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ABSTRACT

Head pose and gesture offer several key conversational grounding
cues and are used extensively in face-to-face interaction among
people. While the machine interpretation of these cues has previ-
ously been limited to output modalities, recent advances in face-
pose tracking allow for systems which are robust and accurate
enough to sense natural grounding gestures. We present the design
of a module that detects these cues and show examples of its in-
tegration in three different conversational agents with varying de-
grees of discourse model complexity. Using a scripted discourse
model and off-the-shelf animation and speech-recognition com-
ponents, we demonstrate the use of this module in a novel “con-
versational tooltip” task, where additional information is sponta-
neously provided by an animated character when users attend to
various physical objects or characters in the environment. We fur-
ther describe the integration of our module in two systems where
animated and robotic characters interact with users based on rich
discourse and semantic models.
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1. INTRODUCTION

Multimodal interfaces have begun to become practical as mul-
timedia sensor streams become prevalent in everyday interaction
with machines. These new interfaces integrate information from
different sources such as speech, eye gaze and body gestures. Head
(as well as body) pose serves as a critical cue in most human-to-
human conversational interaction; we use our face pose to signal
conversational turn-taking intent, offer explicit and implicit ac-
knowledgement, and refer to specific objects of interest in the en-
vironment. These cues ought to be equally if not more valuable in
human—machine interaction.

Previous work has demonstrated the utility of generating agree-
ment gestures or deictic references in the output modalities of an-
imated interface agents [6, 24]. However, input processing has
largely been limited to sensing face pose for basic agent turn-
taking [26]; advanced interpretation has required offline process-
ing. Until recently, the task of robustly and accurately sensing
head pose using computer vision proved too challenging for per-
ception of grounding cues in real time. Many face detectors and
motion estimators are available, but detectors generally have not
demonstrated sufficient accuracy, and motion analysis has often
been too brittle for reliable, long-term use.

We have developed a face-processing system designed to serve
as a conversational grounding module in a conversational dialog
system. Our system is based on motion stereo methods, can auto-
matically initialize to new users, and builds a user-specific model
on the fly to perform stable tracking. Below, we detail the design
and algorithmic choices which lead to our present tracking sys-
tem, and the methods used to appropriately train recognizers to
detect grounding gestures from the tracked pose data. We have
developed our module in toolkit form so that it can be quickly
integrated with existing interactive conversational systems.! We
describe the use and evaluation of our module in three deployed
systems for conversational interaction.

We first present the use of our module in a scripted, off-the-
shelf animated conversational character. Using animation soft-
ware from Haptek [10], speech synthesis from AT&T [1], and
speech recognition from Nuance [20], we create a baseline ani-
mated character which offers information about a number of ob-
jects in the environment. Without perception of grounding cues,
spoken commands are used to select a topic. With our module, we

Lour toolkit is available for download by interested parties at
http://www.ai.mit.edu/projects/vip/watson/.



show how conversational tooltips can be provided, which sponta-
neously offer additional information about objects of apparent vi-
sual interest to a user. A quantitative user study showed that users
were able to effectively use conversational tooltips to quickly se-
lect an object of interest.

We then describe the integration of our module with two in-
teractive conversation agents based on natural language discourse
models augmented with multimodal gesture representation. These
systems have been used as interactive hosts for guiding visitors
through a building or a set of technology exhibits. In use with both
animated and robotic agents of this form, our system allowed users
to successfully interact with passively sensed head pose grounding
gestures.

2. PREVIOUSWORK

Many techniques have been proposed for tracking a user’s head
based on passive visual observation. To be useful for interac-
tive environments, tracking performance must be accurate enough
to localize a desired region, robust enough to ignore illumina-
tion and scene variation, and fast enough to serve as an interac-
tive controller. Examples of 2-D approaches to face tracking in-
clude color-based [31], template-based [12] and eigenface-based
[9] techniques.

Techniques using 3-D models have greater potential for accu-
rate tracking but require knowledge of the shape of the face. Early
work presumed simple shape models (e.g., planar [3], cylindrical
[13], or ellipsoidal [2]). Tracking can also be performed with a
3-D face texture mesh [23] or 3-D face feature mesh [30].

Very accurate shape models are possible using the active ap-
pearance model methodology [7], such as was applied to 3-D head
data in [4]. However, tracking 3-D active appearance models with
monocular intensity images is currently a time-consuming pro-
cess, and requires that the trained model be general enough to
include the class of tracked users.

In contrast to these head-tracking systems, our system is robust
to strong illumination changes, automatically initializes without
user intervention, and can re-initialize automatically if tracking is
lost (which is rare). In addition, it can track head pose under large
rotations and does not suffer from drift.

Several systems have exploited head-pose cues or eye gaze
cues in interactive and conversational systems. Stiefelhagen de-
veloped several successful systems for tracking face pose in meet-
ing rooms and has shown that face pose is very useful for predict-
ing turn-taking [27]. Takemae et al. also examined face pose in
conversation, and showed that if face pose could be tracked ac-
curately it was useful in creating a video summary of a meeting
[28]. Siracusa et al. developed a kiosk front end that used head
pose tracking to interpret who was talking to who in a conversa-
tional setting [26].

Justine Cassell [5, 6] and Candace Sidner [24, 25, 22], have
developed rich models of multimodal output in the context of em-
bodied natural language conversation, including multimodal rep-
resentations of agreement and grounding gestures, but used mostly
simple visual-based inputs like face detection. Here we extend our
face-tracking system to enable the recognition of such gestures,
describe a novel interaction paradigm based on face-responsive
tool tips, and report on the results of using our recognition system
within the embodied NLP frameworks of MACK, an embodied
conversational agent, and Mel, a multimodal robot.
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Figure1: Visual grounding module.

3. AVISUAL GROUNDING MODULE

Our goal is to design a vision module that can detect important
visual cues that occur when interacting with a multimodal con-
versational agent. Previous literature on turn-taking, grounding
and engagement suggest that head gaze and gesture are impor-
tant visual cues and can improve human-computer interaction. To
integrate a vision module with an interactive dialog system, this
module must meet certain requirements:

e Automatic initialization

User independence

Robustness to different environment (lighting, moving back-
ground, etc.)

Sufficient sensitivity to recognize natural (subtle) gestures

Real-time processing

Stability over a long period of time

These requirements guide the development of our head-pose tracker
and head-gesture recognizer. Figure 1 presents an overview of our
visual grounding module.

3.1 Head-Pose Tracking

Our head-pose tracker takes advantage of depth information
available from a stereo camera [8], which makes it less sensitive
to lighting variations and a moving background and simplifies the
segmentation process. Using a fast frontal face detector [29], we
automatically initialize the tracking by merging the region of in-
terest of the detected face with the segmentation from the depth
image. After initialization, the estimates of head movement are
used to update the region of interest. This simple segmentation
technique makes it possible to track any user even if they have a
beard or wear glasses.



Since important visual cues are often subtle (such as a head
nod for acknowledgment), we decided to use a motion-based ap-
proach instead of simply using face detection at each frame. We
compute the transformation between two frames using a hybrid
error function which combines the robustness of ICP (lterative
Closest Point) and the precision of the normal flow constraint [15].
Our motion-based tracking algorithm can detect small movements
quite accurately. Since it uses the real estimate of the shape of
the object from the depth information, it can differentiate between
translation and rotation accurately.

Human interactions with an embodied conversational agent are
often prolonged so the tracking algorithm needs to be robust enough
to not drift over time. To solve this problem yet still be user in-
dependent, we created a tracking framework that merges differen-
tial tracking with view-based tracking. In this framework, called
the Adaptive View-Based Appearance Model [17], key frames
are acquired online during tracking and used later to bound the
drift. When the head pose trajectory crosses itself, the view-based
model can track objects undergoing large motion for long periods
of time with bounded drift.

An adaptive view-based appearance model consists of pose-
annotated key frames acquired during tracking and a covariance
matrix of all random variables representing each pose with a Gaus-
sian distribution. Pose estimation of the new frame and pose ad-
justments of the view-based model are performed simultaneously
using a Kalman filter tracking framework (see [17] for more de-
tails). The state vector of the normal differential Kalman filter
tracker is extended to include the pose variables of the view-based
model. The observation vector consists of pose-change measure-
ments between the new frames and each relevant key frame (in-
cluding the previous frame for differential tracking). Each pose-
change measurement is then used to update all poses via the Kalman
Filter update.

When merged with our stereo-based registration algorithm, the
adaptive view-based model makes it possible to track the position,
orientation and velocity of the head with good accuracy over a
long period of time [17]. The position and orientation of the head
can be used to estimate head gaze which is a good estimate of the
person’s attention. When compared with eye gaze, head gaze is
more accurate when dealing with low resolution images and can
be estimated over a larger range than eye gaze [16].

When compared with an inertial sensor (Inertia Cube?), our
head pose tracking system has a rotational RMS error smaller
than the 3° accuracy of the inertial sensor[17]. We performed the
comparison using video sequences recorded at 6 Hz with average
length of 801 frames (~133sec). During recording, subjects un-
derwent rotations of about 125 degrees and translations of about
90cm, including translation along the Z axis. As described in the
next subsection, the velocity information provided by the tracking
system can be used to estimate head gestures such as head nods
and shakes.

3.2 Head Gesture Recognition

Head gesture is often used in human conversation to commu-
nicate some feedback or emphasize an answer. Creating a visual
module able to recognize head gesture during natural conversa-
tion is challenging, since most head gestures are fast, subtle move-
ments. Using the output velocity of our head-pose tracker as input
for our gesture detector, we can detect even subtle movements of
the head. Since some gestures are performed at different speeds

depending on the situation and the user, we decided to train our
detector using Hidden Markov Models (HMMs).

To ensure that our training data was a good sampling of natu-
ral gestures, we acquired two data sets for positive examples. As a
first data set, we used recorded sequences of 11 subjects interact-
ing with a simple character displayed on the screen. In this case,
the subjects were asked to answer each question with a head nod
or a head shake. As a second data set, we used tracking results
from 10 subjects interacting with a robot (Mel from MERL [14]).
In this case, subjects were interacting naturally with the robot and
performed many nonverbal gestures to acknowledge and ground
information. The rotational velocity estimated by our head tracker
was segmented manually to identify head nods and head shakes.
Both data sets were used during training so that we could detect
command-style gestures as well as natural gestures.

The head pose tracker returns the rotational and translational
velocity at each frame. Since head nods and head shakes are per-
formed by rotating the head, we used only the rotational compo-
nent of the velocity for training. After analyzing the training set,
we determined that most head nods and head shakes were per-
formed in a time window between 1/2 and 1 second. Since the
frame rate of the recorded sequences varied between 25-30Hz, we
decided to use a window size of 30 frames for our training and
testing. If the gesture duration was shorter then 1 second, then we
zero-padded the sequence.

We trained two continuous Hidden Markov Models (extension
of [11]) to recognize head nods and head shakes. The HMMs
were trained using the Bayes Net Toolbox for Matlab[18]. During
testing, we run each HMM independently and recognize the head
gesture based on both likelihoods. The thresholds were learned
experimentally during a pre-user study.

The complete visual grounding module described in this sec-
tion can robustly estimate a user’s head position and orientation as
well as detect head nods and head shakes.

4. GROUNDINGWITH SCRIPTEDDIALOG:

CONVERSATIONAL TOOLTIPS

Visual tooltips are an extension of the concept of mouse-based
tooltips where the user’s attention is estimated from the head-gaze
estimate. We define visual tooltips as a three-step process: deic-
tic gesture, tooltip and answer. During the first step, the system
analyzes the user’s gaze to determine if a specific object or region
is under observation. Then the system informs the user about this
object or region and offers to give more information. During the
final step, if the user answers positively, the system gives more
information about the object.

There are many applications for visual tooltips. Most museum
exhibitions now have an audio guide to help visitors understand
the different parts of the exhibition. These audio guides use proxy
sensors to know where the visitor is or need input on a keypad
to start the prerecorded information. Visual tooltips are a more
intuitive interface.

To work properly, the system that offers visual tooltips needs
to know where the user is focused and if the user wants more in-
formation. A natural way to estimate the user’s focus is to look
at the user’s head orientation. If a user is interested in a specific
object, he or she will usually move his or her head in the direction
of that object [27]. Another interesting observation is that people
often nod or shake their head when answering a question. To test
this hypothesis, we designed a multimodal experiment that accepts



Figure 2: Multimodal kiosk built to experiment with Conver-
sational tooltip. A stereo camera is mounted on top of the
avatar to track the head position and recognize head gestures.
When the subject look at a picture, the avatar offers to give
mor e information about the picture. The subject can accept,
declineor ignorethe offer for extrainformation

speech as well as vision input from the user. The following section
describes the experimental setup and our analysis of the results.

4.1 Experimental Setup

We designed this experiment with three tasks in mind: explor-
ing the idea of visual tooltips, observing the relationship between
head gestures and speech, and testing our head-tracking system.
We built a multimodal kiosk that could provide information about
some graduate students in our research group (see Figure 2). The
kiosk consisted of a Tablet PC surrounded by pictures of the group
members. A stereo camera [8] and a microphone array were at-
tached to the Tablet PC.

The central software component of our kiosk consists of a sim-
ple event-based dialogue manager that gets input from the vision
toolbox (Section 3) and the speech recognition tools [20] and can
produce output via the text-to-speech routines [1] and the avatar
[10].

When the user approaches the kiosk, the head tracker starts
sending pose information and head nod detection results to the di-
alogue manager. The avatar then recites a short greeting message
that informs the user of the pictures surrounding the kiosk and
asks the user to say a name or look at a specific picture for more
information. After the welcome message, the kiosk switches to
listening mode (the passive interface) and waits for one of two
events: the user saying the name of one of the members or the
user looking at one of the pictures for more than n milliseconds.
When the vocal command is used, the kiosk automatically gives
more information about the targeted member. If the user looks at
a picture, the kiosk provides a short description and offers to give
more information. In this case, the user can answer using voice
(yes, no) or a gesture (head nods and head shakes). If the answer
is positive, the kiosk describes the picture, otherwise the kiosk re-
turns to listening mode.

For our user study, we asked 10 people (between 24 and 30
years old) to interact with the kiosk. Their goal was to collect

information about each member. They were informed about both
ways to interact: voice (name tags and yes/no) and gesture (head
gaze and head nods). There were no constraints on the way the
user should interact with the kiosk.

4.2 Results

10 people participated in our user study. The average duration
of each interaction was approximately 3 minutes. At the end of
each interaction, the participant was asked some subjective ques-
tions about the kiosk and the different types of interaction (voice
and gesture).

A log of the events from each interaction allowed us to perform
a quantitative evaluation of the type of interaction preferred. The
avatar gave a total of 48 explanations during the 10 interactions.
Of these 48 explanations, 16 were initiated with voice commands
and 32 were initiated with conversational tooltips (the user looked
atapicture). During the interactions, the avatar offered 61 tooltips,
of which 32 were accepted, 6 refused and 23 ignored. Of the 32
accepted tooltips, 16 were accepted with a head nod and 16 with
a verbal response. Our results suggest that head gesture and pose
can be useful cues when interacting with a kiosk.

The comments recorded after each interaction show a general
appreciation of the conversational tooltips. Eight of the ten par-
ticipants said they prefer the tooltips compared to the voice com-
mands. One of the participants who preferred the voice commands
suggested an on-demand tooltip version where the user asked for
more information and the head gaze is used to determine the cur-
rent object observed. Two participants suggested that the kiosk
should merge the information coming from the audio (the yes/no
answer) with the video (the head nods and head shakes).

5. INTEGRATION WITH DISCOURSE
MODELS

Our head-tracking module has been successfully integrated with
two different discourse models: MACK, an embodied conversa-
tional agent (ECA) designed to study verbal and nonverbal signals
for face-to-face grounding, and Mel, a robot that can collaborate
with a person in hosting an activity. Both projects integrate mul-
timodal input signals: speech recognition, head-pose tracking and
head-gesture recognition.

5.1 Face-to-Face Grounding

MACK (Media lab Autonomous Conversational Kiosk) is an
embodied conversational agent (ECA) that relies on both verbal
and nonverbal signals to establish common ground in computer—
human interactions [19]. Using a map placed in front of the kiosk
and an overhead projector, MACK can give directions to different
research projects of the MIT Media Lab. Figure 3 shows a user
interacting with MACK.

The MACK system tokenizes input signals into utterance units
(UU) [21] corresponding to single intonational phrases. After
each UU, the dialog manager decides the next action based on the
log of verbal and nonverbal events. The dialogue manager’s main
challenge is to determine if the agent’s last UU is grounded (the
information was understood by the listener) or is still ungrounded
(a sign of miscommunication).

As described in [19], a grounding model has been developed
based on the verbal and nonverbal signals happening during human—
human interactions. The two main nonverbal patterns observed in
the grounding model are gaze and head nods. In the final ver-



Figure3: MACK wasdesigned to study face-to-face grounding
[19]. Directions are given by the avatar using a common map
placed on the table which is highlighted using an over-head
projector. The head pose tracker is used to determine if the
subject islooking at the common map.

sion of MACK, our head-tracking module was used to estimate
the gaze of the user and detect head nods. Nonverbal patterns are
used by MACK to decide whether to proceed to the next step(UU)
or elaborate on the current step. Positive evidence of grounding
is recognized by MACK if the user looks at the map or nods his
or her head. In this case, the agent goes ahead with the next step
70% of the time. Negative evidence of grounding is recognized if
the user looks continuously at the agent. In this case, MACK will
elaborate on the current step 73% of the time. These percentages
are based on the analysis of human—human interactions.

5.2 Human-Robot Engagement

Mel is a robot developed at Mitsubishi Electric Research Labs
(MERL) that mimics human conversational gaze behavior in col-
laborative conversation [24]. One important goal of this project is
to study engagement during conversation. The robot performs a
demonstration of an invention created at MERL in collaboration
with the user (see Figure 4).

Mel’s conversation model, based on COLLAGEN [22], de-
termines the next move on the agenda using a predefined set of
engagement rules, originally based on human—-human interaction
[25]. The conversation model also assesses engagement informa-
tion about the human conversational partner from the Sensor Fu-
sion Module, which keeps track of verbal (speech recognition) and
nonverbal cues (multiview face detection[29]).

A recent experiment using the Mel system suggested that users
respond to changes in head direction and gaze by changing their
own gaze or head direction[24]. Another interesting observation is
that people tend to nod their head at the robot during explanation.
These kind of positive responses from the listener could be used
to improve the engagement between a human and robot.

Mel has been augmented with our head-tracking module so
that it can estimate head gaze more accurately and detect head
nods [14]. The original conversation model of Mel was modified
to include head nods as an additional engagement cue. When the

Figure 4: Mel has been developed to study engagement in col-
labor ative conver sation[14]. The robot usesinformation from
the stereo camera to estimate head pose and recognize head
gesture.

robot is speaking, head nods can be detected and used by the sys-
tem to know that the listener is engaged in the conversation. This
is a more natural interface when compared to the original version
where the robot had to ask a question to get the same feedback.

This augmented version of Mel has been tested by multiple
subjects and seems to give more engaging conversation. As shown
during MACK experiments, nonverbal grounding cues like head
nods are performed by human subjects when interacting with an
embodied conversational agent. The visual grounding module en-
riches the input sensor information of the embodied conversational
agent and improves the user experience.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented the design concepts necessary to
build a visual grounding module for interactive dialog systems.
This module can track head pose and detect head gestures with
the accuracy needed for human-robot interaction. We presented
a new user interface concept called conversational tooltips and
showed that head gestures and head pose can be useful cues when
interacting with a kiosk. Finally, we showed how our visual mod-
ule was integrated with two different discourse models: an em-
bodied conversational agent and a robot. In both cases, the visual
grounding module enriched the input sensor information and the
user experience. As future work, we would like to integrate the
visual module more closely with the discourse model and include
context information inside the vision processing.
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