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Abstract

Arm and body pose are useful cues for diectic reference–
users naturally extend their arms to objects of interest in
a dialog. We present recent progress on untethered sens-
ing of articulated arm and body configuration using robust
stereo vision techniques. These techniques allow robust, ac-
curate, real-time tracking of 3-D position and orientation.
We demonstrate users’ performance with our system on ob-
ject selection tasks and describe our initial efforts to inte-
grate this system into a multimodal conversational dialog
framework.

1 Introduction

The ability to speak and point at an interface makes many
practical interaction tasks much easier for users. Since the
seminal work of Bolt’s “put-that-there” system [5], it has
been known that a real-time system to integrate body part
pose estimation with spoken language processing would
have many useful applications.

To date, most methods for integrating pose tracking with
conversational dialog systems have relied on tethered inter-
faces. Virtual reality-based sensors (e.g., data gloves and
magnetic position systems) were the first practical tech-
nique for tracking body configuration, and were success-
fully applied to multimodal interfaces for tasks such as map
exploration [16]. Schemes with explicit markers attached
to hands or fingers have also been proposed, as in systems
for optical motion capture in computer animation. Unfortu-
nately, the use of attached wires or markers has prevented
these systems from being generally usable by casual users.

Untethered approaches to finger and hand tracking using
contour and/or skin color detection have been popular tech-
niques, but are limited to planar interactions [13, 18, 14].
An early system for interacting with virtual characters
tracked hands and detected pointing gestures based on body
silhouette and skin color cues, but was limited to gestures
where the user simply pointed to the left or right [9].

Recently a system for 3-D tracking of hand and face fea-

tures using stereo color cues was developed [3]. This sys-
tem was successfully applied to detecting and classifying
hand gestures in a conversational system [21, 6]. While the
system was in real-time, it relied on an explicit initialization
step (the user placed hands in a canonical configuration),
and could sense only coarse “blob” features. Although it
could estimate the relative position of hands and faces, it
could not independently sense arm orientation (unless the
user wore a short sleeved shirt). Hence it was of limited use
in tracking natural pointing gestures, although it was able to
recognize parametric gestures defined by the relative posi-
tion of both hands [21].

To track natural pointing gestures, we wish to have a
method that can track the pose of articulated arms. Ap-
proaches to track articulated models in monocular im-
age sequences have been proposed. Due to the high di-
mensionality of the model, many researchers investigated
stochastic optimization technics such as particle filtering
[19, 20]. Though promising, these approaches are very
time-consuming (typically requiring 1000 samples to track
simultaneously) and cannot yet be implemented for real-
time purposes.

Stereo correspondence can provide shape estimates that
capture arm orientation; low-cost, real-time systems for
dense stereo have recently become available [1, 2, 11]. An
early effort to detect pointing gestures with real-time stereo
used a generative mixture model to infer arm orientation
[15]; this system worked well for gestures with a fully ex-
tended arm which could be modeled using two coarse shape
”blobs”. This system could not accurately sense arm con-
figurations where the arm was not fully extended, nor could
it sense rotations that did not change the apparent shape (but
may change it’s texture or appearance).

We have developed a system that uses motion stereo
analysis to track pose in real-time. Our work is similar to
[10]. We rely on 3-D shape estimates from stereo corre-
spondence techniques and an approach based on the ICP
(Iterative Closest Point) algorithm [4]. Our main contribu-
tion consists in a framework for ICP that implicitly satisfies
joint constraints while requiring less computation.

In the following sections we present a method for track-
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Figure 1. Articulated model for the user’s up-
per body part.

ing articulated structures, and demonstrate its use in allow-
ing interactive pointer control and diectic reference with
arm gestures. Finally we describe the initial integration of
our system with a conversational dialog system which can
resolve utterance-level multimodal pointing references.

2 Arm tracking

In this section, we are interested in estimating pointing
gestures and therefore track the arms of a user.

In order to model human bodies, we use a 3D cylindri-
cal model of articulated appearance, as shown in Figure 1:
limbs (head, torso, arms, forearms) are modeled as rigid
bodies connected by spherical joints.

We have developed an algorithm for estimating articu-
lated motion based on rigid motion estimates of the articu-
lated model’s constituent parts. We use the well-known ICP
algorithm to coarsely align two clouds of 3D points and es-
timate an initial rigid motion between body parts [4, 7]. We
have developed an algorithm that combines the ICP algo-
rithm with a joint constraint reinforcement step. The advan-
tage of our approach is that the computation of the articu-
lated motion is performed on reduced size equation systems
though the articulated model has a lot of d.o.f..

2.1 ICP-based articulated body tracking

Since we are interested in tracking articulated figures, we
must add joint constraints to our estimation process. When
tracking arms, the standard ICP algorithm [4] is applied to
each limbLk giving a motion transformationÆk and asso-
ciated covariance�k.

Let R and t be the rotation and translation associated
with a motion transformationÆ. Here we assume small mo-
tions1 and therefore rotationsR can be approximated at the
first order byR = I3+[w] where[w] denotes the antisym-
metric matrix associated with vectorw. As a consequence,
motion transformationÆ are parameterized such that:

Æ =

�
w

t

�

It is clear that the set of motion transformationsfÆkg
does not necessarily satisfy the spherical joints constraint.
A correct set of motion transformationsfÆ0kg that satisfies
the spherical joints constraint is found by minimizing:

E2 =
X
k

(Æ0k � Æk)
>��1k (Æ0k � Æk) (1)

subject to (spherical joint) constraintsÆ0i(Mij) = Æ0j(Mij),
wherefMijg are the joints between limbsLi andLj .

Minimizing eq.(1) gives a set of motion transformation
fÆ0kg, which once applied to the articulated model, mini-
mizes the Euclidean distance between the 3-D points and
the articulated model while satisfying the spherical joint
constraints. The method used to perform the constraint min-
imization (1) uses only linear technics and is described in
the next sections.

2.2 ICP step

In order to recover the articulated model pose from
3D data, we use an approach based on ICP, a standard
3D registration algorithm. Given a set of 3D data and a
3D model of a rigid object to register, ICP estimates the
motion transformation between the 3D model and the rigid
object. The algorithm can briefly be described as follows:

1. For each pointPi of the 3D model, find the closest
point P 0

i in the 3D data. The 3-vector
�!
fi =

��!
PiP

0

i is
the local displacement between the 3D model and the
rigid object.

2. Estimate the motion transformationÆ by integrating
the local displacement

�!
fi over the entire object.

3. Apply the motion transformationÆ to the 3D model.

4. If the error criterion� is less than a threshold then quit,
otherwise go to step 1.

The ICP algorithm is applied to each limbLk, giving
a motion transformationÆk, and its covariance matrix�k

1In practice, the tracking system is performed at about 10Hz and the
hypothesis of small motions is well satisfied
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(which can easily be estimated as in step 2. of the ICP al-
gorithm). Only front-facing points of the limbsLk were
considered.

As stressed in the previous section, the set of motion
transformationfÆkg does not necessarily satisfy the spheri-
cal joints constraint. A correct set of motion transformation
fÆ0kg that satisfy the spherical joints constraint is found by
minimizing eq.(1).

2.3 Enforcing joint constraint

In this section we describe how the spherical joint con-
straints are implicitly enforced.

LetMij be a spherical joint between the rigid bodiesLi
andLj . Let Æ0i andÆ0j be the respective motion transfor-
mation applied to the rigid bodiesLi andLj . LetR0 and
t
0 be the rotation and translation associated with a motion

transformationÆ0.
The spherical joint constraint onMij can be written:

Æ0i(Mij) = Æ0j(Mij)
) (R0

i �R
0

j)Mij + t
0

i � t
0

j = 0
) [w0

i �w
0

j ]Mij + t
0

i � t
0

j = 0
) �[Mij ](w

0

i �w
0

j) + t
0

i � t
0

j = 0

(2)

Let �0 be the articulated motion transformation written
as:

�0 =

0
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Let Sij the 3x(6N) matrix defined by:

Sij = (03 : : :�[Mij ]| {z }
i

I3|{z}
i+1

: : : 03 : : : [Mij ]| {z }
j

�I3|{z}
j+1

: : : 03)

Eq.(2) equivalates to:

Sij�
0 = 0 (3)

Similar equations can be written for each joint constraint.
By stacking eqs.(3) into a single matrix�, the spherical
joint constraints are simultaneously expressed by the equa-
tion:

��0 = 0 (4)

Eq.(4) implies that the articulated motion transformation
�0 lies in the kernel of the matrix�. Let K be the size
of kernelf�g andvk be a basis ofkernelf�g. In our
study the basisvk is estimated from� using a SVD-based
approach and is orthogonal. There exists a set of parameters
�k such that�0 can be written:

�0 = �1v1 + : : :+ �KvK (5)

Let�0

red be a vector andV a matrix such that:

�0

red = (�1 : : : �M )> V = (v1 : : :vM )

Eq.(5) can be rewritten:

�0 = V�0

red (6)

2.4 Articulated motion estimation

Let� be the global motion transformation estimated by
applying the standard ICP algorithm to each of the rigid
bodies. As stressed in Section 2.1,� does not satisfy the
joint constraints. Let� a block-diagonal matrix such that:
� = diag(�1;�2; : : :). Eq.(1) gives:

E2 = (�0 ��)>��1(�0 ��)
= (V�0

red ��)>��1(V�0

red ��)
(7)

By derivation of the previous equation w.r.t.�0

red, it can
be shown that the minimum ofE2 is reached at:

�0

red = (V>��1V)�1V>��1�

Finally the correct articulated motion�0 is estimated us-
ing eq.(6).

2.5 Pose initialization

The tracking algorithm requires an initial estimate of
the body pose. This initialization is provided by a coarse
stereo-based multiple-person tracking system developed in
our group [8] that gives an estimate of the(x; y) location of
multiple people.

Once a person is detected (and tracked), a simple body
model is fit to this person. This model consists in 3 cylin-
ders (1 for head+torso, 1 for left arm+forearm, 1 for right
arm+forearm) and assumes that people are standing straight
arms stretched. In practice, the simple body fit is done as
follow. First, the 3 cylinders are incrementally searched in
3-D reconstructed foreground points. Then an EM algo-
rithm is run in order to refine the model estimation.

This initialization procedure does not constraint the user
to a particular pose (arms only have to be stretched) and,
though simple, gives a correct pose estimation.

2.6 Pointer estimation

The pointer position is computed as the intersection of
the screen plane and the line formed by the corresponding
forearm. In addition, a Kalman filter is applied to reduce
high frequency tracking jitter. This stabilizes the pointer
position and compensates for involuntary motion (e.g.shak-
ing) and articulated body tracking instability.
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Figure 2. Images of a user with matched ar-
ticulated body model. In the last two images,
the user is pointing at the screen placed be-
low the camera.

Figure 3. Typical trajectories for the rectan-
gle contour tracing task. (top) user at 1.5m
from the screen (bottom) user at 2.5m from
the screen

In our initial prototype, clicking events are triggered
when the pointer remains still for a certain amount of time
(typically 2sec.). Though this approach has been found
quite useful for detecting clicking events, we are still in-
vestigating more natural ways of performing selection tasks
(e.g.using speech and gesture recognition).

2.7 Target selection experiment

We applied the articulated-body-based pointer to the task
of selecting targets on a large projected display. The system
consisted of a stereo camera. The stereo images were esti-
mated using [11]. The complete tracking algorithm (stereo
+ articulated body tracking) was run on a Pentium 4 (2GHz)
at 10Hz.

An experiment was run in an interactive room setup.
Users were standing about 2.0 meters away from a 2.1m
x 1.5m projection screen, subtended a horizontal angle of
about 100 degrees and a vertical angle of about 80 degrees.
Subjects were asked to perform a target selection task (see
Figure 2). The task consisted of pointing at randomly-
generated squares. Squares appeared one-at-a-time and re-
mained on the screen until the user has actually been point-
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Figure 4. Users interacting with different ap-
plications using the integrated system Web-
Galaxy/pointing detector.

ing at them for a certain period of time� (� = 2sec.in these
experiments).

The average pointing accuracy (defined as the average of
the distance between the target and the pointer during time
� ) estimated during the task was about 20pix., what is good
enough for target selection.

Another task consisted in tracing the contour of a rect-
angle drawn on the screen. Figure 3 shows typical pointer
trajectories when the user is respectively at 1.5m and 2.5m
from the screen.

3 Application

We are integrating our pointing detection system in with
the MIT SLS system WebGalaxy [12]. WebGalaxy is a
flexible multi-modal user interface system that allows wide
access to selected information on the World Wide Web
(WWW) by integrating spoken and typed natural language
queries and hypertext navigation. Our pointer detector is

being used for the hypertext navigation instead of using a
mouse. Figure 4 shows users interacting with different ap-
plications using the integrated system WebGalaxy/pointing
detector. In these applications, events are triggered either
by pointing detection (target selection), speech (actions) or
both (e.g.move-this-there).

4 Discussion

We described an approach for real-time articulated body
tracking. This framework uses stereo information only and
is therefore robust to illumination dynamic. The articulated
body pose provides the orientation of the arms as well as
the coordinates of the pointer on a screen.

For direct manipulation tasks such as driving cursors and
selecting objects, the articulated body tracking system is ac-
curate enough. The arm tracking system, though less accu-
rate than the stereo head tracking developed in our group
[17], appeared in practice to be a more natural way to se-
lect targets on a screen. We believe this type of system will
be an important module in designing perceptual interfaces
for screen interaction and cockpit applications by providing
natural human-computer interaction.

Currently the head and arm tracking systems have been
implemented and evaluated as separate applications. We are
merging the implementations and expect to evaluate them
jointing on the WebGalaxy application this summer.

References

[1] Pt Grey Inc.http://www.ptgrey.com.

[2] Videre design. http://www.videredesign.com.

[3] A. Azarbayejani, C. Wren, and A. Pentland. Real-time
3-d tracking of the human body. InIMAGE’COM,
1996.

[4] P.J. Besl and N. MacKay. A method for registration
of 3-d shapes.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 14:239–256, 1992.

[5] R. Bolt. Put-that-there: Voice and gesture at the graph-
ics interface. InACM SIGGRAPH, 1980.

[6] J. Cassell. Nudge nudge wink wink: Elements of
face-to-face conversation for embodied conversational
agents. InEmbodied Conversational Agents, 2000.

[7] Y. Chen and G. Medioni. Object modeling by regis-
tration of multiple range images.Image and Vision
Computing, pages 145–155, 1992.

[8] T. Darrell, D. Demirdjian, N. Checka, and P. Felzen-
szwalb. Plan-view trajectory estimation with dense

5



stereo background models. In2001 International Con-
ference on Computer Vision, 2001.

[9] T. Darrell, P. Maes, B. Blumberg, and A. Pentland. A
novel environment for situated vision and behavior. In
IEEE Workshop on Visual Behaviors, 1994.

[10] Quentin Delamarre and Olivier D. Faugeras. 3d articu-
lated models and multi-view tracking with silhouettes.
In ICCV (2), pages 716–721, 1999.

[11] D. Demirdjian.E-stereo: Real-time dense stereo pro-
cessing. http://www.ai.mit.edu/ demirdji/download/.

[12] D. Goddeau, E. Brill, J. Glass, C. Pao, M. Phillips,
J. Polifroni, S. Seneff, and V. Zue. Galaxy: A human-
language interface to on-line travel information. In
Int’l Conference on Spoken Language Processing ’94,
1994.

[13] D. Hall, C. Le Gal, J. Martin, O. Chomat, and J. L.
Crowley. Magicboard: A contribution to an intelli-
gent office environment. InIntelligent Robotic Sys-
tems, 2001.

[14] M. Isard and A. Blake. Icondensation: Unifying low-
level and high-level tracking in a stochastic frame-
work. In ECCV’98, 1998.

[15] N. Jojic, M. Turk, and T.S. Huang. Tracking artic-
ulated objects in dense disparity maps. InInterna-
tional Conference on Computer Vision, pages 123–
130, 1999.

[16] D. Koons, C. Sparrell, and K. Thrisson. Integrating
simultaneous input from speech, gaze and hand ges-
tures. Intelligent Multimedia Interfaces, ed. by M.
Maybury, MIT Press, pages 257–276, 1993.

[17] L.P. Morency and T. Darrell. Stereo tracking using icp
and normal flow. InInt. Conf. on Pattern Recognition,
2002.

[18] K. Oka, Y. Sato, and H. Koike. Real-time tracking
of multiple fingertips and gesture recognition for aug-
mented desk interface systems. InIEEE International
Conference on Automatic Face and Gesture Recogni-
tion, 2002.

[19] Hedvig Sidenbladh, Michael J. Black, and David J.
Fleet. Stochastic tracking of 3d human figures using
2d image motion. InECCV (2), pages 702–718, 2000.

[20] Cristian Sminchisescu and Bill Triggs. Covariance
scaled sampling for monocular 3d body tracking. In
Proceedings of the Conference on Computer Vision
and Pattern Recognition, Kauai, Hawaii, USA. IEEE
Computer Society Press, Dec 2001.

[21] A. Wilson and A. Bobick. Parametric hidden markov
models for gesture recognition. InIEEE Transactions
on Pattern Analysis and Machine Intelligence, 1999.

6


