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Abstract

When faced with a distant speaker at a known
location in a noisy environment, a microphone
array can provide a significantly improved au-
dio signal for speech recognition. Estimating the
location of a speaker in a reverberant environ-
ment from audio information alone can be quite
difficult, so we use an array of video cameras to
aid localization. Stereo processing techniques are
used on pairs of cameras, and foreground 3-D
points are grouped to estimate the trajectory of
people as they move in an environment. These
trajectories are used to guide a microphone ar-
ray beamformer. Initial results using this sys-
tem for speech recognition demonstrate increased
recognition rates compared to non-array process-
ing techniques.

1 Introduction

Most existing conversational speech systems
require tethered interaction, and work primarily
for a single user. Users must wear an attached mi-
crophone or speak into a telephone handset, and
do so one at a time. This limits the range of use of
dialog systems, since in many applications users
might expect to freely approach and interact with
a device. We are interested in building a system
for untethered spoken interface, where multiple
users can move about an environment and speak
to a computer system.

With only a single sensing modality disam-
biguating the audio from multiple speakers can be
a challenge. But with multiple modalities, and
possibly multiple sets of sensors, segmentation
can become feasible. In this paper we describe a
audio-visual array approach to tracking speakers
in a noisy environment.

We have developed our system in a “smart en-
vironment” or “smart room” enabled with multi-
ple stereo cameras and a ceiling mounted large-
aperture microphone array grid. Users can move
arbitrarily in the room or environment while fo-
cused audiovisual streams are generated from
their appearance and utterance. In our system
multi-view image correspondence and tracking
methods are combined with acoustic beamform-
ing techniques to focus a virtual microphone on
each speaker. Our multimodal approach can track
sources even in acoustically reverberant environ-
ments with dynamic illumination, conditions that
are tough for audio or video processing alone.

First we review related work, and then present
our method for geometric source separation and
vision-guided microphone array processing. We
show results integrating our technique with a con-
versational speech system, and describe avenues
for future work combining other types of audiovi-
sual multimodal information.

2 Related Work

Several authors have explored geometric ap-
proaches to audiovisual segmentation using ar-



ray processing techniques. Microphone arrays
are a special case of the more general problem
of sensor arrays, which have been studied ex-
tensively in the context of applications such as
radar and sonar [11]. The Huge Microphone Ar-
ray project[10] is investigating the use of very
large arrays containing hundreds of microphones.
Their work concentrates on audio-only solutions
to array processing. Another related project
is Wang and Brandstein’s audio-guided active
camera[13], which uses audio localization to steer
a camera on a pan/tilt base. A number of projects
[1, 2, 3] have used vision to steer a microphone ar-
ray, but because they use a single camera to steer a
far-field array, they cannot obtain or make use of
full 3-D position information; they can only select
sound coming from a certain direction.

3 Audiovisual array processing

To focus a microphone array, the location of
the speaker(s) of interest must be known. A
number of techniques exist for localizing sound
sources using only acoustic cues [12], but the per-
formance of these localization techniques tends
to degrade significantly in the presence of re-
verberation and/or multiple sound sources. Un-
fortunately, most common office and meeting
room environments are highly reverberant, with
reflective wall and table surfaces, and will nor-
mally contain multiple speakers. However, in a
multimodal setting we can take advantage of other
sensors in the environment to perform localiza-
tion of multiple speakers despite reverberation.
We use a set of cameras to track the position of
speakers in the environment, and report the rel-
ative geometry of speakers, cameras, and micro-
phones.

The vision modality is not affected by acous-
tic reverberation, but its accuracy will depend on
the the calibration and segmentation procedures.
In practice we use video information to restrict
the range of possible acoustic source locations to
a region small enough to allow for acoustic local-
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Figure 1. Array power response as a function of
position (two speakers). This plot shows the ar-
ray output power as the array’s focus is scanned
through a plane centered on one speaker while
another speaker is nearby. The central speaker is
easily discernible in the plot, but the peak corre-
sponding to the weaker speaker is difficult to dis-
tinguish among the sidelobe peaks. Using vision-
based person tracking cues can disambiguate this
case.

ization techniques to operate without severe prob-
lems with reverberation and multiple speakers.

Many problems can be addressed through array
processing. The two array processing problems
that are relevant to our system are beamforming
and source localization.

Beamforming is a type of spatial filtering in
which the signals from individual array elements
are filtered and added together to produce an
output that amplifies signals coming from se-
lected regions of space and attenuates sounds
from other regions of space. In the simplest
form of beamforming, delay-and-sum beamform-
ing, each channel’s filter is a pure delay. The de-
lay for each channel is chosen such that signals
from a chosen “target location” are aligned in the
array output. Signals from other locations will
tend to be combined incoherently.

Source localization is a complementary prob-
lem to beamforming whose goal is to estimate the
location of a signal source. One way to do this is
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to beamform to all candidate locations and to pick
the location that yields the strongest response.
This method works well, but the amount of com-
putation required to do a full search of a room is
prohibitively large. Another method for source
localization consists of estimating relative delays
among channels and using these delays to calcu-
late the location of the source. Delay-estimation
techniques are computationally efficient but may
have dif£culty in the presence of multiple sources
and/or reverberation.

For microphone arrays that are small in size
compared to the distance to the sources of inter-
est, incoming wavefronts are approximately pla-
nar. Because of this, only source direction can
be determined; source distance remains ambigu-
ous. When the array is large compared to the
source distance, the sphericity of the incoming
wavefronts is detectable, and both direction and
distance can be determined. These effects of ar-
ray size apply both to localization and to beam-
forming, so if sources at different distances in the
same direction must be separated, a large array
must be used. As a result, with large arrays the
signal-to-noise ratio (for a given source) at differ-
ent sensors will vary with source location. Be-
cause of this, signals with better signal-to-noise
ratios should be weighted more heavily in the out-
put of the array. Our formulation of the steering
algorithm presented below takes this into account.

3.1 Person tracking with multiple stereo views

Tracking people in known environments has
recently become an active area of research in
computer vision. Several person-tracking sys-
tems have been developed to detect the number
of people present as well as their 3D position
over time. These systems use a combination of
foreground/background classification, clustering
of novel points, and trajectory estimation over
time in one or more camera views [5, 9].

Color-based approaches to background mod-
elling have difficulty with illumination variation

due to changing lighting and/or video projection.
To overcome this problem, several researchers
have supported the use of background models
based on stereo range data [5, 8]. Unfortunately,
most of these systems are based on computation-
ally intense, exhaustive stereo disparity search.

We have developed a system that can per-
form dense, fast range-based tracking with mod-
est computational complexity. We apply ordered
disparity search techniques to prune most of the
disparity search computation during foreground
detection and disparity estimation, yielding a fast,
illumination-insensitive 3D tracking system. De-
tails of our system are presented in [4]. Our sys-
tem reports the 3-D position of people moving
about an environment equipped with an array of
stereo cameras.

3.2 Vision-guided acoustic volume selection

We perform both audio localization and beam-
forming with a large, ceiling-mounted micro-
phone array. Localization uses information from
both audio and video, while beamforming uses
only the audio data and the results of the local-
ization processing. A large array gives the abil-
ity to select a volume of 3-D space, rather than
simply form a 2-D beam of enhanced response as
anticipated by the standard array localization al-
gorithms. However, the usual assumption that of
constant target signal-to-noise ratio (SNR) across
the array does not hold when the array geometry
is large (array width on same scale as target dis-
tance.)

Our system uses the location estimate from the
vision tracker as the initial guess from which to
begin a gradient ascent search for a local max-
imum in beam output power. Beam power is
defined as the integral over a half-second window
of the square of the output amplitude. The vision
tracker is accurate to within less than one meter.
Gradient ascent to the nearest local maximum can
therefore be expected to converge to the location
of the speaker of interest when no other speakers
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Figure 2. The test environment. On the left is a schematic view of the environment with stereo cameras
represented by black triangles and microphones represented by empty circles. On the right is a photograph
of the environment with microphones and camera locations highlighted.

are very close by.
For small microphone arrays, the relative SNRs

of the individual channels do not vary sig-
nificantly as a function of source location. This
is, however, not true for larger microphone ar-
rays. For our array, which is roughly 4 meters
across, we must take into account the fact that
some elements will have better signals than oth-
ers. Specifically, if we assume that we have sig-
nals x1 and x2 which are versions of the unit-
variance desired signal, s, that have been contami-
nated by unit-variance uncorrelated noise, we can
analyze the problem as follows:

x1 = a1s + n1

x2 = a2s + n2

In this model, the signal to noise ratios of x1

and x2 will be a2

1
and a2

2
, respectively. Their

optimal linear combination will be of the form
y = bx1 + x2. Because of the uncorrelated noise
assumption, the SNR of this combination will be

SNR(y) =
(ba1 + a2)

2

b2 + 1

By taking the derivative of this expression with
respect to b and setting the result equal to zero,
one finds that the optimal value of b is:

b =
a1

a2

=

√

√

√

√

SNR(x1)

SNR(x2)

SNR (dB)

Distant microphone −6.6

Video only −4.4

Audio only (dominant speaker) 2.0

Audio-Video 2.3

Table 1. Audio-video localization performance.

Individual elements’ signals should be scaled
by a constant proportional to the square root of
their SNRs. We use the location estimate to
weight individual channels assuming a 1/r at-
tenuation due to the spherical spreading of the
source: an = 1/rn.

4 Results

Our test environment, depicted in Figure 2, is
a conference room equipped with 32 omnidirec-
tional microphones spread across the ceiling and
2 stereo cameras on adjacent walls.

The audio and video subsystems were cali-
brated independently, and for our experiments, we
performed a joint calibration by finding the least-
squares best-fit alignment between the two coor-
dinate systems.

Figure 1 is an example of what happens when
multiple speakers are present in the room. Audio-
only gradient ascent could easily find one of the
undesirable local maxima. Because our vision-
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-12db Interferer Male Female

Close-talking microphone 95 95
Microphone array 64 13
Distant microphone 51 7

-24db Interferer Male Female

Close-talking microphone 95 96
Microphone array 80 41
Distant microphone 74 28

No Interferer Male Female

Close-talking microphone 95 96
Microphone array 82 43
Distant microphone 73 35

Table 2. Word recognition rates (percent correct)
calculated in each condition from 5 male and 3
female speakers. The close-talking microphone
was clipped to the lapel of the speaker. The mi-
crophone array is as described above. The dis-
tant microphone is one array element from near
the center of the room.

based tracker is accurate to within one meter, we
can safely assume that we will find the correct lo-
cal maximum even in the presence of interferers.

To validate our localization and source separa-
tion techniques, we ran an experiment in which
two speakers spoke simultaneously while one of
them moved through the room. We tracked the
moving speaker with the stereo tracker and pro-
cessed the corresponding audio stream using three
different localization techniques. For each, we
used a reference signal collected with a close-
talking microphone to calculate a time-averaged
SNR (Table 1). For performance comparison we
use the signal from a single distant microphone
near the center of the room. This provides no spa-
tial selectivity, but for our scenario it tends to re-
ceive the desired speech more strongly than the
interfering speech. The SNR for the single micro-
phone case is negative because of a combination
of the interfering speaker and diffuse noise from
the room’s ventilation system.

To evaluate the microphone array’s effects on

recognition rates for automated speech recog-
nition (ASR), we connected our system to the
MIT Spoken Language Systems (SLS) Group’s
JUPITER weather information system [14]. We
had two male speakers issue each of nine weather-
related queries from two different locations in the
room. As collected, the data contains quiet but
audible noise from the ventilation system in the
room. To evaluate the results under noisier condi-
tions, additional noise was added to these signals.
The results are shown in Table 2. The interferer
used in these experiments was a male speaker lo-
cated one to two meters from the target speaker.
The interferer level (-24 dB or -12 dB) is a rough
measure relative to the male test subjects. The
same absolute interferer level was used for all test
subjects. The beamformed signal from the micro-
phone array was in all cases superior to the sin-
gle distant microphone. The distant microphone,
which was approximately 1.5m from the speaker,
yielded recognition rates that were too low to be
useful in our current environment. While recog-
nition rates in low noise case were high enough
to be useful, the -12 dB interferer significantly
degraded the performance of the array. We are
currently working on adaptive null-steering algo-
rithms that should improve performance in the
presence of stronger interferers such as this.

5 Conclusion and Future Work

We have shown how an audiovisual array ap-
proach can help enable untethered conversational
interaction. Our approach was primarily geo-
metric, using 3-D tracking and array processing.
In our current architecture vision processing was
used to for coarse-scale localization and audio
cues for fine-scale localization; we are exploring
a symmetric localization architecture where both
audio and video cues can influence coarse or fine
tracking.

In other work, we have demonstrated how mod-
elling joint appearance variation can also be used
to reduce environmental noise and identify corre-
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sponding audio and video from individual speak-
ers [6, 7]. The statistical approach used a mu-
tual information analysis of appearance and spec-
tral variation and ignored 3-D geometry. In con-
trast to the geometric approach presented above, it
worked with just a single microphone and camera.
While each approach is valuable in its intended
domain, it is clear that they are orthogonal and
would benefit from combination. We are thus ex-
ploring an integrated approach that combines geo-
metric and statistical insights in a common source
separation algorithm.
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