The one in section 7 uses the SVM margin.

6 Average Cost Gap

If equal weight is given to every point, the outlier and splitting problems are
attenuated. Consider the new gap measure

Mavg(β) =
1
N

N∑
i=1

(
β>Xi

)2
=

1
N

β>XX>β.

We can maximize this gap subject to the same constraints as before:

maxβ Mavg(β)
s.t. ‖β‖ = 1,

β>X̄ = 0

This time however, the top eigenvector will not be X̄, so the balancing constraint
will not automatically be satisfied by the second eigenvector.

8

−4 −2 0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

1

2

3

4

Fig. 3. In Normalized Cuts, an outlier can dwarf the influence of other points, because
points away from the mean are heavily weighted. Sliding the outlier (indicated by the
arrow) along the x-axis can shift the clustering boundary arbitrarily to the left or
the right. Without the outlier, Normalized Cuts places the boundary between the two
clusters.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 4. Because Normalized Cuts puts more weight on points away from the mean,
it prefers to have the ends of the elongated vertical cluster on opposite sides of the
separating hyperplane.

9

The balancing constraint forces us to search for a β orthogonal to X̄. The
symmetric projection matrix Z = I − X̄X̄>/‖X̄‖2 spans the space of vectors
orthogonal to X̄, and has X̄ in its null-space. Because Z is a projection matrix,
it is idempotent, so ZZ = Z. We can eliminate the balancing constraint by
forcing β to lie in the span of Z. We can do this by premultiplying β by Z
wherever it appears in the optimization problem:

maxβ β>Z>XX>Zβ

s.t. β>Z>Zβ = 1.

This is the same as finding an eigenvector corresponding to the largest λ in the
generalized eigenvalue problem:

Z>XX>Zβ = λZβ, (9)

where we have taken advantage of the symmetry and idempotency of Z. If v is
the largest eigenvector of

X>ZX = K− K11>K
1>K1

,

then β∗ = Z>Xv is the largest generalized eigenvector in equation (9).
To label the data points, we can just threshold v:

ŷ = sgn(β∗>X) = sgn(v>X>ZX) = sgn(v>)

.
Operationally, whereas Normalized Cuts thresholds the second largest eigen-

vector of XD−1X>, using an unweighted gap results in an algorithm that thresh-
olds the largest eigenvector of K−K11>K

1>K1
. This new hyperplane algorithm works

as well as Normalized Cuts, and is less susceptible to outliers. Compare Figure
5 with Figure 3. The outlier does not affect the clustering boundary, no matter
how far it is from the main body. Adding several outliers eventually does move
the boundary (not shown). Also compare Figure 6 with Figure 4. The elongated
cluster is not split up. No stretching of the elongated cluster causes it to be split.

7 A Better Margin?

We have been using a somewhat simplistic definition of gap by averaging the
distance to every data point. We could instead measure the distance only to the
points nearest the hyperplane. Using such a gap would provide greater robustness
to outliers and provide a concise summary of the data set in terms of support
vectors.

Just as with an SVM, we would like to maximize the margin C:

maxβ C

s.t. |β>Xi| ≥ C,

‖β‖ = 1

10

−4 −2 0 2 4 6 8 10 12 14 16

−4

−3

−2

−1

0

1

2

3

4

Fig. 5. The data set of Figure 3 is correctly segmented by weighting all points equally.
The outlier point doesn’t shift the clustering boundary significantly.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 6. The data set of Figure 4 is correctly segmented by weighting all points equally.

11

The presence of the absolute value and the absence of labels in the constraints is
the main difference from the SVM constraints. This optimization problem seeks
the largest number C to maximize the unsigned distance between data points
and the hyperplane.

We can remove the normality requirement on β by changing the constraints:

maxβ C

s.t. |β>Xi| ≥ C‖β‖

To see that this optimization problem is difficult, set ‖β‖ = 1/C

minβ ‖β‖2

s.t. |β>Xi| ≥ 1

This is a quadratic program, except the constraint space is not convex! The SVM
constraints yiβ

>xi > 1 are convex because yi are known. When the yi are not
known, we must consider both negative and postive label assignments, which
makes this problem hard.

If we restrict ourselves to solutions that are linear in the data set, we obtain
a finite, non-convex problem:

minα αT Kα

s.t. α>K>
i Kiα ≥ 1,

where Ki is the ith column of K. We have substituted β = Xα and squared
the constraint α>XXi ≥ 1 to obtain a quadratic constraint. We are currently
exploring relaxations for solving such a non-convex optimization problem.

8 Conclusion

We have provided a new interpretation for the Normalized Cuts relaxation of
Shi and Malik. We showed that this algorithm can be through of as searching
for a maximum gap hyperplane in a data set. In fitting this hyperplane, it pays
more attention to outliers, and so fails to recover sensible clusters in some cases.
We showed how to avoid this pitfall by weighting all data points equally.

We have limited ourselves to experiments with relatively few data points
until now. We are currently tuning the algorithms of sections 6 and 7 to handle
image-sized data sets to estimate their applicability to image segmentation.

References

1. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

2. D. Verma and M. Meila. A comparison of spectral clustering algorithms. In
http://www.cs.washington.edu/research/spectral, 2003.

12

3. S. Schölkopf, B. Mika, S. Burges, C. Knirsch, P. Miiller, K. itsch, and G. Smola.
Input space vs. feature space in kernel-based methods. IEEE Transactions on
Neural Networks, 10(5):1000–1017, 1999.

4. R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
5. R. Zhang and A. I. Rudnicky. A large scale clustering scheme for kernel k-means.

In ICPR, 2002.
6. M. Girolani. Mercer kernel based clustering in feature space. IEEE Transactions

on Neural Networks, 13(3):780–784, May 2002.
7. B. Schölkopf, R. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt. Support

vector method for novelty detection. In Advances in Neural Information Processing
Systems 12 (NIPS), 2000.

8. D.M.J. Tax and R.P.W. Duin. Outliers and data descriptions. In Proceedings of
the Seventh Annual Conference of the Advanced School for Computing and Imaging
(ASCI), June 2001.

9. A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clustering.
Journal of Machine Learning Research, 2:125–137, 2001.

10. E.P. Xing and M.I Jordan. On semidefinite relaxation for normalized k-cut and
connections to spectral clustering. Technical Report CSD-03-1265, 2003.

