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Abstract

In this paper we explore a multiple hypothesis approach to
estimating rigid motion from a moving stereo rig. More
precisely, we introduce the use of Gaussian mixtures to
model correspondence uncertainties for disparity and im-
age velocity estimation. We show some properties of the
disparity space and show how rigid transformations can be
represented. An algorithm derived from standard random
sampling-based robust estimators, that efficiently estimates
rigid transformations from multi-hypothesis disparity maps
and velocity fields is given.

1. Introduction

Estimation of rigid motion from a moving stereo rig is an
important problem in computer vision. To solve it, one
must both identify correspondences across viewpoint, i.e.,
disparity, and across time, i.e., displacement. Searching
for the joint set of disparity and displacement estimates that
obey the equations of rigid motion is the fundamental step
in rigid-body motion stereo.

Unfortunately, it is well known that estimation of both
disparity (stereo) and displacement (optical flow) corre-
spondences is often extremely ambiguous. Many common
image structures do not offer unique correspondence:repet-
itive textures, low textures regions, ...

One approach to this problem is to identify a core set of
image features which are likely to have unique matches. An
operator which selects “good features to track”, e.g., [15]
can locate points whose local contrast constrains tracking in
both the horizontal and vertical direction. But many scenes
will not have a sufficient number of such features, or they
may be difficult to track over longer time periods. And to
only use points at the image which pass such an interest
operator ignores the constraints offered by the partially am-
biguous points which could in some cases improve the esti-
mation.

Indeed, the success of parametric optical flow estima-

tion shows that reliable estimates of global motion can be
obtained even when the local measurements are almost ev-
erywhere ambiguous [1, 13, 2]. Such gradient-based meth-
ods are appealing because they integrate locally linear con-
straints, rather than single point estimates of image dis-
placement. Gradient-based motion-stereo has been demon-
strated [9, 10], but requires coarse-to-fine processing with
3-D warping when motion yields greater than sub-pixel dis-
placements.

We would like to capture displacement/disparity infor-
mation at partially ambiguous points, but without requiring
a coarse-to-fine method. Our approach is to develop a rigid
motion stereo estimator that uses non-unimodal input rep-
resentations. In most rigid motion stereo estimation algo-
rithms, the input representation is an optical flow and dis-
parity map. These representations capture only the mean
estimate (and sometimes variance) of the displacement or
disparity. In this paper we explore a multiple hypothesis ap-
proach to estimating rigid motion from a moving stereo rig.
We use a disparity and displacement space representation in
which a Gaussian mixture model represents the match sur-
face over the range of possible offsets.

Organization

The paper is organized as follow. In Section 2, we introduce
the use of Gaussian mixtures to model correspondence un-
certainties for disparity and velocity (optical flow) estima-
tion. An algorithm to estimate them is given in Section 3.
In Section 4 we show some properties of the disparity space
and show how rigid transformations can be represented. An
algorithm, derived from standard random sampling-based
robust estimators that efficiently estimates rigid transfor-
mations from multi-hypothesis disparity maps and velocity
fields, is given in Section 5. Finally Section 6 shows some
experiments with real data and the approach is discussed in
Section 7.



2. Multiple-hypothesis disparity maps
and image velocity fields

Estimating disparity maps from stereo images or image
velocity fields [8] from two consecutive images of a se-
quence are difficult and challenging problems. Even if these
problems are often tackled from different point of views
(correlation-based methods, optical flow), they both consist
in finding the most similar sub-images in two images.

In most of tracking and motion estimation algorithms,
disparity maps and velocity fields are supposed to be
uniquely identified (one image pixel is associated to one
disparity and one velocity). However there are some cases
(e.g.low-textured regions, repetitive textures, depth discon-
tinuity) when the information extracted from the images is
not sufficient enough to recover a unique correspondence.
In order to lower some ambiguities, coarse-to-fine methods
[14], and region growing techniques [12] are usually em-
ployed with some degree of success. Techniques involving
the utilization of interest points [16, 7] are also interesting
but provide only sparse range images.

All these approaches comes to use only part of the avail-
able information contained in the images or make hypoth-
esis about the 3-D scene. In order to use all the available
image information (dense approach), a probabilistic corre-
spondence model allowing for multiple hypothesis is neces-
sary.

Gaussian mixtures are well adapted to model multiple
correspondence hypothesis. We propose to model the prob-
ability of a point correspondence (disparity maps, velocity
fields) using mixtures of Gaussians, each component of the
mixture corresponding to a possible correspondence.

In the case of disparity maps, the probabilityp(djx; y) of
observing a disparityd of a pixel(x; y) is given by:

p(djx; y) =
KdX
i=1
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The disparityd of (x; y) is then considered to bedi with
a probability�i and a variance�2i .

In the case of velocity fields, the probabilityp(� jx; y) of
observing the image velocity� = (Æx; Æy) is given by:

p(� jx; y) =
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The velocity� of (x; y) is then considered to be� j with
a probability�j and a covariance�j .

These models describe well the correspondence ambi-
guities. It also enables to capture more visual information
along the vision process and propagate it to the different
levels of the system. In this paper, we show these corre-
spondence models can be propagated and updated using a

robust estimator in order to recover the motion of rigid ob-
jects observed by a stereo rig.

3. Gaussian mixtures estimation
We describe in this section an algorithm to estimate the
Gaussian mixtures (1) associated with a disparity map from
a rectified image pair and (2) associated with the velocity
field between two consecutive images of a sequence.

3.1. Disparity maps
Let C(l;r)(x; y; x0; y0) be a correlation function (e.g. SAD,
SSD, ...), normalized such that its values are in[0; 1], be-
tween the points(x; y) in the left image and(x0; y0) in the

right image. LetC(l;r)min(x; y) be the minimum correlation

scoreC(l;r)(x; y; x � d; y) overd values in a user-defined
range. A standard approach consists in considering the
disparityd associated withC(l;r)min(x; y) as the disparity of
(x; y). Instead we consider that each disparitydi such that:

C(l;r)(x; y; x� di; y) � C(l;r)min(x; y) + �disp

where�disp is a tolerance threshold, is a potential dispar-
ity. Then suchdi is considered as the mean of a Gaussian
component of the mixture and associated with a variance
�di = � and weight�i defined as:

�i =
1

N�

1� C(l;r)(x; y; x � di; y)

1� C(l;r)min(x; y)

whereN� is a normalization factor such that:
PKd

i �k = 1.

3.2. Velocity fields
In order to estimate the velocity field between two consec-
utive images of a sequence, a similar approach as for dis-
parity maps is used. For each point(x; y) in the first im-
age, all velocities� = (Æx; Æy) in a user-defined range are
considered and the correlation functionC(l;l0)(x; y; x0; y0)
is evaluated between the point(x; y) and(x0; y0) = (x +
Æx; y+ Æy) between two consecutive images of a sequence.

Let C(l;l0)min (x; y) be the minimum of these values.

Each velocity� j = (Æxj ; Æyj) such that:

C(l;l0)(x; y; x+ Æxj ; y + Æyj) � C(l;l0)min (x; y) + �veloc

where�veloc is a tolerance threshold, is considered as a
potential velocity. Then such� j defines the mean of a
Gaussian of covariance��j = �2I and weight�j =

1
N�

1�C(l;l
0)(x;y;� j)

1�C
(l;l0)

min
(x;y)

whereN� is a normalization factor.
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Figure 1: Euclidean reconstruction and motion of a cubevs.
reconstruction and motion in the disparity space.

4. Rigid transformations in the dispar-
ity space

In this section, we introduce the transformation that maps
two reconstructions of a rigid scene in the disparity space.
We call this transformationd-motionand show how it is
related to the rigid motion in the Euclidean space (see [4]
for details). We also show how to estimate this transforma-
tion from a list of correspondences! = (x; y; d) 7! !0 =
(x0; y0; d0).

4.1. Properties of the disparity space
In this section we argue the use of disparity images for spa-
tial representation of stereo data. We claim that this repre-
sentation has nice geometric and topological properties that
makes it ideal for spatial data representation and optimal
motion estimation.

We show that (i) using homogeneous coordinates, the
disparity image is a particular projective reconstruction of
the 3-D observed scene; therefore, the disparity space is a
projective space, and (ii) for parallel camera stereo rigs, the
noise in the disparity space is isotropic.

4.2. Geometric feature
Let us consider a parallel stereo rig. Letf be the focal
length, (u0; v0) the principal point coordinates associated
with the stereo rig andB be the baseline of the stereo rig.

Let M = (X Y Z) be the 3-D coordinates of a point
observed by a stereo rig. Letd be the disparity of the asso-
ciated image pointm = (x y) and(�x �y) = (x�u0 y� v0)
the centered image point coordinates.

Then the relation between(X;Y; Z) and(�x; �y; d) is:8<
:

�x = x� u0 = f X
Z

�y = y � v0 = f Y
Z

d = fB
Z

(3)
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where ”'” denotes the equality up to a scale factor and
� is a4� 4 matrix such that:
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The Eq.(4) demonstrates that there is a projective
transformation� between the homogeneous coordinates
(X Y Z 1) in the 3-D Euclidean space and the homoge-
neous coordinates(�x �y d 1). Therefore(�x �y d 1) is a pro-
jective reconstruction of the scene. The disparity space is
then a projective space.

4.3. Topological feature
An important feature of the disparity space is that the noise
associated with(�x �y d) is known:

� The noise associated with�x and�y is due to theimage
discretization. Without anya priori information, the
variances��x and��y of this noise is the same forall
image points. We can write��x = ��y = � where� is
the pixel accuracy (typically� = 1 pix.);

� The noise associated withd is related to the matching
process and modeled as a Gaussian mixture as shown
in Eq.(1). Each Gaussian of the mixture is character-
ized by a meandi (disparity hypotyhesis) and a vari-
ance� (pixel accuracy).

It is clear that the noises associated with�x, �y andd are
independent. It is worth noticing that when the mixture de-
scribingd is composed of a single component the noise in
d is a unimodal Gaussian. Therefore the noise in(�x �y d) is
isotropic and homogeneous.



4.4. Motion in the disparity space: d-motion
Let us consider a fixed stereo rig observing a moving point.
LetM = (X Y Z) andM 0 = (X 0 Y 0 Z 0) be the respective
3-D Euclidean coordinates of this point before and after the
rigid motion. LetR andt denote the rotation and translation
of the rigid motion. Using homogeneous coordinates we
have: �
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Let �R be a2� 2 matrix,r, s and�t, 2-vectors and� and
� scalars such that:
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Using standard coordinates, Eq.(5) becomes:

!0 = �(!) = 1
(!> 1)> (A! + b) (7)

whereA is a3� 3 matrix,b a 3-vector and a 4-vector
such that:
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The transformation!0 = �(!) is calledd-motion. In
homogeneous coordinates, it can be defined by the matrix
Hd. In standard coordinates, it can be defined byA, b and
.

4.5. Motion estimation with d-motion
Let !i ! !0i be a list of point correspondences. The prob-
lem of estimating the rigid motion between the points!i
and!0i amounts to minimizing over� the following error:

E2 =
X
i

"2i (8)

where"2i = jj�(!i)� !0ijj2
As demonstrated previously, if the focal lengthf and the

baselineB of the stereo rig are known,� can be parameter-
ized byR andt. The errorE2 can therefore be minimized
overR andt.

In the case of small motion, the rotationR can be pa-
rameterized by:

R = I+

0
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The error"2i can be expressed in a quasi-linear way:

"2i = jj�(!i)� !0ijj2
= jj 1

(!>
i
1)> (A!i + b)� !0ijj2

= �2i jjPiu+ vijj2

where�i = 1
(!>

i
1)> , u = (wa wb wc t

>)>. vi is a 3-

vector andPi is a3� 6 matrix whose entries depend on!i
and!0i.

The total errorE2 is then:

E2 =
X
i

�2i jjPiu+ vijj2 (10)

This form enables to perform the minimization ofE2

using an iterative weighted linear least square:

1. Initialization: Let �i(0) = 1. Estimateu using
Eq.(10);

2. Evaluate�i(k+1) = 1
(!>

i
1)> from the current solu-

tion foru;

3. Minimize:E2(k+1) using a standard weighted linear
least square method (�i fixed);

4. Stop test:if jE2(k + 1) � E2(k)j � � then stop, else
return to step 2.

It is well known that this kind of approach is not guar-
anteed to converge to the correct minimum. However we
observed that in practice, the minimization was correct and
performed in few iterations.

In the case of larger motions, a global non-linear mini-
mization must be performed over the 6 motion parameters.

4.6. Properties of the d-motion estimator
There are many theoretical advantages of estimating the
motion from disparity space and d-motion:

� Estimation accuracy. Minimizing E2 gives an ac-
curate estimation ofR andt. The noise of points in
the disparity space is homogeneous and isotropic (as
stated in section 4.3). Therefore minimizingE2 gives
a (statistically) quasi-optimal estimation.



� Generalization to the uncalibrated case. The d-
motion can be generalized in the uncalibrated case (f

andB unknown). In that case,A, b and can be rep-
resented by12 general parameters such that:
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In this case, the d-motion can be considered as a partic-
ular case of projective transformation [3] and has the
same structure as an affine transformation [11].R and
t cannot be recovered, but the d-motion� can still be
estimated and used for tasks requiring no Euclidean
estimation, such as motion segmentation or motion de-
tection.

5. Robust Structure and Motion esti-
mation

In this part, we describe a method to estimate d-motions
frommultiple-hypothesisdisparity maps and velocity fields.

A direct estimation of the d-motion using the method de-
scribed in Section 4.5 is obviously not possible because of
multiple correspondences but also because:

� there may be outliers (e.g. mismatched points due to
occlusions);

� there may be many independently moving objects in
the scene. Then all points don’t satisfy a single motion.

A robust estimator is then necessary to estimate the
d-motion. Though random sampling-based methods like
RANSAC [6] or LMedS (Least Median Square) are appeal-
ing and have been used with success in the context of mo-
tion estimation, they cannot be directly applied (because of
multiple hypothesis). However we introduce here an algo-
rithm largely inspired from standard random sampling ap-
proaches but adapted for multiple hypothesis data.

Data samples are selected by a random sampling process.
For each sample, a solution for the d-motion is estimated
and a criterion is estimated over the entire data set. The
solution yielding the best criterion is finally kept.

Random sampling process

A sample consists here ofn image points associated each
with a set of correspondences. A set of correspondences
of a point(x; y) is composed of (i) a disparitydi(x; y) be-
fore motion, (ii) a velocity� j(x; y) = (Æx; Æy) and (iii) a
disparityd0k(x+ Æx; y + Æy) after motion.

Image points(x; y) are first randomly chosen in a list
of supportpoints, composed of points associated with the
least disparity and velocity ambiguities (i.e. Kd(x; y)
and K� (x; y) small. It could be appealing to chose as
support points only points having no ambiguities at all
(i :e:Kd(x; y) = K� (x; y) = K 0

d(x + Æx; y + Æy) = 1).
However, in some difficult cases (see images 4 and ref-
fig:experim3), there may be few such points (e.g. a black
circle on a white background does not have any such points)
and some ambiguous (multi-hypothesis disparity and veloc-
ity) points have to be chosen as well.

In the case whereKd(x; y) = K� (x; y) = K 0

d(x +
Æx; y + Æy) = 1, (x; y) has a unique set of correspondence
(d; �; d0). Otherwise the set of correspondences of(x; y) is
chosen as follow:

� The disparitydi (resp.velocity� j) is randomly chosen
among the multiple components of the Gaussian mix-
ture of the point(x; y) of the disparity map before mo-
tion (resp. velocity field) with a probability�i (resp.
�j);

� The disparityd0k is then randomly chosen as one of
the components of the Gaussian mixture of the point
(x+ Æx; y + Æy) of the disparity map after motion.

D-motion estimation

The d-motion is estimated from the sample ofn points us-
ing Eq.(7). A minimum choice forn is 3. However in our
experiments we chosen � 5 in order to have a better esti-
mate.

Criterion

A point (x; y) is considered asinlier for a d-motion if a
valid set of correspondences(di; � j ; d0k) exists such that it
is consistent with this d-motion,i.e. if the transfer error
"2 = jj�(x y di)

>� (x+Æx y+Æy d0k)
>jj2 is smaller than

a threshold.
Let � be defined by:

�(x; y; di; � j ; d
0

k) =

�
�i�j�

0

k if "2 � ��2

0 otherwise

The function� gives (i) a null score to sets of correspon-
dences not consistent with a d-motion� and (ii) a score
equal to the probability of observing(di; � j ; d0k) for consis-
tent ones.

The criterion' associated with an image point is then
given by:

'(x; y) =
Kd(x;y)
max
i=1

K� (x;y)
max
j=1

K0

d(x+Æxj ;y+Æyj)
max
k=1

�(x; y; di; � j ; d
0

k)

(11)



The criterion' is equal to the score� of the most prob-
able consistent correspondence set.

Finally the total criterion is:

� =
X
x;y

'(x; y) (12)

It is worth noticing that the number of it-
erations to estimate ' in (11) should be
Kd(x; y)K� (x; y)

PK� (x;y)
k=1 K 0

d(x+ Æxk; y + Æyk).
Hopefully the complexity can be made much smaller.

We assume that a table(x; y; Æx; Æy) 7! � (resp.
(x0; y0; d0) 7! �0) that gives0 if � = (Æx; Æy) (resp. d0)
is not a mixture component of point(x; y) (resp. (x0; y0))
and its weight� (resp.�0) otherwise. These tables can eas-
ily be filled during the Gaussian mixtures estimation.

Then, for each componentdi in the mixture, a theoretical
transfer point(x̂0; ŷ0; d̂0) can be estimated. The search of
consistent(Æx; Æy; d0) has just to be done by looking in the
tables(x; y; Æx; Æy) 7! � and(x0; y0; d0) 7! �0 in cells such
that(x̂0 � x� Æx)2 + (ŷ0 � y � Æy)2 + (d̂0 � d0)2 � ��2.
The number of iterations to estimate� is then proportional
toKd(x; y).

Algorithm

The random sampling is then performed many times. For
each sample, a d-motion is estimated and a criterion� is
estimated over the entire image. The process is stopped
when a fractionT of the image is considered as inliers (we
choseT=50% in our experiments). Then the d-motion is es-
timated using all availableinliers weighed by'(x; y) and
a finalinlier estimation is performed.

It worth noticing that, while inliers are identified, the set
of correct correspondences(d; �; d0) associated with each
inlier are identified as well. The weights�0 of the Gaussian
mixtures corresponding to consistent disparitiesd0 are then
reinforced (increment with a fixed value) and normalized.

This updated disparity map can then be used in order to
estimate the next motion.

6. Experiments
6.1. D-motion accuracy
Experiments with simulated data are carried out in order
to estimate the quality of the d-motion estimator. A syn-
thetic 3-D scene of 100 points is generated. A random rigid
motion is generated as well. The 3-D points of each posi-
tion (before and after the rigid motion) are projected onto
the cameras of a virtual stereo rig, and Gaussian noise with
varying standard deviation (0.0 to 1.2pix) is added to the
image point locations. Two different methods are applied
: (i) the method based on d-motion (direct minimization
of Eq.(8)) and (ii) the quaternion-based algorithm [8]. In
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order to compare the results, some errors are estimated be-
tween the expected motion and the estimated ones. The cri-
terion errors are : the relation translation error, the relative
rotation angle error and the angle between the expected and
estimated rotation axis.

This process is iterated 500 times. The mean of each
criterion error is shown Figures 2 and 3. Figure 2 shows
the estimation of the relative angle and translation errors for
small motions (rotation angle smaller than0:1 rad.). Fig-
ure 3 shows the estimation of the relative angle and trans-
lation errors for ”standard” motions (rotation angle greater
than0:1rad.. Both figures show that the method gives accu-
rate results even for high image noise (greater than1:0 pix.).

6.2. D-motion using multi-hypothesis corre-
spondences

Experiments with real data were conducted in order to jus-
tify the applicability and reliability of our approach.

We applied our approach to difficult scenes (see Fig-
ures 4 and 6). These scenes have a lot of ambiguous points
(repetitive textures and horizontal textures for Figure 4 and
nearly no textures and corners in Figure 6). We applied our
technique from Section 5. In order to estimate the disparity
maps and velocity fields, we used a SSD-based technique
using9� 9 template windows.

Figure 4 (resp.Figure 5) shows1 the most probable com-
ponents of the velocity fields corresponding to a vertical as-
cending translation (resp.right-to-left rotation) of the stereo
rig.

Figures 6 and 7 show the most probable components of
the velocity fields obtained from two different motions of
the stereo-rig.

These experiments show that our approach succeeds in
finding the correct velocities even for ambiguous image
points (such as the ones around the metallic curtains or on
the border and center of black circles) where standard opti-
cal flow algorithms usually fail.

We also carried out an experiment using a sequence of
image pairs in order to estimate the accuracy of the motion
estimation. The sequence consists of 220 image pairs (see
Figure 8) gathered by a moving stereo rig. The motion is
first an ascending vertical translation (motion 1) of 15cm
with constant speed and then a rotation around a vertical
axis (motion 2) of 25degwith constant speed.

Figures 9 and 10 show the estimated location of the sen-
sor during motion 1.

Figure 12 shows the error between the estimated rotation
axis of the motion and the ground-truth rotation axis during
motion 2. Figure 11 shows the estimated angle of motion 2.

1For a better visualization, only velocities of points on a grid are repre-
sented.

Figure 4: Velocity field estimated from ascending vertical
translation

Figure 5: Velocity field estimated from right-to-left rotation



Figure 6: Velocity field estimated from translation

Figure 7: Velocity field estimated from rotation

All the results show that the motion estimation is quite
consistent with the ground-truth data. In all the experi-
ments, the motion estimation takes between 5 and 10sec.
for 1 image.

7. Discussion

In this paper, we have described a multiple hypothesis ap-
proach to estimating rigid motion from a moving stereo rig.
We use a disparity and displacement space representation
in which a Gaussian mixture model represents the match
surface over the range of possible offsets. We also show
that the disparity space was an adequate space to represent
spatial data and introduced the rigid transformations associ-
ated with this space (d-motions). Finally we proposed a ran-
dom sampling-based algorithm that estimates rigid transfor-
mations from multi-hypothesis disparity maps and velocity
fields and gives at the same time the most consistent set of
disparity and velocity hypothesis.

We show with experiments that our approach enabled to
find correct velocity fields for difficult images (images with
many ambiguous points) and accurately gave a motion esti-
mation.

In this paper we used Gaussian mixtures where each
component has the same variance�. The main reason for

Figure 8: Images extracted from the sequence. The first
4 images correspond to the ascending vertical translation
(motion 1). The last 4 images correspond to the rotation
around a vertical axis (motion 2).
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Figure 9: Estimated location of the rig in the xy-plane
(fronto-parallel plane)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

0.02

0.04

0.06

0.08

0.1

0.12

z (depth)

y 
(h

ei
gh

t)

Figure 10: Estimated location of the rig in the yz-plane
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Figure 11: Estimated angle of the rotation
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Figure 12: Error angle between the estimated and the
ground-truth rotation axis

that is that their estimation is fast and easy using the algo-
rithm from Section 3. However we are investigating the use
of general Gaussian mixtures to model correspondences.
Such Gaussian mixtures can be estimated using a standard
EM-algorithm. Our future work consists in designing an al-
gorithm to robustly estimate the d-motion from such mod-
els.
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