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Abstract

This paper presents a new approach for 3D view reg-
istration of stereo images. We introduce a hybrid error
function which combines constraints from the ICP (Itera-
tive Closest Point) algorithm and normal flow constraint.
This new technique is more precise for small movements
and noisy depth than ICP alone, and more robust for large
movements than the normal flow constraint alone. Finally,
we present experiments which test the accuracy of our ap-
proach on sequences of real and synthetic stereo images.

1. Introduction

The problem of estimating 3D rigid body motion has
been studied extensively in the computer vision and graph-
ics fields. The well-known Iterative Closest Point (ICP) al-
gorithm, introduced by Chen and Medioni [4] and Besl and
McKay [2], has been used extensively in the graphics liter-
ature to merge 3D laser range scans. In the vision literature
much progress has been made on gradient-based paramet-
ric motion estimation techniques which aggregate pointwise
normal flow constraints [3, 9, 11].

ICP finds corresponding points between two 3D point
clouds and tries to minimize the error (usually the eu-
clidian distance) between the matched points. Chen and
Medioni minimize this error based on a point-to-plane dis-
tance, while Besl and McKay minimize the direct euclid-
ian distance between the matched points (point-to-point).
Rusinkiewicz and Levoy [16] present a extensive survey of
many variants of ICP. Godinet al.[7] first used color to fil-
ter matched points during ICP. While other methods [6, 17]
have incorporated color information in the distance function
of the matching process, no solution has been suggested that
uses color/brightness during the error minimization process.

The normal flow is 3D vector field which can be defined
as the component of the 2D optical flow that is in the di-
rection of the image gradient[20]. When 3D observations

are directly available, such as from optical stereo or laser
range finders, a normal flow constraint can be expressed
directly to estimate rigid body motion [19]. Harvilleet
al.[8] combined normal flow constraint with a depth gra-
dient constraints to track rigid motion. Gradient-based ap-
proaches use color/brightness information during the min-
imization process and have proved to be accurate for sub-
pixel movements[1].

In this paper, we present an integrated tracking approach
which jointly aligns images using a normal flow gradient
constraint and an ICP algorithm. This new framework has
the precision of the former with the robustness of the latter.
To date, most ICP algorithms have been tested on very pre-
cise 3D data sets from a laser scanners [14] or other range
scanning methods. Approaches based on depth gradients
usually presume high-frame rate stereo observations (e.g.,
[8]). We are interested in tracking data from relatively noisy
optical stereo range data at modest frame rates.

The following section describes the iterative framework
used for 3D view registration. Section 3 presents the closest
point matching process and point-to-plane error function,
two important components of ICP. Section 4 reviews the
normal flow constraint and shows how inverse calibration
parameters can be used to do find correspondence. Then,
section 5 describes the hybrid error functions. Finally, in
section 6, we show how this integrated approach can reli-
ably track sequences from optical stereo data that neither
technique alone could track.

2. Integrated View Registration Framework

In our new framework, we integrate an ICP 3D euclid-
ian error function with a normal flow constraint, creating
a hybrid registration error metric yielding a tracker which
is both robust and precise. The ICP approach matches
points in 4 dimensions (3D + brightness) and minimizes the
euclidian distance between corresponding points. Empiri-
cally, we have found that ICP robustly handles coarse mo-
tion. The NFC (Normal Flow Constraint) approach matches
points based on the inverse calibration parameters and find



the transformation between corresponding points based on
their appearance and their 3D position. As shown in Section
5, this method is more precise for small movement since it
searches the pose parameter space using a gradient method
which can give sub-pixel accuracy.

2.1. Preprocessing and Pose Update

Our tracker takes two image sets as input: the new image
setfIt; Ztg grabbed at time t and the reference image set
fIr; Zrg. The reference image set can be either the image
set grabbed at time t-1, the first image set, or any relevant
image set between time 0 and time t-1 [15].

The new image setfIt; Ztg is preprocessed in concert
with known camera calibration information to obtain the
3D vertex set	t of i := 1::m vertices~�ti = f~pti; ~nti; Itig
where~pti is the 3D point coordinates in the camera refer-
ence,~nti is the normal vector of the surface projected byZt

at point~pti andIti is the brightness value of the point~pti as
specified by the intensity imageIt. The normal vector~nti
is computed from the depth image gradients:

~nti =
h

@Zt
@uti

@Zt
@vti

1
i

(1)

whereuri andvri are the 2D image coordinates ofZt.
The goal of the tracker is to find the rigid pose change

fR;~tg between the two image sets, whereR is a 3x3 rota-
tion matrix and~t is a 3D translation vector . At each itera-
tion, a transformation~Æ represented by 6 parameters vector
[ ~! ~t ]t is computed. In this vector,~! is the instantaneous
rotation (3 parameters) and~t is the translation (3 parame-
ters). The current pose estimation is updated as follow:

R
k+1 = R

k
R
(Æ) (2)

~t k+1 = ~t k + ~t (Æ) (3)

wherek is the iteration number andR(Æ) is the 3x3 matrix
representing the rotation!(Æ). Initially, R0 is set to the
identity matrix and~t 0 is set to0.

2.2. Hybrid Tracker

As shown in figure 1, our hybrid tracker iterates a joint
error minimization process until convergence. At each it-
eration two error function are minimized in the same linear
system. The iteration process can be divided into 5 distinct
steps: Match, Error Function, Minimization, Warping and
Convergence check.

� The Match stage finds corresponding points between
the 3D image sets. In the hybrid tracker we use two
matching techniques: closest point and inverse calibra-
tion. These techniques are described in more details in
sections 3.1 and 4.1.
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Figure 1. Hybrid tracker structure.

� Given the two sets of correspondences, we compute
two error functions: point-to-plane and normal flow
constraint. These two error functions relate the corre-
sponding point sets to the pose parameters. As shown
in Section 3.2 and 4.2, each error function can be lo-
cally approximated as linear problems in terms of the
motion parameters:

"ICP = kAICP
~Æ �~bICPk

2 (4)

"NFC = kANFC
~Æ �~bNFCk

2 (5)

� The Minimization stage estimates the optimal transfor-
mation~Æ� between the matched points using the com-
bined error function:

~Æ� = argmin
~Æ

[�(d)"ICP + (1� �(d))"NFC ] (6)

where d is the average distance between matched
points and�(d) is a sigmoid function which arbitrates
the importance of the ICP error function over the nor-
mal flow error function as alignment improves (see fig-
ure 2). Section 5 discusses in more details how the
sigmoid function�(d) is computed.

� The Warping stage warps the 3D vertex set	t accord-
ing to the new estimated transformation~Æ. The warp-
ing is done by updating the~pti and~nti of each vertex
as follows:

~nti
0 = R

(Æ)~nti ~pti
0 = R

(Æ)~pti + ~t (Æ) (7)

� The Convergence Check stage computes the conver-
gence factor� by averaging the distanceD between
warped 3D points~pti0 and referential 3D points~qri:

� =
1

n

 
nX
i=1

D(~pti
0; ~qri)

!
(8)

If the difference between the convergence factor� of
two consecutive iterations is smaller then a threshold
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Figure 2. Plot of the sigmoidal function�(d) used in
equation 6. Notice that as the average distance between
matched pointsd decrease, NFC error function has more
weight, and vice-versa.

value � , then convergence is reached. The 3D view
registration is completed when convergence is reached
or, in the case of non-convergence, when a maximum
numberNI of iterations is performed.

3. ICP Error Function

To compute the ICP error function, the matching stage
searches for closest points in a 4-dimensional space com-
posed of the 3D euclidian space and 1D for brightness.
An exhaustive search for matching closest points makes
large displacements easier to track. A k-d tree is used
to accelerate the matching process [18]. As suggested by
Rusinkiewicz and Levoy [16], we use a point-to-plane error
function to align the matched points.

3.1. Closest Point with k-d Tree

Among the earliest ICP distance functions proposed was
the 3D euclidian distance [2]. This function doesn’t take
into account color or intensity information which may be
available. As Godinet al.[7], we take advantage of intensity
information and use a 4D space (X,Y,Z,E) where E is the
brightness value from a intensity imageIr . WhenIr is a
color image, Godinet al. [7] suggests using the hue channel
as the brightness measure.

To accelerate the matching process we use a k-d tree and
an Approximate Nearest Neighbor algorithm [12]. The k-d
tree is created with the valuesf~xr; ~yr; ~zr; ~Irg of the refer-
encial image set. The same k-d tree is used throughout all
the iterations. The matching process finds, for each vertices
~�ti of the current 3D vertex set	t, the closest node of the
k-d treefxri; yri; zri; Irig that minimizes the 4D distance
function:

k~qri � ~ptik+ kkIri � Itik (9)

wherek is a constant to normalize the brightness value.

3.2. Point-to-Plane

The point-to-plane method [4] minimizes the distance
between a point~qri and the tangential plane of the corre-
sponding point~pti:

DPlane(~qri; ~pti) = ~nti(~qri � (R~pti � ~t)) (10)

By approximating the rotationR with an instantaneous
rotation! and rearranging the equation 10 adequately, we
obtain the following linear system:

"ICP = kAICP
~Æ �~bICP k

2 (11)

where each line is defined as follow

~Ai =

�
~nti � ~qri
�~nti

�
(12)

bi = ~nti � (~pti � ~qri) (13)

Compared with the point-to-point method [2], the point-
to-plane converges faster but requires extra preprocessing to
compute the normals (see [16] for more details).

4. NFC Error Function

The normal flow constraint is a gradient-based approach
which can estimate sub-pixel movements accurately. Dur-
ing the matching stage, we use an inverse calibration
method to find corresponding points which belong on the
same projective ray. This provides the correspondence
needed to compute the temporal gradient term of the nor-
mal flow constraint.

4.1. Inverse Calibration

The inverse calibration approach [13] searches for corre-
sponding points of~pti by projecting the 3D point from the
3D coordinate system of�t to the referential depth image
Zr coordinate system:�

~uri
1

�
= C

�
~pti
1

�
(14)

whereC is a 3x4 projection matrix that relate 3D coor-
dinate system of~pti to the 2D image coordinate~uri =
[ uri vri ]. This matrix is based on the stereo camera or
laser scanner parameters.

After projection, two match functions could be used:
1) interpolate the 3D coordinates~qri of the corresponding
point from the projection value~uri, or 2) search around the
projected point~uri in theZr image to find the closest point.



We used the first method to be compatible with the time gra-
dient term of the normal flow constraint which assumes that
the corresponding points are on the same projective ray.

The 3D coordinates~qri = [ xri yri zri ] are inter-
polated from the depth imageZr as follows:

zri = Zr(~uri) ; xri = f uri
zri

; yri = f vri
zri

(15)

4.2. Normal Flow Constraint

Given 3D input data, the normal flow is the component
of the optical flow in the direction of the image gradient. As
shown in [20], the normal flow can be expressed as:

�
@Iri

@t
= rIri

�
@~uri

@~qri

�
~V (16)

whererIri =
h

@Iri
@uri

@Iri
@vri

i
is the image gradient,~V =�

@xri
@t

@yri
@t

@zri
@t

�
is the velocity of the object and@Iri

@t

is the time gradient.@Iri
@uri

and @Iri
@vri

are computed directly
from the referential imageIr . The time gradient is approx-
imated by:

@Iri

@t
= Iti � Iri (17)

For a perspective projection whereuri = f xri
zri

andvri =
f yri
zri

, we can find the Jacobian matrix:

@~uri

@~qri
=

"
f
zri

0 �f xri
z2
ri

0 f
zri

�f yri
z2
ri

#
(18)

Since the object is rigid, the velocityV can be expressed
as:

~V =
�
I �q̂ri

�
~Æ (19)

whereI is a 3x3 identity matrix and̂qri is the skew matrix of
the vector~qri. By rearranging the equation, we get a linear
system similar to the point-to-plane technique (section 3.2):

"NFC = kANFC
~Æ �~bNFCk

2 (20)

where each line is defined as follow

~Ai = rIri

�
@~uri

@~qri

� �
I �q̂ri

�
(21)

bi = �
@Iri

@t
(22)

4.3. Accuracy comparison for small movements

We compared the performance of NFC and ICP sequen-
tial tracking approach on sequences with small movements.
The top part of figure 3 shows the first and the last frame
of a 31 synthetic frame sequence. A rotation of 0.5 degrees
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Figure 3. Small rotation sequence with synthetic images.

occurred between each consecutive frames. Since the se-
quence is synthetic, we could compare the result of each
tracker with the real transformation (0.5 degrees). The av-
erage error was computed by warping the referential image
by the found transformation and the real transformation and
computing the average distance between the two sets of 3D
points. The average error for normal flow constraint was
0.898mm, better then the ICP with 2.06mm . The graph in
figure 3 presents the average error at each frame.

5. Hybrid Error Function

At each iteration, the tracking algorithm minimize the
hybrid error function to find the optimal pose parameters
Æ�. We can rewrite equation 6 as one linear system:

argmin
~Æ
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(1� �(d))~bNFC
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This linear system can be solved using a least-squares
method or any robust estimator. To reduce the influence of
outliers, we use a M-estimator to minimize the system [10].

As shown in figure 3, the NFC error function is more ac-
curate for the estimation small movement. Since the normal
flow constraint approximate the pixel by a plane to compute
the intensity gradients@Iri

@uri
and @Iri

@vri
of equation 16, its ac-

curacy is directly related to the variance of the Gaussian
dG used to compute to compute these gradients. We want
a function that increases the importance of NFC when the
average distanced between matched points decreases, and
vice versa. Figure 5 shows the sigmoid function that we
use:

�(d) =
1

1 + e�c(d�dG)
(23)

wherec is a constant that determine the slope of the sigmoid
function andd is the average distance of matched points
found during the closest point matching process (see Sec-



tion 3.1). We define the average distance as follow:

d =
1

N

NX
i=1

D(~qri; ~pri) (24)

whereN is the number of matched points andD is the eu-
clidian distance between two points.

6. Results with Real Images: Face Tracking

We tested our hybrid tracker with sequences obtained
from a stereo camera using the SRI Small Vision System
[5]. Tracking was initiated automatically by using a face
detector [21]. Without special optimizations, the hybrid se-
quential tracker can update poses based on observations of
2500 points per frame at 2Hz on a Pentium III 800MHz.

Figures 4 and 5 presents some key frames of two user
moving in front of the camera. During the first sequence
(180 frames), the user turned his head approximately 40 de-
grees down, up, left, and right. Then, the user translated
his head 30cm, which was equivalent to 25 image pixels.
During the second sequence (160 frames), the user turned
his head left and right approximately 25 degrees and then
translated his head left and right rapidly, three times.

In both figures, we observe that ICP alone performs well
for translation, but has trouble with rotation. We observe
the opposite results for NFC alone which handles rotation
well, but translation poorly. The hybrid tracker is able to
track all the sequence reliably. The figure 6 shows the
average convergence factor of each registration technique.
The convergence factor is computed as described in sec-
tion 2.2. The three techniques converge in less then 3 it-
erations. The hybrid error function converge to an average
distance error 20% smaller then ICP alone and 5% smaller
then NFC alone. Movies of the above results can be found
at http://www.ai.mit.edu/people/lmorency/ .

7. Conclusions

We presented a new hybrid 3D view registion framework
for tracking 3D pose from noisy 3D stereo images. Our
approach integrated the fine tracking ability of a gradient-
based normal flow constraint with the robust coarse tracking
ability of the ICP algorithm. The stability of our tracker
was shown on synthetic sequences with known ground truth
and on sequences grabbed from a low-cost stereo camera.
Our results indicated that the hybrid approach outperformed
either algorithm alone.
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