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ABSTRACT

Audio source localization in reverberant environments has
proved difficult for automated microphone array systems. Cer-
tain features observable in the audio signal, such as sudden in-
creases in audio energy, provide cues to indicate time-frequency
regions that are particularly useful for audio localization, but pre-
vious approaches have not systematically exploited these cues. We
give an overview of a system that we have designed that exploits
these cues by learning a mapping from reverberated signal spec-
trogramsto localization precision. We then describe initial tests of
the system that demonstrate improved source localization on real
audio data using the generalized cross-correlation (GCC) frame-
work. We also relate the system’s learned mappings to the well-
known precedence effect from psychoacoustic studies.

1. INTRODUCTION

Source localization is an important basic problem in microphone
array audio processing, but existing algorithms perform poorly in
reverberant environments[1]. Techniquesthat assume an anechoic
environment become much less reliable in reverberant environ-
ments, while techniques that try to compensate for the reverber-
ation, for example by learning a dereverberating filter, are very
sengitive to even small changes in the acoustic environment [2].

To allow for source motion, most practical localization sys-
tems compute |localization cues based on short time segments of a
few tens of milliseconds and combine these individual localization
cues across time using a source motion model. In such a system,
there are two broad areas where improvements can be made. The
first is the low-level cues themselves, and the second is the means
by which the cues are combined. Our system, first described in [3]
and refined in [4], focuses on the latter area, learning an improved
uncertainty model for the low-level cues that allows for improved
fusion across frequency and time. We use cues from the reverber-
ated audio to predict the uncertainty of localization cues derived
from small time-frequency regions of the microphone array input.

This paper presentsour initial tests of the system on real-world
audio and elucidates a theoretical justification for our choice of
generalized cross-correlation (GCC) weighting function.

Section 2 reviews related work in TDOA estimation and the
psychoacoustics of the precedence effect. Section 3 describes our
method for learning audio cues. Section 4 describes the results of
our technique in areal reverberant environment and discusses the
structure of our learned mappings as they relate to the precedence
effect.

2. BACKGROUND

Our technique takes inspiration from the psychoacoustics litera-
ture on the precedence effect to generate a weighting function for
ageneralized cross-correlation-based source localizer. In this sec-
tion, we review relevant work in these subjects.

2.1. Array processing for sourcelocalization

In [1], DiBiase et al. review much of the work relevant to micro-
phone arrays. They taxonomize source localization techniquesinto
three groups — steered beamformer-based |ocators, high-resolution
spectral estimation-based locators, and TDOA-based | ocators. Spec-
tral estimation-based locators, while capable of high-resolution lo-
calization under ideal conditions, tend to be sensitive to modelling
errors and also computationally expensive, which limits their use
inpractice. Whilein general steered-beamformer-based techniques
and TDOA -based techniques differ, they are equivalent for the spe-
cial case of atwo element array, which isthe case that we focus on
in this paper. Therefore, we focus on TDOA-based techniquesin
the remainder of this section.

Cross-correlation is a standard technique for TDOA estima-
tion in array processing. To estimate a TDOA between two mi-
crophones, the two signals are cross-correlated, and the lag corre-
sponding to the maximum cross-correlation is assumed to be the
TDOA. This technique performs well in anechoic environments,
but performance degrades rapidly with increasing reverberation.
Knapp and Carter [5] analyzed the generalized cross-correlation
(GCC) framework, in which a frequency-dependent weighting is
applied to reduce the effects of noise. [5] aso derived an ML
weighting for GCC that requires knowledge of the signal-to-noise
ratio (SNR). Because the SNR is often unknown, the phase trans-
form (PHAT) weighting, which simply whitens the microphone
signals and works reasonably well in practice, isapopular aterna-
tive. In reverberant environments in particular, the PHAT weight-
ing has been found to work well, and [6] showed that the PHAT
weighting approximates the optimal weighting for stationary sig-
nalsin noise-free reverberant environments. Theintuitive justifica
tion for this technique is that no single frequency dominates, and
that the effects of reverberation cancel out when averaged over
many frequencies. Our technique defines a new GCC weighting
that is afunction of the reverberated speech spectrogram.

2.2. The precedence effect

The precedence effect, also known as the “Haas effect” or the “law
of the first wavefront,” is the psychoacoustic effect in which the
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(a) Speech spectrogram

(b) Localization precision
map

Figure 1: Empirical justification for the precedence effect. Fig-
ure 1(a) is a spectrogram of the reverberant speech (a male voice
saying “A large sizein stockings...”) received at one of the micro-
phones in the array. Figure 1(b) is the corresponding map of the
empirical localization precision (in dB) for each time-frequency
bin. Sudden onsets in the spectrogram (), such as those at 0.07,
0.7, and 1.4 seconds, correspond to time-frequency regions with
high localization precision in (b). This figure was generated using
simulated room reverberation as described in [4].

apparent location of a sound is influenced most strongly by the lo-
calization cuesfrom theinitial onset of the sound [7, 8]. For exam-
ple, when human listeners report the location of a rapid sequence
of clicks, they tend to report the location of theinitial click even if
later clicks in the sequence came from other directions [9]. It has
been argued that the precedence effect improves people's ability to
localize sounds in reverberant environments. Because direct path
sound arrives before any reflections, initial onsets will tend to be
less corrupted by reverberation than subsequent sounds.

In [8], Zurek proposed a high-level conceptual model of the
precedence effect without precisely specifying the details of the
model. He modeled the precedence effect as a time-dependent
weighting of raw localization cues. Specificaly, his weighting
took the raw audio as input and consisted of an “onset detector”
with output generated by an inhibition function. In the next sec-
tion, we describe a specific implementation of a model similar to
Zurek’s.

3. SYSTEM OVERVIEW

Our goal isto learn cues observable in the reverberated audio that
indicatethereliability of associated localization cues. Specificaly,
we learn a mapping between the audio spectrogram and the local -
ization precision, which we define to be the reciprocal of the em-
pirical localization error variance. To do so, we generate atraining
corpus consisting of a set of spectrograms of reverberated speech
signals and atime-frequency map of thelocalization precision over
the course of these speech signals as shown in Figure 1. We then
compute aset of filtersthat estimate thelocalization precision from
the spectrogram representation of the reverberated audio. Com-
plete details of the system arein [4]; here we present an overview.

3.1. Corpusgeneration

To train the system, we collect a corpus of speech from known
locations with a two-element microphone array. We then com-
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(b) Broadband precision calculation

Figure 2: Anillustration of the narrowband and broadband map-
pings for frequency bin 60. In 2(a) an FIR filter estimates the lo-
calization precision as a function of spectrogram bin 60. In 2(b)
an FIR filter estimates the localization precision as a function of
all spectrogram hins.

pute spectrograms of y,,(z,t), with ¢ € {1,2} representing the
it" microphone signal and with window size N,,, overlap N,
and FFT length Ny, yielding complex spectrograms s» (¢, u, f),
where frame index u replaces the time index ¢, and frequency in-
dex f isadded. We then calculate the cross-power spectrum phase
(the frequency-domain equivalent of cross-correlation), 6, (u, f),
for each frame and frequency bin. Finally, we calculate e(u, f) =
(O (1, £)=On,,.... (u, £))?, thelocalization (phase) error variance,
and prec(u, f) = —10xlogio(e(u, f)), thelocalization precision
(indB).

In [3] and [4], we used the image method to simulate room
reverberation for testing and training. This allowed us to obtain
good empirical localization error estimates by simulating many
realizations of different source-microphone configurations within
the same room. In this paper, we test and train on real data using
the same procedure, but because of the difficulty of time-aligning
multiple realizations, we treat our entire training corpus asasingle
realization. Thus, our training data is noisier than the simulated
datafrom [3] or [4].

By calculating only these variances without cross-covariances
we implicitly assume that errors in different time-frequency re-
gions are uncorrelated. Although thisis not strictly true, this as-
sumption seems to work well in practice.

We then use ridge regression [10] to learn FIR filters that esti-
mate the localization precision (in dB) from the reverberated spec-
trogram (in dB). In this paper, we examine two different forms for
thesefilters.

In the first case, which we call a narrowband mapping, we
learn a separate FIR filter from each frequency band in the spec-
trogram to the corresponding frequency band in the localization
precision output as shown schematically in Figure 2(a). In the sec-
ond case, which we call abroadband mapping, we learn a separate
FIR filter for each band of the localization precision output, but in
each case the input comes from all frequencies of the input spec-
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trogram. This case is shown schematically in Figure 2(b). We
choose to examine the narrowband case because, for the case of
stationary signals (and under the assumption of large spectrogram
windows), each frequency band is uncorrelated with all other fre-
quency bands, and thus the narrowband mapping should be suffi-
cient in this case. Although speech is nonstationary, this narrow-
band mapping provides a useful baseline against which to com-
pare. The broadband mapping subsumes the narrowband mapping
and should be able to capture cross-frequency dependencies that
may arise from the nonstationarity of speech.

For the narrowband mapping with causal length I, and an-
ticausal length l,., we solve Ny regularized linear |east-squares
problemsof theformz¢ = A¢be, f € {1... Ny} where

Zs = ( prec(u,f) prec(u+1,f) ... )T

su=lesf) s(ul=le,f) Lo s(utiac,f) 1 @
Af = s(utl—le,f) s(ut2—1le,f) ... s(utl+lge,f) 1
s(u+2—l¢,f) s(u+3—le,f) ... s(u+2+1lge,f) 1

and by isan FIR filter with (Ic + lac + 1) taps stacked with a
DC component.

A similar system of equations can be solved to find the broad-
band filters. See [4] for details. For both types of mapping, we
solve these systems using ridge regression by minimizing

[lze — Aebe||* + Al[be||* @

with respect to b¢. Theregularizing parameter A is set through
cross validation.

3.2. Applyingthefilters

We apply bs to spectrogram s, (1, u, f) yielding preces: (u, f).
We then use this estimated precision to create a GCC weighting
for each frame. As defined in [5], a weighting, ¥ (f) is applied
to the cross-power spectrum of the two microphone signals before
applying the inverse Fourier transform and locating the peak of
this cross-correlation waveform. For example, the weighting for
the phase transform is ¥(f) = 1/|Gzy 2, (f)], Where Gy, iS
the cross-power spectrum of the two microphone signals. This
weighting whitens the signals before cross-correlation. We define
aweighting function based on our precision estimates as

N _ PreCest (u, f)
D=6, ) ©®

As shown in [5], equation 46, this weighting is approximately
equal to the ML GCC weighting. Although [5] assumes Gaussian
signals and uncorrelated noise, it has become a standard bench-
mark when sufficient information is available to calculateit. Itisa
subject of future work to determine if these assumptions are nec-
essary to prove the optimality of this localization precision-based
ML weighting. Note that the phase transform is equivalent to set-
ting precest(u, f) = 1.

When applying this technique to localization, the only com-
putational costs (beyond the basic TDOA calculations) are of ap-
plying a set of short FIR filters to that spectrogram. Because the
signals that we regress between, the spectrogram and the mean
square error, do not depend strongly on the detailed structure of
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PHAT | Narrow | Broad | Prop.

Room Speaker error error error | error
Train male 70 8 9 13
Training | Other male 66 8 10 9
Femae 71 7 8 7
Train male 90 12 14 21
Testing | Other male 86 7 13 10
Femae 81 8 17 9

Table 1: Results within the training and testing rooms for the de-
scribed weightings. Errors are root-mean-square (RMS) errors in
us. Before calculating RMS error, outlier estimates (error > 200
1S) were removed.

the reverberation, our technique is robust to changesin location in
the room.

4. RESULTS

In this evaluation, we use audio sampled at 8 kHz from two car-
dioid electret microphones spaced 37 cm apart, and we use a spec-
trogram with N,, = 150 and N, = 120. We set our FFT size
equal to 256. Thus, the frame rate for our spectrogram and for
our TDOA estimates is 267 frames per second. We choose these
parameters to be able to capture effects on the time scale at which
the precedence effect has been observed, on the order of a few
milliseconds. We use a total of 18 minutes of audio for training,
collected over four different source-microphone configurations in
asingle room. The audio is asubset of the Harvard sentences [11]
spoken by a single male and played through a desktop computer
speaker. The room is rectangular and is 4m x 7m x 2.8m. The
source-microphone distance ranged from 1.8m to 3m.

Our test data consists of audio from three speakers: the male
speaker from the training set, a different male speaker, and a fe-
male speaker. None of the utterances used for testing were in the
training set. Testing was done in two rooms: the room used for
training and alarger, irregularly shaped room with approximately
1.5 times the volume of the training room. For test results in the
training room, the source and microphone locations were different
than those used for training.

For both testing and training, the primary sources of additive
noise were computer fans and other ventilation sounds.

4.1. Localization results

Table 1 shows the decrease in localization error achieved by our
technique on real data. The four columns of numbers are RMS
error results (in us) for four different GCC weighting functions.
“PHAT" is the phase transform weighting function described in
[5]. “Narrow” and “Broad” are the narrowband and broadband
mappings described above. “Prop.” isasimple special case of the
narrowband filter using only onetap. This“proportional” mapping
could express the simple relationship in which localization cues
are weighted proportionally to the local signal power, but it cannot
capture more complicated relationships. In all cases, our learned
filter GCC weightings outperform the PHAT weighting.
Performance is good for the speaker from the training set and
in the training room. Thisis to be expected since this corresponds
closely to the training setup. Even in this simple case, though, we
have generalized to new source and microphone locations, which
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Figure 3: Narrowband filters. Left shows a representative subset
of the learned filters. Right shows a schematic decomposition of
the learned filters. Each of the narrowband filters on the left can
be viewed as a linear combination of a low-pass filtered impulse
(top) with aband-pass filtered edge detector (middie). The bottom
curve shows the linear combination of the top two curves, which
is qualitatively similar to thefilter for bin 25.

we could not do if we were modelling the fine structure of the re-
verberation. The remaining results, with different speakers and/or
different acoustic environments, show that our technique is robust
to these changes.

Although “Narrow,” “Broad,” and “Prop.” al perform well,
“Narrow” performsbest overall. Thisissomewhat surprising since
in simulated experiments in [3] and [4], “Broad” performed best.
A possible explanation for thisisthat “Broad” has many more pa-
rameters and thus can easily overfit the training data, while“ Prop.”
has few parameters and may underfit. The training set of real data
used in this paper was smaller than the training set of simulated
data used previously, which would put the broadband mapping at
a relative disadvantage. More experiments are necessary to fully
explore thisissue.

4.2. Relationship to the precedence effect

The left side of Figure 3 shows the FIR filters for a representa-
tive subset of the filter bands. In all three cases, but particularly
for bin 25, the filter is approximately a superposition of a low-
passed delta function and a band-passed edge-detector, as depicted
schematically on theright of Figure 3. The low-passed delta func-
tion component indicates that louder sounds provide better local-
ization cues, which is to be expected in the presence of additive
noise, where the ML frequency weighting is correlated with the
SNR and the SNR in our scenario is roughly proportional to the
signal energy. The band-limited edge-detector can be interpreted
as an onset detector, which is consistent with the precedence effect
that has been studied extensively in psychoacoustics. The rela-
tive amplitudes of the impulse and the edge detector reflect the
relative importance of these two effects at each frequency. In our
earlier work [3, 4], the edge-detector component was more promi-
nent because the reverberation was stronger relative to the additive
background noise.

Our results are consistent with the precedence effect, but they
go beyond that by learning structure that is specific to the speech
signa itself. For example, while there have been studies of the
time-scales over which the precedence effect operates, most of
these have used simple sounds such as click trains or noise bursts,
and itisnot clear how to generalize these findings to speech sounds.
Our system has implicitly learned the characterization of an “on-
set” that can provide precise localization.
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5. CONCLUSIONS

This paper described a simple, practical method for improving au-
dio source localization. We have demonstrated that the precision
information provided by our technique reduces localization error
on real audio data compared to the popular PHAT GCC technique.
In addition, the learned mappings are consistent with the prece-
dence effect in that they are sensitive to sudden increases in au-
dio energy. While it isimpossible for the simple model we have
learned to model all of the subtleties of the precedence effect, the
similarities are encouraging. Future work will consist of relaxing
the linear-Gaussian assumption implied by our use of FIR filters,
which should allow us to make use of awider range of audio cues
in varied acoustical environments.

Thanks to Trevor Darrell, John Fisher, and Michael Siracusa
for helpful discussions in the development of this work. This re-
search was carried out in the Vision Interface Group, which is sup-
ported in part by DARPA and Project Oxygen.

6. REFERENCES

[1] J. H. DiBiase, H. F. Silverman, and M. S. Brandstein, “Mi-
crophone arrays. Signal processing techniques and applica-
tions,” M. S. Brandstein and D. Ward, Eds.  Springer, 2001,
ch. Robust localization in reverberant rooms.

[2] B. D. Radlovic, R. C. Williamson, and R. A. Kennedy,
“Equalization in an acoustic reverberant environment: ro-
bustness results,” IEEE Transactions on Speech and Audio
Processing, val. 8, no. 3, pp. 311-319, 2000.

[3] K. Wilson and T. Darrell, “Improving audio source local-
ization by learning the precedence effect,” in IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 2005.

[4] ——, “Learning the precedence effect in the generalized
cross-correlation framework,” 1n submission, 2005.

[5] C. H. Knapp and G. C. Carter, “The generalized correlation
method for estimation of time delay,” |EEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp.
320-327, 1976.

[6] T.Gustafsson, B. D. Rao, and M. Trivedi, “ Source localiza-
tion in reverberant environments. Modeling and statistical
analysis,” |EEE Transactions on Speech and Audio Process-
ing, vol. 11, pp. 791-803, 2003.

[7] R.Y.Litovsky, H. S. Colburn, W. A. Yost, and S. J. Guzman,
“The precedence effect,” The Journal of the Acoustical
Society of America, vol. 106, no. 4, pp. 1633-1654, 1999.
[Onling]. Available: http://link.aip.org/link/?JAS/106/1633/1

[8] P.M. Zurek, “Directional hearing,” W. A. Yost and G. Goure-
vitch, Eds.  Springer-Verlag, 1987, ch. The precedence ef-
fect.

[9] G. C. Stecker, “Observer weighting in sound localization,”
Ph.D. dissertation, University of California at Berkeley,
2000.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations,
3rd ed. Johns Hopkins University Press, 1996.

[11] J. P. Egan, “Articulation testing methods,” Laryngoscope,
vol. 58, pp. 955-991, 1948.



