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Abstract

Many problems in vision involve the prediction of a class
label for each frame in an unsegmented sequence. In this
paper, we develop a discriminative framework for simulta-
neous sequence segmentation and labeling which can cap-
ture both intrinsic and extrinsic class dynamics. Our ap-
proach incorporates hidden state variables which model the
sub-structure of a class sequence and learn dynamics be-
tween class labels. Each class label has a disjoint set of
associated hidden states, which enables efficient training
and inference in our model. We evaluated our method on
the task of recognizing human gestures from unsegmented
video streams and performed experiments on three different
datasets of head and eye gestures. Our results demonstrate
that our model compares favorably to Support Vector Ma-
chines, Hidden Markov Models, and Conditional Random
Fields on visual gesture recognition tasks.

1. Introduction

Visual gesture sequences tend to have distinct inter-
nal sub-structure and exhibit predictable dynamics between
individual gestures. In this paper, we introduce a new
visual gesture recognition algorithm which can capture
both sub-gesture patterns and dynamics between gestures.
Our Latent-Dynamic Conditional Random Field (LDCRF)
model is a discriminative approach for gesture recognition.
In contrast to generative approaches (e.g., Hidden Markov
Models [26, 4]), our model discovers latent structure that
best differentiates visual gestures and can distinguish sub-
tle motion patterns such as natural head nods and eye gaze
aversion [14].

An LDCRF offers several advantages over previous dis-
criminative models. In contrast to Conditional Random
Fields (CRFs) [11], our method incorporates hidden state
variables which model the sub-structure of gesture se-
quences. The CRF approach models the transitions be-
tween gestures, thus capturing extrinsic dynamics, but lacks
the ability to represent internal sub-structure. In contrast
to Hidden-state Conditional Random Fields (HCRFs) [18],

our method can learn dynamics between gesture labels and
can be directly applied to label unsegmented sequences.

The LDCRF model thus combines the strengths of CRFs
and HCRFs by capturing both extrinsic dynamics and
intrinsic sub-structure. It learns the extrinsic dynamics
by modeling a continuous stream of class labels, and it
learns internal sub-structure by utilizing intermediate hid-
den states. Since LDCRF models include a class label per
observation (see Figure 1), they can be naturally used for
recognition on un-segmented sequences, overcoming one of
the main weaknesses of the HCRF model. By associating
a disjoint set of hidden states to each class label, inference
on LDCRF models can be efficiently computed using be-
lief propagation during training and testing. Our results on
visual gesture recognition demonstrate that LDCRF mod-
els compare favorably to models based on Support Vector
Machines (SVMs), HMMs, CRFs and HCRFs1.

2. Related Work

There is a wide range of related work for visual gesture
recognition (see surveys [28] and [6]). Recognition of head
gestures has been demonstrated by several authors, using
generative models of eye and/or head position over time.
Kapoor and Picard presented a technique to recognize head
nods and head shakes based on two Hidden Markov Models
(HMMs) trained and tested on 2D coordinate results from
an eye gaze tracker [8]. Kawato and Ohya developed a tech-
nique for head gesture recognition using “between eyes”
templates [9]. Fugie et al. also used HMMs to perform head
nod recognition [4]. They combined head gesture detection
with prosodic recognition of Japanese spoken utterances to
determine strongly positive, weak positive, and negative re-
sponses to yes/no type utterances. HMMs [19] and related
models have been used to recognize arm gestures [2] and
sign language gestures [1, 22].

Recently many researchers have worked on modeling
eye gaze behavior for the purpose of synthesizing a real-
istic Embodied Conversational Agent (ECA). Colburn et

1C++ and Matlab implementations of our LDCRF model
as well as CRF and HCRF models can be downloaded at
http://sourceforge.net/projects/hcrf.
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al. use hierarchical state machines to model eye gaze pat-
terns in the context of real-time verbal communication [3].
Fukayama et al. use a two-state Markov model based on
amount of gaze, mean duration of gaze, and gaze points
while averted [5]. Lee et al. use an eye movement model
based on empirical studies of saccade and statistical mod-
els of eye-tracking data [12]. Pelachaud and Bilvi pro-
posed a model that embeds information on communicative
functions as well as on statistical information of gaze pat-
terns [17].

A significant amount of recent work has shown the
power of discriminative models for specific sequence la-
beling tasks. In the speech and natural language process-
ing community, Conditional Random Field (CRF) models
have been used for tasks such as word recognition, part-
of-speech tagging, text segmentation and information ex-
traction [11]. In the vision community, Sminchisescu et
al. applied CRFs to classify human motion activities (i.e.
walking, jumping, etc) and showed improvements over an
HMM approach [21]. Kumar et al. used a CRF model for
the task of image region labeling [10]. Torralba et al. intro-
duced Boosted Random Fields, a model that combines local
and global image information for contextual object recogni-
tion [24]. An advantage of CRFs is that they can model ar-
bitrary features of observation sequences and can therefore
accommodate overlapping features.

When visual phenomena have distinct sub-structure,
models that exploit hidden state are advantageous. Hidden-
state conditional random fields (HCRFs), which can esti-
mate a class given a segmented sequence, have been pro-
posed in both the vision and speech community. In the
vision community, HCRFs have been used to model spa-
tial dependencies for object recognition in cluttered im-
ages [18] and for arm and head gesture recognition from
segmented sequences [27]. In the speech community, a sim-
ilar model was applied to phone classification [7]. Since
they are trained on sets of pre-segmented sequences, these
HCRF models do not capture the dynamics between ges-
ture labels, only the internal structure. In both [7] and [27],
HCRFs were applied to segmented sequences, leaving seg-
mentation as a pre-processing step.

Sutton et al. [23] presented a dynamic conditional ran-
dom field (DCRF) model whose structure and parameters
are repeated over a sequence. They showed results for
sequence segmentation and labeling where the model was
trained using loopy belief propagation on a fully-observed
training set. As stated by the authors, training a DCRF
model with unobserved nodes (hidden variables) makes
their approach difficult to optimize. Our LDCRF incorpo-
rates hidden state variables with an explicit partition; infer-
ence can be efficiently computed using belief propagation
during both training and testing.
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Figure 1. Comparison of our LDCRF model with two previously
published models: CRF [11] and HCRF [7, 27]. In these graph-
ical models, xj represents the jth observation (corresponding to
the jth frame of the video sequence), hj is a hidden state assigned
to xj , and yj the class label of xj . Gray circles are observed
variables. The LDCRF model combines the strengths of CRFs
and HCRFs in that it captures both extrinsic dynamics and intrin-
sic structure and can be naturally applied to predict labels over
unsegmented sequences. Note that only the link with the current
observation xj is shown, but for all three models, long range de-
pendencies are possible.

3. Latent-Dynamic Conditional Random
Fields

Several problems in vision can be thought of as discrete
sequence labeling tasks over visual streams. We focus on
problems where the goal is to predict a class label at each
point in time for a given sequence of observations. In the
case of human gesture recognition, a sequence of video
frames is given and the goal is to predict a gesture label
per frame. We are interested in visual sequences that ex-
hibit both dynamics within each class label (i.e. intrinsic
structure) and varied transitions between class labels (i.e.
extrinsic structure).

Our task is to learn a mapping between a sequence of
observations x = {x1, x2, ..., xm} and a sequence of labels
y = {y1, y2, ..., ym}. Each yj is a class label for the jth

frame of a video sequence and is a member of a set Y of pos-
sible class labels. Each frame observation xj is represented
by a feature vector φ(xj) ∈ Rd, for example, the head ve-
locities at each frame. For each sequence, we also assume
a vector of “sub-structure” variables h = {h1, h2, ..., hm}.
These variables are not observed in the training examples
and will therefore form a set of hidden variables in the
model.

Given the above definitions, we define a latent condi-
tional model:

P (y | x, θ) =
∑
h

P (y | h, x, θ)P (h | x, θ). (1)

where θ are the parameters of the model.
To keep training and inference tractable, we restrict our

model to have disjoint sets of hidden states associated with
each class label. Each hj is a member of a set Hyj of pos-
sible hidden states for the class label yj . We define H, the
set of all possible hidden states to be the union all Hy sets.



Since sequences which have any hj /∈ Hyj will by defini-
tion have P (y | h, x, θ) = 0, we can express our model
as:

P (y | x, θ) =
∑

h:∀hj∈Hyj

P (h | x, θ). (2)

We define P (h|x, θ) using the usual conditional random
field formulation:

P (h| x, θ) =
1

Z(x, θ)
exp

(∑
k

θk · Fk(h, x)

)
, (3)

where the partition function Z is defined as

Z(x, θ) =
∑
h

exp

(∑
k

θk · Fk(h, x)

)
,

Fk is defined as

Fk(h, x) =
m∑

j=1

fk(hj−1, hj, x, j),

and each feature function fk(hj−1, hj, x, j) is either
a state function sk(hj , x, j) or a transition function
tk(hj−1, hj, x, j). State functions sk depend on a single
hidden variable in the model while transition functions tk
can depend on pairs of hidden variables.

3.1. Learning Model Parameters

Our training set consists of n labeled sequences (xi,yi)
for i = 1...n. Following [10, 11], we use the following
objective function to learn the parameter θ∗:

L(θ) =
n∑

i=1

log P (yi | xi, θ) − 1
2σ2

||θ||2 (4)

The first term in Eq. 4 is the conditional log-likelihood of
the training data. The second term is the log of a Gaussian
prior with variance σ2, i.e., P (θ) ∼ exp

(
1

2σ2 ||θ||2
)
.

We use gradient ascent to search for the optimal parame-
ter values, θ∗ = argmaxθ L(θ), under this criterion. Given
Equations 2 and 3 , the gradient of log P (yi | xi, θ) for
one particular training sequence (xi,yi) with respect to the
parameters θk associated with a state function sk can be
written as (details omitted for space):∑

j,a P (hj = a | y, x, θ)sk(j, a, x)
−∑y′,j,a P (hj = a, y′ | x, θ)sk(j, a, x) (5)

where

P (hj = a | y, x, θ) =

∑
h:hj=a∧∀hj∈Hyj

P (h | x, θ)

∑
h:∀hj∈Hyj

P (h |x, θ)
(6)

Notice that given our definition of P (h|x, θ) in Equa-
tion 3, the summations in Equation 6 are simply constrained
versions of the partition function Z over the conditional
random field for h. This can be easily shown to be com-
putable in O(m) using belief propagation [16], where m is
the length of the sequence.

The gradient of our objective function with respect to the
parameters θk associated to a transition function tk can be
derived the same way. The marginal probabilities on edges
necessary for this gradient, P (hj = a, hk = b | y, x, θ),
can also be computed efficiently using belief propagation.
In our experiments, we performed gradient ascent with the
BFGS optimization technique. All the models required
fewer than 300 iterations to converge.

We train our LDCRF model on data labeled with class
labels (but not hidden states), yielding a classifier which can
be run directly on unsegmented visual sequences. We have
found that assuming each class label has a disjoint set of
hidden states significantly simplifies model training, but is
still powerful enough to improve recognition performance
over conventional discriminative sequence methods. Our
LDCRF model has a similar computational complexity to a
fully observable CRF.

3.2. Inference

For testing, given a new test sequence x, we want to es-
timate the most probable label sequence y∗ that maximizes
our conditional model:

y∗ = arg max
y

P (y | x, θ∗) (7)

where the parameter values θ∗ are learned from training
examples. Assuming each class label is associated with a
disjoint set of hidden states, the previous equation can be
rewritten as:

y∗ = argmax
y

∑
h:∀hi∈Hyi

P (h | x, θ∗) (8)

To estimate the label y∗
j of frame j, the marginal prob-

abilities P (hj = a | x, θ∗) are computed for all possi-
ble hidden states a ∈ H. Then the marginal probabilities
are summed according to the disjoint sets of hidden states
Hyj and the label associated with the optimal set is cho-
sen. As discussed in the previous subsection, the marginal
probabilities can efficiently be computed using belief prop-
agation. While another option would be to compute the
Viterbi path, in our experiments we use the above maximal
marginal probabilities approach to estimate the sequence of
labels since it minimizes the error per frame.

3.3. Feature Functions

In our model, |H| × |H| transitions functions tk are de-
fined one for each hidden state pair (h′, h′′). Each transition



function is expressed as,

tk(hj−1, hj, x, j) =

{
1 if hj−1 = h′ and hj = h′′

0 otherwise

It is worth noticing that the weights θk associated with
the transition functions model both the intrinsic and extrin-
sic dynamics. Weights associated with a transition function
for hidden states that are in the same subset Hyi will model
the substructure patterns, while weights associated with the
transition functions for hidden states from different subsets
will model the external dynamic between gestures.

The number of state functions, sk, will be equal to the
length of the feature vector, φ(xj), times the number of pos-
sible hidden states, |H|. In the case of head gesture recog-
nition where the rotational velocity (yaw, roll and pitch) is
used as input, the length of our feature vector, φ(xj), will be
3 dimensions per frame. If our model has 6 hidden states (3
per label) then the total number of state functions, sk, (and
total number of associated weights θk) will be 3 × 6 = 18.

3.4. Synthetic Example

We illustrate how our LDCRF model can capture both
extrinsic dynamics and intrinsic structure using a simple ex-
ample. A synthetic dataset was constructed containing se-
quences from a gesture class and a background class. Sub-
sequences belonging to the gesture class consisted of three
sub-gesture samples simulating the beginning, middle and
end of a gesture and were created by sampling from three
Gaussian distributions in a deterministic order. The back-
ground subsequences were generated by randomly selecting
k samples from a mixture of seven Gaussians, where k is the
length of the subsequence, picked at random between 1 and
10. Both the training and testing datasets consisted of 200
1-dimensional sequences of variable length (30-50 samples
per sequence). Synthetic sequences were constructed by
randomly concatenating subsequences sampled from ges-
ture and background classes2

Given this dataset we trained both a LDCRF model with
three hidden states per labels and a CRF. The CRF model
was only able to recognize 72% (equal error rate) of the test
examples with this simple synthetic dataset, while our LD-
CRF model has perfect performance. Figure 2 shows the
sequence of hidden labels assigned by our LDCRF model
for a sequence in the testing set. As this figure suggests
the model has learned the intrinsic structure of the class us-
ing one of its hidden states to recognize each of the sub-
structures. In the following section we present results com-
paring LDCRF performance with five baseline models on
natural gesture datasets.

2Source code of this synthetic example is part of the LDCRF distribu-
tion.
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Figure 2. This figure shows assignment of hidden states given
by the LDCRF model for a sample sequence from the synthetic
dataset. As we can see the model has used the hidden states to
learn internal sub-structure of the gesture class.

4. Experiments

We evaluate the performance of our LDCRF model
for visual gesture recognition using head and eye motion
datasets. Our datasets came from three user studies: (1)
head gestures when interacting with a physical avatar [20],
(2) head gesture-based widgets for a non-embodied inter-
face [13], and (3) eye gestures for interaction with a virtual
embodied agent [14].

In this section we describe the three datasets used in our
experiments, present the baseline models used to evaluate
the performance of our LDCRF model and describe our ex-
perimental methodology. In the following section we report
and discuss the results.

4.1. Datasets

MELHEAD This dataset consisted of head velocities from
16 human participants interacting with Mel, an interac-
tive robot [20]. Each interaction lasted between 2 to 5
minutes. Head pose tracking was performed online using
the adaptive view-based appearance model [15]. At each
frame (∼25Hz), the tracker logged with timestamps the 3D
position and orientation of the head.

Human participants were video recorded while interact-
ing with the robot to obtain ground truth labels including the
start and end points of each head nod. From these ground
truth labels, each frame was labeled as either being a head-
nod or background gesture/motion. A total of 274 head
nods were naturally performed by the participants while in-
teracting with the robot. All other types of head gestures
(e.g. head shakes, look away, no motion) were labeled as
being in the background class.

WIDGETSHEAD This dataset consisted of head veloc-
ities from 12 participants who interacted with gesture-
based widgets [13]. Similar to the first dataset, head pose
was estimated using the adaptive view-based appearance
model [15]. The video sequences were manually annotated



for ground truth. Each frame was labeled as either being a
head-nod or background gesture/motion; from 79 minutes
of interaction, 269 head nods were labeled. All other types
of head gestures (e.g. head shakes, look away, no motion)
were labeled as being in the background class.

AVATAREYE This dataset consisted of eye gaze estimates
from 6 human participants interacting with a virtual em-
bodied agent [14]. The goal is to recognize gaze aver-
sion gestures — eye movements to empty or uninformative
regions of space, reflecting “look-away” or “thinking” —
from unsegmented video sequences. Each video sequence
lasted approximately 10-12 minutes, and was recorded at 30
frames/sec. During these interactions, human participants
would rotate their head up to +/-70 degrees around the Y
axis and +/-20 degrees around the X axis, and would also
occasionally translate their head, mostly along the Z axis.

For each video sequence, eye gaze was estimated using
the view-based appearance model described in [14] and for
each frame a 2-dimensional eye gaze estimate was obtained.
The dataset was labeled with the start and end points of
each gaze aversion gesture as described in [14]. Each frame
was manually labeled as either a gaze-aversion gesture or a
background gesture/motion; the latter included sections of
video where people were looking at the avatar or perform-
ing eye deictic gestures.

4.2. Models

In our experiments, the LDCRF model is compared with
five models: Conditional Random Field (CRF), Hidden-
state Conditional Random Field (HCRF), Hidden Markov
Model (HMM) and Support Vector Machine (SVM) meth-
ods. Note that we tested two HMM configurations: an
HMM with a sliding window (referred to as HMM-S in the
results section) and an HMM that incorporates external dy-
namic (referred to as HMM).

CONDITIONAL RANDOM FIELD As a first baseline, we
trained a single CRF chain model where every gesture class
has a corresponding state label. During evaluation, marginal
probabilities were computed for each state label and each
frame of the sequence using belief propagation. In our base-
line implementation the optimal label for a specific frame
is selected to be the label with the highest marginal prob-
ability. In our case, to be able to plot ROC curves of our
results, the marginal probability of the gesture was thresh-
olded at each frame, and the frame was given a positive la-
bel if the marginal probability was larger than the threshold.
The objective function of the CRF model contains a regu-
larization term similar to the regularization term shown in
Equation 4 for the LDCRF model. During training and val-
idation, this regularization term was validated with values
10k, k = −3..3.

SUPPORT VECTOR MACHINE As a second baseline, a
multi-class SVM was trained with one label per gesture us-
ing a Radial Basis Function (RBF) kernel. Since the SVM
does not encode the dynamics between frames, the training
set was decomposed into frame-based samples, where the
input to the SVM is the head velocity or eye gaze at a spe-
cific frame. The output of the SVM is a margin for each
class. This SVM margin measures how close a sample is to
the SVM decision boundary [25]. The margin was used to
plot the ROC curves. During training and validation, two
parameters were validated: C, the penalty parameter of the
error term in the SVM objective function, and γ, the RBF
kernel parameter. Both parameters were validated with val-
ues 10k, k = −3..3.

HIDDEN MARKOV MODEL As a third baseline, an HMM
was trained for each gesture class. We trained each HMM
with segmented subsequences where the frames of each
subsequence all belonged to the same gesture class. This
training set contained the same number of frames as the
one used for training the other models except frames were
grouped into subsequences according to their label. As
we stated earlier, we tested two configurations of Hidden
Markov Models: an HMM evaluated over a sliding window
(referred to as HMM-S in our experiments) and a concate-
nated HMM that incorporates external dynamics (referred
to as HMM). For the first configuration, each trained HMM
is tested separately on the new sequence using a sliding win-
dow of fixed size (1.3 seconds, which is equal to the average
gesture length). The class label associated with the HMM
with the highest likelihood is assigned to the frame at the
center of the sliding window.

For the second configuration, the HMMs trained on sub-
sequences are concatenated into a single HMM with the
number of hidden states equal to the sum of hidden states
from each individual HMM. For example, in a binary recog-
nition problem where each individual HMM is trained using
3 hidden states, the concatenated HMM will have 6 hidden
states. To estimate the transition matrix of the concatenated
HMM, we compute the Viterbi path of each training sub-
sequence, concatenate the subsequences into their original
order, and then count the number of transitions between hid-
den states. The resulting transition matrix is then normal-
ized so that its rows sum to one. At testing, we apply the
forward-backward algorithm on the new sequence, and then
sum at each frame the hidden states associated with each
class label. The resulting HMM can be seen as a generative
version of our LDCRF model. During training and valida-
tion, we varied the number of states from 1 to 6 and the
number of Gaussians per mixture from 1 to 3.



HIDDEN-STATE CONDITIONAL RANDOM FIELD As a
fourth baseline, we trained a HCRF model on all gesture
classes as described in [27]. Since HCRFs cannot model
dynamics between gestures, we trained the HCRF on seg-
mented sub-sequence (the same training set as the HMM-S
model). At testing, the HCRF model is applied on the new
sequence using a sliding window of fixed size (1.3 seconds).
The class label with the highest likelihood is assigned to the
frame at the center of the sliding window. During train-
ing and validation, we varied the number of hidden states
(from 2 to 6 states) and the regularization term (with values
10k, k = −3..3).

LATENT-DYNAMIC CONDITIONAL RANDOM FIELD

Our LDCRF model was trained using the objective func-
tion described in Section 3.1. During evaluation, we com-
pute ROC curves using the maximal marginal probabili-
ties of Equation 8. During training and validation, we
varied the number of hidden states per label (from 2 to 6
states per label) and the regularization term (with values
10k, k = −3..3).

4.3. Methodology

For all three datasets, the experiments were performed
using a K-fold testing approach where K sequences were
held out for testing while all other sequences were used
for training and validation. This process was repeated N/K
times, where N is the total number of sequences. For the
MelHead, WidgetsHead and AvatarEye datasets, K
was 4, 3 and 1 respectively. For validation, we performed
holdout cross-validation where a subset of the training set
is kept for validation. The size of this validation set was
equal to 4, 3 and 1 for the MelHead, WidgetsHead and
AvatarEye datasets respectively. The optimal validation
parameters were chosen based on the equal error rates on
the validation set.

All three datasets contained an unbalanced number of
gesture frames compared to background frames. To have
a balanced training set and to reduce the training time,
the training dataset was preprocessed to create a smaller
training dataset containing an equal number of gesture and
background examples. The training set was a set of se-
quences where each sequence either was uniformly back-
ground class, or contained an example of the gesture class,
with a buffer of background frames before and after the ges-
ture. The size of the buffer before and after the gesture ran-
domly varied between 2 and 50 frames. Background sub-
sequences were randomly extracted from the original se-
quences with length varying between 30-60 frames.

Each experiment was also repeated with different input
feature window sizes. A window size equal to one means
that only the feature vector at the current frame was used to
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Figure 3. Results with WidgetsHead dataset: (top) ROC curves
for a window size of one (no long range dependencies); (bottom)
Accuracy at equal error rates as a function of the window size.

create the input feature. A window size of five means that
the input feature vector at each frame is a concatenation of
the feature vectors from five frames: the current frame, the
two preceding frames, and the two future frames.

5. Results and Discussion

In this section, the results of our experiments for head
and eye gesture recognition are presented. We compared all
six models (SVM, CRF, HMM, HMM-S, HCRF and LD-
CRF) on three datasets. For the ROC curves shown in this
section, the true positive rate is computed by dividing the
number of recognized frames by the total number of ground
truth frames. Similarly, the false positive rate is computed
by dividing the number of falsely recognized frames by the
total number of background frames.

Figure 3 compares the ROC curves from the six models
for a window size of one for the WidgetsHead dataset.
A plot of the Equal Error Rate (EER) — recognition rate at
which both the true positive rate and the true negative rate
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Figure 4. Results with MelHead dataset: (top) ROC curves for a
window size of one; (bottom) Accuracy at equal error rates as a
function of the window size.

are equal — as a function of the window size is also shown
for each model. As can be seen in the figure, the LDCRF
model outperforms baseline methods.

For online gesture recognition, an important model prop-
erty is the ability to perform accurate recognition with-
out requiring future observations (corresponding to smaller
window size). In both the ROC curves and the EER plots
of Figure 3, the LDCRF model outperforms all the other
models when using a small window size. This difference
is statistically significant according to a paired t-test on the
EER accuracies per participant.

Figure 4 shows the recognition results for the MelHead
dataset and Figure 5 shows results for the AvatarEye
dataset. Similar to the WidgetsHead dataset, the LDCRF
outperforms the other models when evalutated on these
two datasets. It is particularly interesting to compare the
CRF and HCRF performances in the EER plots of these
two datasets. For the MelHead dataset, the HCRF per-
forms better than the CRF model while for the AvatarEye
dataset, the CRF model does better. This can be explained
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Figure 5. Results with AvatarEye dataset: (top) ROC curves for
a window size of one; (bottom) Accuracy at equal error rates as a
function of the window size.

by the observation that transitions between gestures are well
defined in the AvatarEye dataset while the internal sub-
structure is the prominent factor in the MelHead dataset.
The LDCRF model combines the strengths of CRFs and
HCRFs by capturing both extrinsic dynamics and intrinsic
sub-structure and as such exhibits the best performance on
both datasets.

In the MelHead dataset, the human participants were
standing in front of the robot, and were able to move
freely about their environment, making the class of
other-gesture quite diversified and challenging for
generative approaches such as HMMs. The AvatarEye
dataset had only 6 participants and 77 eye gestures. We can
see in Figure 5 how this small dataset affects the LDCRF
model when the window size increases. This effect was not
as prominent for larger datasets, as observed in Figures 3
and 4. Even with this small dataset, LDCRF outperforms
the five other models with a maximum accuracy of 85.1%
for a window size of one.



6. Conclusion

In this paper we presented a discriminative framework
for simultaneous sequence segmentation and labeling which
can capture both intrinsic and extrinsic class dynamics. Our
LDCRF model incorporates hidden state variables which
model the sub-structure of a class sequence and learn dy-
namics between class labels. We performed experiments
on the task of recognizing human gestures from unseg-
mented video streams and showed how our model outper-
forms state-of-the-art generative and discriminative model-
ing techniques on three different datasets. As future work
we plan to evaluate our model on other visual sequence
labeling problems that exhibit intrinsic and extrinsic se-
quence dynamics, such as activity detection and audio-
visual speech recognition.
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